首页 > 最新文献

Data science in science最新文献

英文 中文
Evaluation of Seasonality in Sea Surface Salinity Balance Equation via Function Registration 用函数配准评价海面盐度平衡方程的季节性
Pub Date : 2023-07-19 DOI: 10.1080/26941899.2023.2231061
Yoonji Kim, S. Brodnitz, O. Chkrebtii, F. Bingham
{"title":"Evaluation of Seasonality in Sea Surface Salinity Balance Equation via Function Registration","authors":"Yoonji Kim, S. Brodnitz, O. Chkrebtii, F. Bingham","doi":"10.1080/26941899.2023.2231061","DOIUrl":"https://doi.org/10.1080/26941899.2023.2231061","url":null,"abstract":"","PeriodicalId":72770,"journal":{"name":"Data science in science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42709365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data Science in Science: Special Issue on Data Science in the Brain Sciences 科学中的数据科学:《脑科学》数据科学特刊
Pub Date : 2023-07-07 DOI: 10.1080/26941899.2023.2216814
Carolina Euán, M. Fiecas, H. Ombao, D. Matteson
{"title":"Data Science in Science: Special Issue on Data Science in the Brain Sciences","authors":"Carolina Euán, M. Fiecas, H. Ombao, D. Matteson","doi":"10.1080/26941899.2023.2216814","DOIUrl":"https://doi.org/10.1080/26941899.2023.2216814","url":null,"abstract":"","PeriodicalId":72770,"journal":{"name":"Data science in science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47863755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Online Multivariate Signal Extraction With Locally Weighted Robust Polynomial Regression 基于局部加权鲁棒多项式回归的自适应在线多变量信号提取
Pub Date : 2023-05-10 DOI: 10.1080/26941899.2023.2200856
M. Klanderman, Junho Lee, K. Villez, T. Cath, A. Hering
{"title":"Adaptive Online Multivariate Signal Extraction With Locally Weighted Robust Polynomial Regression","authors":"M. Klanderman, Junho Lee, K. Villez, T. Cath, A. Hering","doi":"10.1080/26941899.2023.2200856","DOIUrl":"https://doi.org/10.1080/26941899.2023.2200856","url":null,"abstract":"","PeriodicalId":72770,"journal":{"name":"Data science in science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48838360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
News-Based Sparse Machine Learning Models for Adaptive Asset Pricing 基于新闻的自适应资产定价稀疏机器学习模型
Pub Date : 2023-04-03 DOI: 10.1080/26941899.2023.2187895
Liao Zhu, Haoxuan Wu, M. Wells
{"title":"News-Based Sparse Machine Learning Models for Adaptive Asset Pricing","authors":"Liao Zhu, Haoxuan Wu, M. Wells","doi":"10.1080/26941899.2023.2187895","DOIUrl":"https://doi.org/10.1080/26941899.2023.2187895","url":null,"abstract":"","PeriodicalId":72770,"journal":{"name":"Data science in science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48552485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring and Quantifying Uncertainty in Volatility Spillovers: A Bayesian Approach 波动性溢出的不确定性度量与量化:贝叶斯方法
Pub Date : 2023-03-06 DOI: 10.1080/26941899.2023.2176379
Yu. P. Shapovalova, M. Eichler
{"title":"Measuring and Quantifying Uncertainty in Volatility Spillovers: A Bayesian Approach","authors":"Yu. P. Shapovalova, M. Eichler","doi":"10.1080/26941899.2023.2176379","DOIUrl":"https://doi.org/10.1080/26941899.2023.2176379","url":null,"abstract":"","PeriodicalId":72770,"journal":{"name":"Data science in science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43964109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Effect: An Introduction to Research Design and Causality 效应:研究设计与因果关系导论
Pub Date : 2023-02-23 DOI: 10.1080/26941899.2023.2167433
Y. Wang
{"title":"The Effect: An Introduction to Research Design and Causality","authors":"Y. Wang","doi":"10.1080/26941899.2023.2167433","DOIUrl":"https://doi.org/10.1080/26941899.2023.2167433","url":null,"abstract":"","PeriodicalId":72770,"journal":{"name":"Data science in science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44730273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 42
Hybrid Forecasting for Functional Time Series of Dissolved Oxygen Profiles 溶解氧剖面函数时间序列的混合预测
Pub Date : 2023-02-08 DOI: 10.1080/26941899.2022.2152401
Luke Durell, J. Scott, A. Hering
{"title":"Hybrid Forecasting for Functional Time Series of Dissolved Oxygen Profiles","authors":"Luke Durell, J. Scott, A. Hering","doi":"10.1080/26941899.2022.2152401","DOIUrl":"https://doi.org/10.1080/26941899.2022.2152401","url":null,"abstract":"","PeriodicalId":72770,"journal":{"name":"Data science in science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49001985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning from Lending in the Interbank Network 从银行间网络借贷中学习
Pub Date : 2023-01-30 DOI: 10.1080/26941899.2022.2151949
P. Laux, Wei Qian, Haici Zhang
{"title":"Learning from Lending in the Interbank Network","authors":"P. Laux, Wei Qian, Haici Zhang","doi":"10.1080/26941899.2022.2151949","DOIUrl":"https://doi.org/10.1080/26941899.2022.2151949","url":null,"abstract":"","PeriodicalId":72770,"journal":{"name":"Data science in science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42790583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Financial Networks with High-frequency Trade Data. 利用高频交易数据学习金融网络
Pub Date : 2023-01-01 Epub Date: 2023-02-28 DOI: 10.1080/26941899.2023.2166624
Kara Karpman, Sumanta Basu, David Easley, Sanghee Kim

Financial networks are typically estimated by applying standard time series analyses to price-based economic variables collected at low-frequency (e.g., daily or monthly stock returns or realized volatility). These networks are used for risk monitoring and for studying information flows in financial markets. High-frequency intraday trade data sets may provide additional insights into network linkages by leveraging high-resolution information. However, such data sets pose significant modeling challenges due to their asynchronous nature, complex dynamics, and nonstationarity. To tackle these challenges, we estimate financial networks using random forests, a state-of-the-art machine learning algorithm which offers excellent prediction accuracy without expensive hyperparameter optimization. The edges in our network are determined by using microstructure measures of one firm to forecast the sign of the change in a market measure such as the realized volatility of another firm. We first investigate the evolution of network connectivity in the period leading up to the U.S. financial crisis of 2007-09. We find that the networks have the highest density in 2007, with high degree connectivity associated with Lehman Brothers in 2006. A second analysis into the nature of linkages among firms suggests that larger firms tend to offer better predictive power than smaller firms, a finding qualitatively consistent with prior works in the market microstructure literature.

金融网络通常是通过将标准时间序列分析应用于以低频率收集的基于价格的经济变量来估计的(例如,每日或每月的股票回报率或已实现的波动率)。这些网络用于风险监测和研究金融市场中的信息流动。高频日内贸易数据集可以通过利用高分辨率信息,为网络联系提供更多见解。然而,由于其异步性、非线性动力学和非平稳性,此类数据集带来了重大的建模挑战。为了应对这些挑战,我们使用随机森林来估计金融网络。我们网络中的边缘是通过使用一家公司的微观结构指标来预测另一家公司市场指标(已实现波动率或回报峰度)变化的迹象来确定的。我们首先调查了2007-09年美国金融危机之前网络连接的演变。我们发现,2007年的网络密度最高,与2006年的雷曼兄弟有着高度的连通性。对企业之间联系性质的第二次分析表明,大企业往往比小企业提供更好的预测能力,这一发现与市场微观结构文献中先前的工作在质量上一致。
{"title":"Learning Financial Networks with High-frequency Trade Data.","authors":"Kara Karpman, Sumanta Basu, David Easley, Sanghee Kim","doi":"10.1080/26941899.2023.2166624","DOIUrl":"10.1080/26941899.2023.2166624","url":null,"abstract":"<p><p>Financial networks are typically estimated by applying standard time series analyses to price-based economic variables collected at low-frequency (e.g., daily or monthly stock returns or realized volatility). These networks are used for risk monitoring and for studying information flows in financial markets. High-frequency intraday trade data sets may provide additional insights into network linkages by leveraging high-resolution information. However, such data sets pose significant modeling challenges due to their asynchronous nature, complex dynamics, and nonstationarity. To tackle these challenges, we estimate financial networks using random forests, a state-of-the-art machine learning algorithm which offers excellent prediction accuracy without expensive hyperparameter optimization. The edges in our network are determined by using microstructure measures of one firm to forecast the sign of the change in a market measure such as the realized volatility of another firm. We first investigate the evolution of network connectivity in the period leading up to the U.S. financial crisis of 2007-09. We find that the networks have the highest density in 2007, with high degree connectivity associated with Lehman Brothers in 2006. A second analysis into the nature of linkages among firms suggests that larger firms tend to offer better predictive power than smaller firms, a finding qualitatively consistent with prior works in the market microstructure literature.</p>","PeriodicalId":72770,"journal":{"name":"Data science in science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47504522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Stochastic Volatility in Financial Option Surfaces 金融期权表面的功能随机波动率
Pub Date : 2022-12-31 DOI: 10.1080/26941899.2022.2152764
Phillip A. Jang, Michael Jauch, D. Matteson
{"title":"Functional Stochastic Volatility in Financial Option Surfaces","authors":"Phillip A. Jang, Michael Jauch, D. Matteson","doi":"10.1080/26941899.2022.2152764","DOIUrl":"https://doi.org/10.1080/26941899.2022.2152764","url":null,"abstract":"","PeriodicalId":72770,"journal":{"name":"Data science in science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42815626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Data science in science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1