首页 > 最新文献

Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V最新文献

英文 中文
Specification of Row Pattern Recognition in the SQL Standard and its Implementations SQL标准中行模式识别的规范及其实现
D. Petković
{"title":"Specification of Row Pattern Recognition in the SQL Standard and its Implementations","authors":"D. Petković","doi":"10.1007/s13222-022-00404-3","DOIUrl":"https://doi.org/10.1007/s13222-022-00404-3","url":null,"abstract":"","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"42 1","pages":"163 - 174"},"PeriodicalIF":0.0,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85982165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nachruf auf Prof. Dr. Albrecht Blaser, Hirschhorn 我是波席尔教授
P. Dadam, Klaus Küspert, H. Schek
{"title":"Nachruf auf Prof. Dr. Albrecht Blaser, Hirschhorn","authors":"P. Dadam, Klaus Küspert, H. Schek","doi":"10.1007/s13222-022-00407-0","DOIUrl":"https://doi.org/10.1007/s13222-022-00407-0","url":null,"abstract":"","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"46 1","pages":"93 - 94"},"PeriodicalIF":0.0,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76920056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BTW2021 erstmals als digitale Vortragsreihe 2021年首个数字演讲系列
Wolfgang Lehner, Kai-Uwe Sattler, J. Freytag
{"title":"BTW2021 erstmals als digitale Vortragsreihe","authors":"Wolfgang Lehner, Kai-Uwe Sattler, J. Freytag","doi":"10.1007/s13222-021-00402-x","DOIUrl":"https://doi.org/10.1007/s13222-021-00402-x","url":null,"abstract":"","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"75 1","pages":"67 - 71"},"PeriodicalIF":0.0,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77365115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reviving the Workshop Series on Testing Database Systems - DBTest. 恢复数据库系统测试系列研讨会- DBTest。
Carsten Binnig, Alexander Böhm, Tilmann Rabl, Pınar Tözün

With the ever increasing complexity of database systems and their pervasive use in industry, testing them has been an important issue for a long time. Recognizing this relevance, researchers and industry have started the Workshop Series on Testing Database Systems in 2008 collocated with ACM SIGMOD. Six instances of the workshop were successfully run until 2013. Five years later, in 2018, we revived the workshop in a new, biannual format. Today, the DBTest workshop consistently has high-quality submissions, expert presenters, and active participants across both academia and industry. Going forward, we plan to open the workshop up to an even more diverse audience, especially the research communities that focus on software testing and debugging in general, and not only on database systems.

随着数据库系统复杂性的不断增加以及数据库在工业中的广泛应用,对数据库系统进行测试一直是一个重要的问题。认识到这种相关性,研究人员和业界在2008年与ACM SIGMOD一起启动了测试数据库系统的研讨会系列。截至2013年,该研讨会已成功举办了6次。五年后的2018年,我们以一年两次的新形式恢复了研讨会。今天,DBTest研讨会始终拥有高质量的提交、专家演示以及来自学术界和工业界的积极参与者。展望未来,我们计划将研讨会开放给更多样化的受众,特别是关注软件测试和调试的研究社区,而不仅仅是数据库系统。
{"title":"Reviving the Workshop Series on Testing Database Systems - DBTest.","authors":"Carsten Binnig,&nbsp;Alexander Böhm,&nbsp;Tilmann Rabl,&nbsp;Pınar Tözün","doi":"10.1007/s13222-022-00430-1","DOIUrl":"https://doi.org/10.1007/s13222-022-00430-1","url":null,"abstract":"<p><p>With the ever increasing complexity of database systems and their pervasive use in industry, testing them has been an important issue for a long time. Recognizing this relevance, researchers and industry have started the Workshop Series on Testing Database Systems in 2008 collocated with ACM SIGMOD. Six instances of the workshop were successfully run until 2013. Five years later, in 2018, we revived the workshop in a new, biannual format. Today, the DBTest workshop consistently has high-quality submissions, expert presenters, and active participants across both academia and industry. Going forward, we plan to open the workshop up to an even more diverse audience, especially the research communities that focus on software testing and debugging in general, and not only on database systems.</p>","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"22 3","pages":"257-260"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9259691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metrics and Algorithms for Locally Fair and Accurate Classifications using Ensembles. 使用集成的局部公平和准确分类的度量和算法。
Nico Lässig, Sarah Oppold, Melanie Herschel

To obtain accurate predictions of classifiers, model ensembles comprising multiple trained machine learning models are nowadays used. In particular, dynamic model ensembles pick the most accurate model for each query object, by applying the model that performed best on similar data. Dynamic model ensembles may however suffer, similarly to single machine learning models, from bias, which can eventually lead to unfair treatment of certain groups of a general population. To mitigate unfair classification, recent work has thus proposed fair model ensembles, that instead of focusing (solely) on accuracy also optimize global fairness. While such global fairness globally minimizes bias, imbalances may persist in different regions of the data, e.g., caused by some local bias maxima leading to local unfairness. Therefore, we extend our previous work by including a framework that bridges the gap between dynamic model ensembles and fair model ensembles. More precisely, we investigate the problem of devising locally fair and accurate dynamic model ensembles, which ultimately optimize for equal opportunity of similar subjects. We propose a general framework to perform this task and present several algorithms implementing the framework components. In this paper we also present a runtime-efficient framework adaptation that keeps the quality of the results on a similar level. Furthermore, new fairness metrics are presented as well as detailed informations about necessary data preparations. Our evaluation of the framework implementations and metrics shows that our approach outperforms the state-of-the art for different types and degrees of bias present in training data in terms of both local and global fairness, while reaching comparable accuracy.

为了获得分类器的准确预测,现在使用由多个训练过的机器学习模型组成的模型集成。特别是,动态模型集成通过应用在类似数据上表现最好的模型,为每个查询对象选择最准确的模型。然而,与单一机器学习模型类似,动态模型集成可能会受到偏见的影响,这最终会导致对一般人群中的某些群体的不公平对待。为了减轻不公平的分类,最近的工作因此提出了公平的模型集成,而不是(仅仅)关注准确性,也优化全局公平性。虽然这种全局公平在全局上最大限度地减少了偏差,但不平衡可能在数据的不同区域持续存在,例如,由于某些局部偏差最大值导致局部不公平。因此,我们通过包含一个框架来扩展我们以前的工作,该框架可以弥合动态模型集成和公平模型集成之间的差距。更准确地说,我们研究了设计局部公平和准确的动态模型集合的问题,该问题最终优化为相似主题的均等机会。我们提出了一个通用框架来执行这项任务,并提出了实现框架组件的几种算法。在本文中,我们还提出了一个运行时高效的框架适应,使结果的质量保持在类似的水平上。此外,还提出了新的公平性指标以及有关必要数据准备的详细信息。我们对框架实现和度量的评估表明,我们的方法在局部和全局公平性方面优于训练数据中存在的不同类型和程度的偏差的最新技术,同时达到相当的准确性。
{"title":"Metrics and Algorithms for Locally Fair and Accurate Classifications using Ensembles.","authors":"Nico Lässig,&nbsp;Sarah Oppold,&nbsp;Melanie Herschel","doi":"10.1007/s13222-021-00401-y","DOIUrl":"https://doi.org/10.1007/s13222-021-00401-y","url":null,"abstract":"<p><p>To obtain accurate predictions of classifiers, model ensembles comprising multiple trained machine learning models are nowadays used. In particular, <i>dynamic model ensembles</i> pick the most accurate model for each query object, by applying the model that performed best on similar data. Dynamic model ensembles may however suffer, similarly to single machine learning models, from bias, which can eventually lead to unfair treatment of certain groups of a general population. To mitigate unfair classification, recent work has thus proposed <i>fair model ensembles</i>, that instead of focusing (solely) on accuracy also optimize <i>global fairness</i>. While such global fairness globally minimizes bias, imbalances may persist in different regions of the data, e.g., caused by some local bias maxima leading to <i>local unfairness</i>. Therefore, we extend our previous work by including a framework that bridges the gap between dynamic model ensembles and fair model ensembles. More precisely, we investigate the problem of devising locally fair and accurate dynamic model ensembles, which ultimately optimize for equal opportunity of similar subjects. We propose a general framework to perform this task and present several algorithms implementing the framework components. In this paper we also present a runtime-efficient framework adaptation that keeps the quality of the results on a similar level. Furthermore, new fairness metrics are presented as well as detailed informations about necessary data preparations. Our evaluation of the framework implementations and metrics shows that our approach outperforms the state-of-the art for different types and degrees of bias present in training data in terms of both local and global fairness, while reaching comparable accuracy.</p>","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"22 1","pages":"23-43"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762451/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39851213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Four Generations in Data Engineering for Data Science 面向数据科学的四代数据工程
Meike Klettke, U. Störl
{"title":"Four Generations in Data Engineering for Data Science","authors":"Meike Klettke, U. Störl","doi":"10.1007/s13222-021-00399-3","DOIUrl":"https://doi.org/10.1007/s13222-021-00399-3","url":null,"abstract":"","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"66 1","pages":"59 - 66"},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84762486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Data Science Meets High-Tech Manufacturing – The BTW 2021 Data Science Challenge 数据科学与高科技制造——BTW 2021数据科学挑战赛
Lucas Woltmann, P. Volk, Michael Dinzinger, Lukas Gräf, S. Strasser, Johannes Schildgen, Claudio Hartmann, Wolfgang Lehner
{"title":"Data Science Meets High-Tech Manufacturing – The BTW 2021 Data Science Challenge","authors":"Lucas Woltmann, P. Volk, Michael Dinzinger, Lukas Gräf, S. Strasser, Johannes Schildgen, Claudio Hartmann, Wolfgang Lehner","doi":"10.1007/s13222-021-00398-4","DOIUrl":"https://doi.org/10.1007/s13222-021-00398-4","url":null,"abstract":"","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"28 1","pages":"5 - 10"},"PeriodicalIF":0.0,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83306129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Continuous Training and Deployment of Deep Learning Models 深度学习模型的持续训练和部署
Ioannis Prapas, Behrouz Derakhshan, Alireza Rezaei Mahdiraji, V. Markl
{"title":"Continuous Training and Deployment of Deep Learning Models","authors":"Ioannis Prapas, Behrouz Derakhshan, Alireza Rezaei Mahdiraji, V. Markl","doi":"10.1007/s13222-021-00386-8","DOIUrl":"https://doi.org/10.1007/s13222-021-00386-8","url":null,"abstract":"","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"9 1","pages":"203 - 212"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77765420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
„Data Engineering“ in der Hochschullehre
Ralf Schenkel, Stefanie Scherzinger, M. Tropmann-Frick
{"title":"„Data Engineering“ in der Hochschullehre","authors":"Ralf Schenkel, Stefanie Scherzinger, M. Tropmann-Frick","doi":"10.1007/s13222-021-00395-7","DOIUrl":"https://doi.org/10.1007/s13222-021-00395-7","url":null,"abstract":"","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"56 1","pages":"251 - 253"},"PeriodicalIF":0.0,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80423155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissertationen
{"title":"Dissertationen","authors":"","doi":"10.1007/s13222-021-00396-6","DOIUrl":"https://doi.org/10.1007/s13222-021-00396-6","url":null,"abstract":"","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"83 1","pages":"261 - 264"},"PeriodicalIF":0.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81084335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1