The potential use of several ecofriendly nitrogen-doped 2D graphene-like derivatives (N-2D GDs) with various graphitic structural features as electrode materials for symmetric 2-electrode supercapacitor devices was explored. The N-2D GDs were synthesized via a novel, facile, ecofriendly, economic and scalable technique. The synthesis technique is simply a single-step hydrothermal treatment of glucose using traces of cetyltrimethylammonium bromide (CTAB) and ammonia as structure-directing agents. Graphitic structural characteristics were controlled by manipulating hydrothermal process temperature and CTAB dose. Electrochemical energy storage performance was found to be strongly dependent on the oxidation level, doped-N content and configuration, density of graphitic surface-capping by CTAB, morphological architecture and graphitic structural order of N-2D GD-based electrodes. Interestingly, such graphitic structural parameters influenced overall charge-storage capacitance through EDLC and pseudocapacitance mechanisms in a competitive manner. An N-2D GD sample synthesized at a hydrothermal temperature of 270 °C and CTAB/glucose molar ratio of 1/6 (NG-HCD270) exhibited the best energy storage capacitive performance in a symmetric 2-electrode supercapacitor system owing to the almost pure well-ordered N-doped graphene. It showed excellent electrochemical energy storage performance as compared to other 2D graphene derivatives reported in the literature synthesized via toxic conventional methods, with a specific capacitance of 553 F g−1, energy density of 84.5 W h kg−1, power density of 550.2 W kg−1 and 88.5% capacitance retention after 5000 cycles. Thus, the NG-HCD270 graphitic sample can be considered a promising ecofriendly and cost-effective electrode material for high-performance supercapacitors, which can benefit the substantial development of electrical energy storage industry and, hence, electrical power production from renewable energy sources at competitive costs.
探讨了几种具有不同石墨结构特征的氮掺杂二维类石墨烯衍生物(N-2D GDs)作为对称双电极超级电容器器件电极材料的潜在用途。通过一种新颖、简便、环保、经济和可扩展的技术合成了N-2D GDs。该合成技术是简单的一步水热处理葡萄糖使用微量十六烷基三甲基溴化铵(CTAB)和氨作为结构导向剂。通过控制水热工艺温度和CTAB用量来控制石墨的结构特性。电化学储能性能与N-2D gd电极的氧化水平、掺杂n的含量和构型、CTAB覆盖石墨表面的密度、形态结构和石墨结构顺序密切相关。有趣的是,这种石墨结构参数通过EDLC和伪电容机制以竞争的方式影响总体电荷存储电容。在水热温度为270℃、CTAB/葡萄糖摩尔比为1/6 (NG-HCD270)的条件下合成的N-2D GD样品在对称的2电极超级电容器体系中表现出最佳的储能性能,这是因为n掺杂石墨烯几乎是纯净有序的。与传统方法合成的2D石墨烯衍生物相比,该材料具有优异的电化学储能性能,比电容为553 F g−1,能量密度为84.5 W h kg−1,功率密度为550.2 W kg−1,循环5000次后电容保持率为88.5%。因此,NG-HCD270石墨样品可以被认为是一种有前景的环保且具有成本效益的高性能超级电容器电极材料,它可以有利于电能存储行业的实质性发展,从而以具有竞争力的成本从可再生能源中生产电力。
{"title":"Evaluation of the electrochemical energy storage performance of symmetric supercapacitor devices based on eco-friendly synthesized nitrogen-doped graphene-like derivative electrodes from the perspective of their nanostructural characteristics†","authors":"Marwa A. A. Mohamed, Marwa Adel and Jehan El Nady","doi":"10.1039/D4YA00526K","DOIUrl":"https://doi.org/10.1039/D4YA00526K","url":null,"abstract":"<p >The potential use of several ecofriendly nitrogen-doped 2D graphene-like derivatives (N-2D GDs) with various graphitic structural features as electrode materials for symmetric 2-electrode supercapacitor devices was explored. The N-2D GDs were synthesized <em>via</em> a novel, facile, ecofriendly, economic and scalable technique. The synthesis technique is simply a single-step hydrothermal treatment of glucose using traces of cetyltrimethylammonium bromide (CTAB) and ammonia as structure-directing agents. Graphitic structural characteristics were controlled by manipulating hydrothermal process temperature and CTAB dose. Electrochemical energy storage performance was found to be strongly dependent on the oxidation level, doped-N content and configuration, density of graphitic surface-capping by CTAB, morphological architecture and graphitic structural order of N-2D GD-based electrodes. Interestingly, such graphitic structural parameters influenced overall charge-storage capacitance through EDLC and pseudocapacitance mechanisms in a competitive manner. An N-2D GD sample synthesized at a hydrothermal temperature of 270 °C and CTAB/glucose molar ratio of 1/6 (NG-HCD270) exhibited the best energy storage capacitive performance in a symmetric 2-electrode supercapacitor system owing to the almost pure well-ordered N-doped graphene. It showed excellent electrochemical energy storage performance as compared to other 2D graphene derivatives reported in the literature synthesized <em>via</em> toxic conventional methods, with a specific capacitance of 553 F g<small><sup>−1</sup></small>, energy density of 84.5 W h kg<small><sup>−1</sup></small>, power density of 550.2 W kg<small><sup>−1</sup></small> and 88.5% capacitance retention after 5000 cycles. Thus, the NG-HCD270 graphitic sample can be considered a promising ecofriendly and cost-effective electrode material for high-performance supercapacitors, which can benefit the substantial development of electrical energy storage industry and, hence, electrical power production from renewable energy sources at competitive costs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2947-2964"},"PeriodicalIF":3.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00526k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the dynamic realm of energy storage devices, supercapacitors (SCs) stand out as promising options. Among the various materials considered for SC electrodes, layered substances like Ti3C2 have drawn attention due to their outstanding electrochemical qualities, especially their impressive volumetric capacitance. This study focuses on assessing the predictive abilities of three machine learning models: Bayesian ridge regression (BRR), K-nearest neighbors (KNN), and artificial neural network (ANN) in estimating specific capacitance in Ti3C2-based supercapacitors. BRR offered reliable predictions with an R-squared (R2) value of 0.759 and a low root mean square error (RMSE) of 0.074. KNN excelled in predicting supercapacitor performance with an impressive R2 of 0.928 and a minimal RMSE of 0.040. However, the ANN model stood out as it could reveal the significance of various inputs much like the human brain's intricate functioning. It achieved a high R2 of 0.8929 with a low RMSE of 0.0493, demonstrating its proficiency in capturing complex relationships in the dataset. The precise tuning of hyperparameters further enhanced its accuracy. The use of SHAP (SHapley Additive exPlanations) values emphasized cation mobility, and scan rates as key contributing factors. These findings provide a strong foundation for utilizing machine learning to predict specific capacitance in Ti3C2-based supercapacitors. Researchers can benefit from these versatile tools for precise predictions, facilitating systematic supercapacitor design and enhancing our understanding of electrode materials.
{"title":"Unlocking the potential of Ti3C2 electrodes: a data-driven capacitance prediction study†","authors":"Sanjith Krishna and Afkham Mir","doi":"10.1039/D4YA00460D","DOIUrl":"https://doi.org/10.1039/D4YA00460D","url":null,"abstract":"<p >In the dynamic realm of energy storage devices, supercapacitors (SCs) stand out as promising options. Among the various materials considered for SC electrodes, layered substances like Ti<small><sub>3</sub></small>C<small><sub>2</sub></small> have drawn attention due to their outstanding electrochemical qualities, especially their impressive volumetric capacitance. This study focuses on assessing the predictive abilities of three machine learning models: Bayesian ridge regression (BRR), K-nearest neighbors (KNN), and artificial neural network (ANN) in estimating specific capacitance in Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>-based supercapacitors. BRR offered reliable predictions with an <em>R</em>-squared (<em>R</em><small><sup>2</sup></small>) value of 0.759 and a low root mean square error (RMSE) of 0.074. KNN excelled in predicting supercapacitor performance with an impressive <em>R</em><small><sup>2</sup></small> of 0.928 and a minimal RMSE of 0.040. However, the ANN model stood out as it could reveal the significance of various inputs much like the human brain's intricate functioning. It achieved a high <em>R</em><small><sup>2</sup></small> of 0.8929 with a low RMSE of 0.0493, demonstrating its proficiency in capturing complex relationships in the dataset. The precise tuning of hyperparameters further enhanced its accuracy. The use of SHAP (SHapley Additive exPlanations) values emphasized cation mobility, and scan rates as key contributing factors. These findings provide a strong foundation for utilizing machine learning to predict specific capacitance in Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>-based supercapacitors. Researchers can benefit from these versatile tools for precise predictions, facilitating systematic supercapacitor design and enhancing our understanding of electrode materials.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2986-2998"},"PeriodicalIF":3.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00460d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Among the diverse range of modern renewable energy storage technologies, electrochemical energy storage devices have been rapidly adopted across various applications owing to their superior characteristics, including high coulombic efficiency, elevated energy and power densities, scalability, modularity, and rapid response capabilities. Conjugated conducting polymers have recently attracted significant attention in electrochemical energy storage devices due to their unique pseudocapacitive behavior, hybrid ionic/electronic conduction, rapid doping/de-doping dynamics, bulk intercalation of ionic species, high specific capacity, and exceptional structural and thermal stability. Conducting polymers exhibit pseudocapacitance through reversible redox reactions coupled with doping/de-doping processes, facilitating the movement of counterion dopants and ionic species between the polymer matrix and the electrolyte. The size and nature of counterion dopants significantly influence the electrochemical performance of these polymers. Small counterion dopants like chloride enhance redox exchange with the electrolyte and broaden the electrochemical potential window, which is advantageous for electrochemical energy storage devices. The pseudocapacitive properties can be further enhanced by increasing the semi-crystalline characteristics and attaining longer polymer chains. This review article focuses on the fabrication methods, fundamental aspects of ionic and electrical conductivity, and pseudocapacitance characteristics of conjugated conducting polymers, as well as their applications in Li–ion batteries, supercapacitors, and redox flow batteries.
{"title":"Fabrication methods, pseudocapacitance characteristics, and integration of conjugated conducting polymers in electrochemical energy storage devices","authors":"Meysam Heydari Gharahcheshmeh and Kafil Chowdhury","doi":"10.1039/D4YA00504J","DOIUrl":"https://doi.org/10.1039/D4YA00504J","url":null,"abstract":"<p >Among the diverse range of modern renewable energy storage technologies, electrochemical energy storage devices have been rapidly adopted across various applications owing to their superior characteristics, including high coulombic efficiency, elevated energy and power densities, scalability, modularity, and rapid response capabilities. Conjugated conducting polymers have recently attracted significant attention in electrochemical energy storage devices due to their unique pseudocapacitive behavior, hybrid ionic/electronic conduction, rapid doping/de-doping dynamics, bulk intercalation of ionic species, high specific capacity, and exceptional structural and thermal stability. Conducting polymers exhibit pseudocapacitance through reversible redox reactions coupled with doping/de-doping processes, facilitating the movement of counterion dopants and ionic species between the polymer matrix and the electrolyte. The size and nature of counterion dopants significantly influence the electrochemical performance of these polymers. Small counterion dopants like chloride enhance redox exchange with the electrolyte and broaden the electrochemical potential window, which is advantageous for electrochemical energy storage devices. The pseudocapacitive properties can be further enhanced by increasing the semi-crystalline characteristics and attaining longer polymer chains. This review article focuses on the fabrication methods, fundamental aspects of ionic and electrical conductivity, and pseudocapacitance characteristics of conjugated conducting polymers, as well as their applications in Li–ion batteries, supercapacitors, and redox flow batteries.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2668-2703"},"PeriodicalIF":3.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00504j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Tomás Bórquez Maldifassi, Joseph B. Russell, Jungmyung Kim, Edward Brightman, Xiangjie Chen and Dowon Bae
Waste heat, particularly of low-grade (lower than 100 °C), represents a considerable amount of energy loss across different industries and areas of human development. In recent years, different ways of harvesting heat have been the focus of extensive research, with the thermally regenerative electrochemical cycle (TREC) being of particular interest due to its promising results, derived from using the temperature coefficient of electrolytes to obtain more efficient charging and discharging battery cycles. While studies have shown groundbreaking results by trial-and-error-based combinations of different redox couples, these studies have been mostly isolated from one another, possibly missing unseen potentials of unexplored redox couple combinations. Therefore, a wider view of these combinations is explored in this work to screen them for the TREC battery applications. Herein, we present a comprehensive survey of the redox couples used in the literature to highlight the untapped potential of a TREC cell. Furthermore, strategic guidelines on choosing the efficient redox couples for the TREC with engineering remarks and insights for their practical heat-to-electricity conversion applications are presented.
{"title":"Evaluation of redox pairs for low-grade heat energy harvesting with a thermally regenerative cycle†","authors":"José Tomás Bórquez Maldifassi, Joseph B. Russell, Jungmyung Kim, Edward Brightman, Xiangjie Chen and Dowon Bae","doi":"10.1039/D4YA00368C","DOIUrl":"https://doi.org/10.1039/D4YA00368C","url":null,"abstract":"<p >Waste heat, particularly of low-grade (lower than 100 °C), represents a considerable amount of energy loss across different industries and areas of human development. In recent years, different ways of harvesting heat have been the focus of extensive research, with the thermally regenerative electrochemical cycle (TREC) being of particular interest due to its promising results, derived from using the temperature coefficient of electrolytes to obtain more efficient charging and discharging battery cycles. While studies have shown groundbreaking results by trial-and-error-based combinations of different redox couples, these studies have been mostly isolated from one another, possibly missing unseen potentials of unexplored redox couple combinations. Therefore, a wider view of these combinations is explored in this work to screen them for the TREC battery applications. Herein, we present a comprehensive survey of the redox couples used in the literature to highlight the untapped potential of a TREC cell. Furthermore, strategic guidelines on choosing the efficient redox couples for the TREC with engineering remarks and insights for their practical heat-to-electricity conversion applications are presented.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2877-2886"},"PeriodicalIF":3.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00368c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valentin Benedikt Seithümmer, Julia Valentina Lutz, Samuel Jaro Kaufmann, Haripriya Chinnaraj, Paul Rößner and Kai Peter Birke
This article provides a comprehensive insight into Germany's transition to climate neutrality, bringing together the political framework of Germany's Climate Protection Act (CPA), the funding strategy of its key pillar, namely the “Wasserstoffstrategie” and the technical dimensions for non-technical stakeholders through a case study of Germany's largest current hydrogen user, the chemical industry. Increasing complexity of our modern economy and society and a lack of clarity in reporting contribute to misleading conclusions and can facilitate polarised views. To overcome that gap, we aim to draw a clear picture of these complex scientific topics and make them also accessible to non-technical stakeholders. This paper reviews Germany's climate policy, emphasizing the federal constitutional court's pivotal role. By calculating prospective GHG-reduction paths for Germany, we illuminate the gap between aspirational targets and practical strategies, emphasizing the need to translate global targets into actionable national plans. Taking the crucial, often-overlooked CO2-budget into account, potential shortcomings are revealed, even when annual emission goals are met by Germany. Shifting focus of this paper to the German hydrogen strategy, a core part of the Climate Protection Program, we reveal a strong emphasis on international collaboration. This involves a global hydrogen ramp-up and facilitation of hydrogen imports, offering trade opportunities but also introducing dependencies and potential price increases. A scale estimation case study on green hydrogen production for the German chemical industry underscores the rationale behind prioritising imports over domestic production. Calculating a demand of 7840 windmills (78.37 TW h) that require 168 000 football pitches (7000 m2 per pitch) of space, it provides easy to grasp insights into the necessary actions for a climate neutral Germany. This perspective frames Germany's climate goals, the Wasserstoffstrategie, and the technical scale of implementing renewables by conducting a case study on green hydrogen. Hereby, it highlights the magnitude of the climate problem and the immense scale of solutions required for a sustainable technical transition in a clear and sound manner.
{"title":"Powering the future: Germany's Wasserstoffstrategie in the transition to climate neutrality – case study on green hydrogen for the chemical industry","authors":"Valentin Benedikt Seithümmer, Julia Valentina Lutz, Samuel Jaro Kaufmann, Haripriya Chinnaraj, Paul Rößner and Kai Peter Birke","doi":"10.1039/D4YA00246F","DOIUrl":"https://doi.org/10.1039/D4YA00246F","url":null,"abstract":"<p >This article provides a comprehensive insight into Germany's transition to climate neutrality, bringing together the political framework of Germany's Climate Protection Act (CPA), the funding strategy of its key pillar, namely the “Wasserstoffstrategie” and the technical dimensions for non-technical stakeholders through a case study of Germany's largest current hydrogen user, the chemical industry. Increasing complexity of our modern economy and society and a lack of clarity in reporting contribute to misleading conclusions and can facilitate polarised views. To overcome that gap, we aim to draw a clear picture of these complex scientific topics and make them also accessible to non-technical stakeholders. This paper reviews Germany's climate policy, emphasizing the federal constitutional court's pivotal role. By calculating prospective GHG-reduction paths for Germany, we illuminate the gap between aspirational targets and practical strategies, emphasizing the need to translate global targets into actionable national plans. Taking the crucial, often-overlooked CO<small><sub>2</sub></small>-budget into account, potential shortcomings are revealed, even when annual emission goals are met by Germany. Shifting focus of this paper to the German hydrogen strategy, a core part of the Climate Protection Program, we reveal a strong emphasis on international collaboration. This involves a global hydrogen ramp-up and facilitation of hydrogen imports, offering trade opportunities but also introducing dependencies and potential price increases. A scale estimation case study on green hydrogen production for the German chemical industry underscores the rationale behind prioritising imports over domestic production. Calculating a demand of 7840 windmills (78.37 TW h) that require 168 000 football pitches (7000 m<small><sup>2</sup></small> per pitch) of space, it provides easy to grasp insights into the necessary actions for a climate neutral Germany. This perspective frames Germany's climate goals, the Wasserstoffstrategie, and the technical scale of implementing renewables by conducting a case study on green hydrogen. Hereby, it highlights the magnitude of the climate problem and the immense scale of solutions required for a sustainable technical transition in a clear and sound manner.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2887-2895"},"PeriodicalIF":3.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00246f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Developing an artificial solid electrolyte interphase (SEI) with high Li ion flux is vital to improve the cycling stability of lithium metal batteries, especially under a high rate. In this work, a novel artificial SEI film was prepared via in situ deposition of a lithium-doped cesium lead chloride perovskite (Li–CsPbCl3). Benefiting from its ultra-high thickness (0.45 μm), high mechanical modulus (5.9 GPa), high lithium-ion migration number (0.57), and unique highly oriented framework, the Li–CsPbCl3 SEI film could promote the rapid transport and uniform deposition of lithium ions, enhancing the stability of lithium deposition and stripping. As a result, Li/Li symmetric cells based on the Li–CsPbCl3 protective film could cycle stably for 1300 hours under high current density of 10 mA cm−2. In addition, the Li/LiFePO4 battery using the Li–CsPbCl3 SEI film showed an impressive cycling stability with a capacity retention rate of up to 91.4% after 230 cycles at a high current rate of 3C.
{"title":"An ultrathin Li-doped perovskite SEI film with high Li ion flux for a fast charging lithium metal battery†","authors":"Ruliang Liu, Wenli Feng, Liangzhou Fang, Huiping Deng, Ling Lin, MinChang Chen, Jun-Xing Zhong and Wei Yin","doi":"10.1039/D4YA00507D","DOIUrl":"https://doi.org/10.1039/D4YA00507D","url":null,"abstract":"<p >Developing an artificial solid electrolyte interphase (SEI) with high Li ion flux is vital to improve the cycling stability of lithium metal batteries, especially under a high rate. In this work, a novel artificial SEI film was prepared <em>via in situ</em> deposition of a lithium-doped cesium lead chloride perovskite (Li–CsPbCl<small><sub>3</sub></small>). Benefiting from its ultra-high thickness (0.45 μm), high mechanical modulus (5.9 GPa), high lithium-ion migration number (0.57), and unique highly oriented framework, the Li–CsPbCl<small><sub>3</sub></small> SEI film could promote the rapid transport and uniform deposition of lithium ions, enhancing the stability of lithium deposition and stripping. As a result, Li/Li symmetric cells based on the Li–CsPbCl<small><sub>3</sub></small> protective film could cycle stably for 1300 hours under high current density of 10 mA cm<small><sup>−2</sup></small>. In addition, the Li/LiFePO<small><sub>4</sub></small> battery using the Li–CsPbCl<small><sub>3</sub></small> SEI film showed an impressive cycling stability with a capacity retention rate of up to 91.4% after 230 cycles at a high current rate of 3C.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2999-3006"},"PeriodicalIF":3.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00507d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Y. George, Eric M. Fell, Kyumin Lee, Michael S. Emanuel and Michael J. Aziz
Volumetrically unbalanced compositionally symmetric cell cycling with potentiostatic (CV) or galvanostatic-with-potential-hold (CCCV) protocols is a rigorous technique for evaluating the calendar lifetime of reactants for redox flow batteries. Here, we evaluate the influence of reactant crossover through the membrane on symmetric cell cycling behavior. We tested symmetric cells of anthraquinone disulfonic acid (AQDS) with Nafion membranes of varied thickness and manufacture (NR211, NR212, N115, and N117, ranging 25–183 μm). Membranes were tested both as-received and pretreated with a common procedure of soaking in water at elevated temperature and then in dilute hydrogen peroxide. We found no significant difference in capacity fade rates of symmetric cells with any of the membranes as-received, indicating a negligible influence of crossover. However, we observed increased capacity fade with increased permeability through pretreated membranes. Supported by zero-dimensional modeling and operando UV-vis spectrophotometry, we propose a mechanism for net crossover in AQDS symmetric cells based on a higher time-averaged concentration of quinhydrone dimers in the non-capacity limiting side (NCLS) compared to the capacity limiting side (CLS), driving net crossover of AQDS reactants out of the CLS. Further, we illustrate other hypothetical scenarios of net crossover using the zero-dimensional model. Overall, many membrane–electrolyte systems used in symmetric cell studies have sufficiently low crossover flux as to avoid the influence of crossover on capacity fade, but under conditions of higher crossover flux, complex interactions of crossover and chemical reactions may result in diverse capacity fade trajectories, the mechanisms of which may be untangled with operando characterization and modeling.
{"title":"Influence of crossover on capacity fade of symmetric redox flow cells†","authors":"Thomas Y. George, Eric M. Fell, Kyumin Lee, Michael S. Emanuel and Michael J. Aziz","doi":"10.1039/D4YA00407H","DOIUrl":"https://doi.org/10.1039/D4YA00407H","url":null,"abstract":"<p >Volumetrically unbalanced compositionally symmetric cell cycling with potentiostatic (CV) or galvanostatic-with-potential-hold (CCCV) protocols is a rigorous technique for evaluating the calendar lifetime of reactants for redox flow batteries. Here, we evaluate the influence of reactant crossover through the membrane on symmetric cell cycling behavior. We tested symmetric cells of anthraquinone disulfonic acid (AQDS) with Nafion membranes of varied thickness and manufacture (NR211, NR212, N115, and N117, ranging 25–183 μm). Membranes were tested both as-received and pretreated with a common procedure of soaking in water at elevated temperature and then in dilute hydrogen peroxide. We found no significant difference in capacity fade rates of symmetric cells with any of the membranes as-received, indicating a negligible influence of crossover. However, we observed increased capacity fade with increased permeability through pretreated membranes. Supported by zero-dimensional modeling and <em>operando</em> UV-vis spectrophotometry, we propose a mechanism for net crossover in AQDS symmetric cells based on a higher time-averaged concentration of quinhydrone dimers in the non-capacity limiting side (NCLS) compared to the capacity limiting side (CLS), driving net crossover of AQDS reactants out of the CLS. Further, we illustrate other hypothetical scenarios of net crossover using the zero-dimensional model. Overall, many membrane–electrolyte systems used in symmetric cell studies have sufficiently low crossover flux as to avoid the influence of crossover on capacity fade, but under conditions of higher crossover flux, complex interactions of crossover and chemical reactions may result in diverse capacity fade trajectories, the mechanisms of which may be untangled with <em>operando</em> characterization and modeling.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2910-2921"},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00407h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaxin Zhang, Valeria Perez, ThomasJae Garcia, Dan-il Yoon, David Wagner, Yanika Schneider, Min Hwan Lee, Sang-Joon John Lee and Dahyun Oh
Polyethylene oxide (PEO)-based solid composite electrolytes (SCEs), with inorganic fillers, are studied extensively due to their effective balance between mechanical and electrochemical properties. The correlation between the composition of SCEs and their electrochemical behavior has been studied extensively, primarily focusing on the type of polymer matrix with a bias towards high lithium (Li) salt. In this study, we examine the changes in the properties of SCEs at two low EO : Li ratios, 43 : 1 and 18 : 1, in the PEO-LiTFSI matrix (with and without 10 wt% of 5 μm LLZTO) and evaluate their impact on Li stripping and plating reactions. Although higher salt concentration (18 : 1) results in substantially higher ionic conductivity (by approximately an order of magnitude), interestingly we observe that lower salt concentration (43 : 1) exhibits up to 3 times longer Li cycling life. Notably, electrolytes with low salt concentration (43 : 1) are much stiffer, with compressive modulus more than twice as high as the 18 : 1 counterpart. Although the ionic conductivity of the electrolyte is often the most immediate concern in the electrolyte design process, these findings accentuate the equal importance of mechanical properties in order to ensure successful electrolyte performance throughout prolonged Li cycling.
{"title":"Competing effects of low salt ratio on electrochemical performance and compressive modulus of PEO-LiTFSI/LLZTO composite electrolytes†","authors":"Jiaxin Zhang, Valeria Perez, ThomasJae Garcia, Dan-il Yoon, David Wagner, Yanika Schneider, Min Hwan Lee, Sang-Joon John Lee and Dahyun Oh","doi":"10.1039/D4YA00467A","DOIUrl":"https://doi.org/10.1039/D4YA00467A","url":null,"abstract":"<p >Polyethylene oxide (PEO)-based solid composite electrolytes (SCEs), with inorganic fillers, are studied extensively due to their effective balance between mechanical and electrochemical properties. The correlation between the composition of SCEs and their electrochemical behavior has been studied extensively, primarily focusing on the type of polymer matrix with a bias towards high lithium (Li) salt. In this study, we examine the changes in the properties of SCEs at two low EO : Li ratios, 43 : 1 and 18 : 1, in the PEO-LiTFSI matrix (with and without 10 wt% of 5 μm LLZTO) and evaluate their impact on Li stripping and plating reactions. Although higher salt concentration (18 : 1) results in substantially higher ionic conductivity (by approximately an order of magnitude), interestingly we observe that lower salt concentration (43 : 1) exhibits up to 3 times longer Li cycling life. Notably, electrolytes with low salt concentration (43 : 1) are much stiffer, with compressive modulus more than twice as high as the 18 : 1 counterpart. Although the ionic conductivity of the electrolyte is often the most immediate concern in the electrolyte design process, these findings accentuate the equal importance of mechanical properties in order to ensure successful electrolyte performance throughout prolonged Li cycling.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2820-2827"},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00467a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Developing low cost and highly efficient electrocatalysts for the oxygen evolution reaction (OER) is highly desired for renewable energy production. Ni-based electrocatalysts have been widely investigated as candidates for the OER, but developing a low-cost, easily synthesized electrocatalyst with high activity and good stability remains elusive. Herein, we report the facile electrodeposition of triethanolamine-decorated Ni oxide on carbon paper (Ni/CP-TEA) as an efficient electrocatalyst for water oxidation. Structural and experimental analyses reveal that the electrode surface is modified by triethanolamine (TEA) through Ni–N coordination bonding. The leaching of TEA drives rapid in situ surface reconstruction, facilitating the generation of high-valence Ni (Ni3+) species, thereby accelerating the OER performance. The Ni/CP-TEA exhibits enhanced electrocatalytic OER performance with a low overpotential of 320 mV at 10 mA cm−2 and good long-term stability. This work presents a simple route for the rational design of cost-effective and highly efficient OER catalysts.
开发低成本、高效率的氧进化反应(OER)电催化剂是可再生能源生产的迫切需要。镍基电催化剂作为氧进化反应的候选催化剂已被广泛研究,但开发一种低成本、易合成、高活性和良好稳定性的电催化剂仍是一个难题。在此,我们报告了碳纸上三乙醇胺装饰氧化镍(Ni/CP-TEA)作为高效水氧化电催化剂的简便电沉积方法。结构和实验分析表明,电极表面通过 Ni-N 配位键被三乙醇胺 (TEA) 修饰。三乙醇胺的浸出推动了快速的原位表面重构,促进了高价镍(Ni3+)物种的生成,从而加速了 OER 性能的提高。Ni/CP-TEA 具有更强的电催化 OER 性能,在 10 mA cm-2 时过电位低至 320 mV,并具有良好的长期稳定性。这项工作为合理设计经济高效的 OER 催化剂提供了一条简单的途径。
{"title":"Triethanolamine-assisted surface reconstruction of nickel oxide for efficient oxygen evolution reaction†","authors":"Jiayun Zhang, Ruth Knibbe and Ian Gentle","doi":"10.1039/D4YA00420E","DOIUrl":"https://doi.org/10.1039/D4YA00420E","url":null,"abstract":"<p >Developing low cost and highly efficient electrocatalysts for the oxygen evolution reaction (OER) is highly desired for renewable energy production. Ni-based electrocatalysts have been widely investigated as candidates for the OER, but developing a low-cost, easily synthesized electrocatalyst with high activity and good stability remains elusive. Herein, we report the facile electrodeposition of triethanolamine-decorated Ni oxide on carbon paper (Ni/CP-TEA) as an efficient electrocatalyst for water oxidation. Structural and experimental analyses reveal that the electrode surface is modified by triethanolamine (TEA) through Ni–N coordination bonding. The leaching of TEA drives rapid <em>in situ</em> surface reconstruction, facilitating the generation of high-valence Ni (Ni<small><sup>3+</sup></small>) species, thereby accelerating the OER performance. The Ni/CP-TEA exhibits enhanced electrocatalytic OER performance with a low overpotential of 320 mV at 10 mA cm<small><sup>−2</sup></small> and good long-term stability. This work presents a simple route for the rational design of cost-effective and highly efficient OER catalysts.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2812-2819"},"PeriodicalIF":3.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00420e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joachim Oehl, Andreas Gleiter, Daniel Manka, Alexander Fill and Kai Peter Birke
In many cases, batteries used in light e-mobility vehicles such as e-bikes and e-scooters do not have an active thermal management system. This poses a challenge when these batteries are stored in sub-zero temperatures and need to be charged. In such cases, it becomes necessary to move the batteries to a warmer location and allow them to acclimatize before charging. However, this is not always feasible, especially for batteries installed permanently in vehicles. In this work, we present an internal high-frequency AC heater for a 48 V battery, which is used for light electric vehicles of EU vehicle classes L1e and L3e-A1 for a power supply of up to 11 kW. We have taken advantage of the features of a damped oscillating circuit to improve the performance of the heater. Additionally, only a small inductor was added to the main current path through a cable with three windings. Furthermore, as the power electronics of the heater is part of the battery main switch, fewer additional parts inside the battery are required and therefore a cost and space reduction compared to other heaters is possible. For the chosen setup we reached a heating rate of up to 2.13 K min−1 and it was possible to raise the battery temperature from −10 °C to 10 °C using only 3.1% of its own usable capacity.
在许多情况下,电动自行车和电动摩托车等轻型电动车辆使用的电池没有主动热管理系统。当这些电池存放在零度以下的环境中需要充电时,就会面临挑战。在这种情况下,有必要将电池移到温度较高的地方,让电池适应后再充电。然而,这并不总是可行的,尤其是对于永久安装在车辆中的电池。在这项工作中,我们介绍了一种用于 48 V 电池的内部高频交流加热器,它适用于欧盟 L1e 和 L3e-A1 等级的轻型电动汽车,供电功率可达 11 kW。我们利用阻尼振荡电路的特点来提高加热器的性能。此外,通过一根有三个绕组的电缆,只在主电流路径上增加了一个小电感器。此外,由于加热器的电力电子装置是电池主开关的一部分,因此电池内部所需的额外部件较少,因此与其他加热器相比,可以降低成本和减少空间。在所选的设置中,我们的加热速度可达 2.13 K min-1,仅用电池可用容量的 3.1%,就能将电池温度从 -10 °C 提升到 10 °C。
{"title":"A high frequency alternating current heater using the advantages of a damped oscillation circuit for low voltage Li-ion batteries","authors":"Joachim Oehl, Andreas Gleiter, Daniel Manka, Alexander Fill and Kai Peter Birke","doi":"10.1039/D4YA00303A","DOIUrl":"https://doi.org/10.1039/D4YA00303A","url":null,"abstract":"<p >In many cases, batteries used in light e-mobility vehicles such as e-bikes and e-scooters do not have an active thermal management system. This poses a challenge when these batteries are stored in sub-zero temperatures and need to be charged. In such cases, it becomes necessary to move the batteries to a warmer location and allow them to acclimatize before charging. However, this is not always feasible, especially for batteries installed permanently in vehicles. In this work, we present an internal high-frequency AC heater for a 48 V battery, which is used for light electric vehicles of EU vehicle classes L1e and L3e-A1 for a power supply of up to 11 kW. We have taken advantage of the features of a damped oscillating circuit to improve the performance of the heater. Additionally, only a small inductor was added to the main current path through a cable with three windings. Furthermore, as the power electronics of the heater is part of the battery main switch, fewer additional parts inside the battery are required and therefore a cost and space reduction compared to other heaters is possible. For the chosen setup we reached a heating rate of up to 2.13 K min<small><sup>−1</sup></small> and it was possible to raise the battery temperature from −10 °C to 10 °C using only 3.1% of its own usable capacity.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2828-2841"},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00303a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}