首页 > 最新文献

Energy advances最新文献

英文 中文
Effect of PCBM nanoparticles in lead-based layered (PEA)2PbI4 perovskite thin films† 铅基层状 (PEA)2PbI4 Perovskite 薄膜中 PCBM 纳米粒子的影响
IF 3.2 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-12 DOI: 10.1039/D4YA00338A
Deepak Aloysius, Muskan Khan, Arindam Mondal and Satyajit Gupta

Two-dimensional (2D) layered halide perovskites are considered to be one of the future potential semiconductor materials due to their higher moisture stability than three-dimensional (3D) perovskites. However, improving their optical and electrical properties is still necessary for critical applications. The technique of additive engineering can be utilized to tune and enhance the optoelectrical properties of the 2D perovskites. This work studies the impact of mixing a certain amount of a fullerene derivative ‘[6,6]-phenyl C61-butyric acid methyl ester’ (PCBM) into 2D (PEA)2PbI4 perovskite thin films (PEA = phenyl ethyl ammonium). The studies show that PCBM does not affect the structure and bandgap of the (PEA)2PbI4 perovskite. On the other hand, PCBM improves photoluminescence emission intensity and promotes charge separation at the perovskite/PCBM interface. Further studies convey that, even though PCBM can heal certain defect states in the (PEA)2PbI4 perovskite material, the electrons generated under intense illumination at the perovskite/PCBM interface are trapped by this fullerene derivative. Hence, PCBM plays a dual role when mixed with the (PEA)2PbI4 perovskite, as (1) a defect healing agent and (2) an electron acceptor. However, over continuous illumination on the (PEA)2PbI4 perovskite thin films, the photoexcited electrons are trapped by PCBM. As a result, the photocurrent response and the photocatalytic reaction rate get reduced in PCBM mixed (PEA)2PbI4 perovskite thin films.

二维(2D)层状卤化物包晶石因其比三维(3D)包晶石更高的湿度稳定性而被认为是未来潜在的半导体材料之一。然而,改善这种材料的光学和电学特性对于关键应用来说仍然是必要的。添加剂工程技术可用于调整和增强二维包晶的光电特性。这项工作研究了在二维 (PEA)2PbI4 包晶薄膜中混合一定量的富勒烯衍生物"[6,6]-苯基 C61-丁酸甲酯"(PCBM)的影响。此外,分析表明 PCBM 不会影响 (PEA)2PbI4 包晶的结构和带隙。另一方面,PCBM 提高了光致发光强度,并增强了包晶/PCBM 界面的电荷分离。因此,尽管 PCBM 可以修复 (PEA)2PbI4 包晶材料中的某些缺陷态,但过量发光产生的激子会在包晶/PCBM 界面分离,并被这种富勒烯衍生物捕获。因此,(PEA)2PbI4 包晶薄膜中 PCBM 纳米粒子的存在降低了光电流的产生,尽管开路电位(Voc)有所提高。此外,PCBM 纳米粒子还会降低 (PEA)2PbI4 包晶薄膜的光催化活性。
{"title":"Effect of PCBM nanoparticles in lead-based layered (PEA)2PbI4 perovskite thin films†","authors":"Deepak Aloysius, Muskan Khan, Arindam Mondal and Satyajit Gupta","doi":"10.1039/D4YA00338A","DOIUrl":"10.1039/D4YA00338A","url":null,"abstract":"<p >Two-dimensional (2D) layered halide perovskites are considered to be one of the future potential semiconductor materials due to their higher moisture stability than three-dimensional (3D) perovskites. However, improving their optical and electrical properties is still necessary for critical applications. The technique of additive engineering can be utilized to tune and enhance the optoelectrical properties of the 2D perovskites. This work studies the impact of mixing a certain amount of a fullerene derivative ‘[6,6]-phenyl C<small><sub>61</sub></small>-butyric acid methyl ester’ (PCBM) into 2D (PEA)<small><sub>2</sub></small>PbI<small><sub>4</sub></small> perovskite thin films (PEA = phenyl ethyl ammonium). The studies show that PCBM does not affect the structure and bandgap of the (PEA)<small><sub>2</sub></small>PbI<small><sub>4</sub></small> perovskite. On the other hand, PCBM improves photoluminescence emission intensity and promotes charge separation at the perovskite/PCBM interface. Further studies convey that, even though PCBM can heal certain defect states in the (PEA)<small><sub>2</sub></small>PbI<small><sub>4</sub></small> perovskite material, the electrons generated under intense illumination at the perovskite/PCBM interface are trapped by this fullerene derivative. Hence, PCBM plays a dual role when mixed with the (PEA)<small><sub>2</sub></small>PbI<small><sub>4</sub></small> perovskite, as (1) a defect healing agent and (2) an electron acceptor. However, over continuous illumination on the (PEA)<small><sub>2</sub></small>PbI<small><sub>4</sub></small> perovskite thin films, the photoexcited electrons are trapped by PCBM. As a result, the photocurrent response and the photocatalytic reaction rate get reduced in PCBM mixed (PEA)<small><sub>2</sub></small>PbI<small><sub>4</sub></small> perovskite thin films.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00338a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Hydrogen Generation by Four-Coordinate Square-Planar Ni(II) Complex with N2P2-Type Ligand 带有 N2P2 型配体的四配位方形平面 Ni(II)配合物的电化学制氢技术
Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-09 DOI: 10.1039/d4ya00345d
Hidenori Miyake, Satomi Hirasawa, Yurika Uno, Kenichi Nakao, Takuma Kato, Yuko Wasada, Yoshikuni Hara, Tomohiro Ozawa, Tomohiko Inomata, Hideki Masuda
A Ni(II) complex with N2P2-type ligand, [Ni(LH)2](BF4)2 (LH = 2-((diphenylphosphino)methyl)-pyridine), was prepared and characterized structurally, spectroscopically, and electrochemically. Its electrochemical hydrogen production reaction was investigated, which was compared with that of the previously reported Ni(II) complex bearing amino group in the ligand, [Ni(LNH2)2](BF4)2 (LNH2 = 6-((diphenylphosphino)methyl)-pyridin-2-amine). The X-ray crystal structure reveals to be a four-coordinate square planar structure (τ4 = 0.25) in the cis form, with the counter anion BF4– weakly presenting on the Ni(II) ion. The structure in the solution was assessed on the basis of UV-vis and NMR spectral features, which showed four coordinate square planar structure in dichloromethane and five- or six-coordinate structure bound with solvent molecules in acetonitrile. The electrochemical hydrogen production reaction using AcOH as a proton source showed similar behaviour to that of [Ni(LNH2)2](BF4)2, with the catalytic current (icat) proportional to the square root of the concentration of AcOH added. It indicates that the reaction mechanism is EECC and that the rate-determining step is the reaction stage of the two-electron reduced Ni(0) species with the approaching proton to form the Ni(II)–Hー species. The TOF and overpotential values, when evaluated under the same conditions as in the previous study (complex: 1 mM, electrolyte [n-Bu4N](ClO4): 0.1 M in MeCN (3 mL), AcOH = 145 equiv. (pKa = 22.3 in MeCN)), were evaluated to be 1060 s–1 and 710 mV, respectively. These values were higher in the overpotential and smaller in TOF, as compared to those of [Ni(LNH2)2](BF4)2 (TOF 8800 s–1, overpotential 430 mV). The structure of the starting material [NiII(LH)2]2+ and the formation of the hydride Ni(II) complex [NiIIH(LH)2]+, a reaction intermediate in the hydrogen evolution reaction, were evaluated by DFT calculations. Based on the results of the hydrogen evolution behaviour by these two complexes, it was clearly demonstrated that the amino group functions importantly as a proton transfer site in the hydrogen generation reaction.
制备了一种含有 N2P2- 型配体 [Ni(LH)2](BF4)2(LH = 2-((二苯基膦)甲基)-吡啶)的镍(II)配合物,并对其进行了结构、光谱和电化学表征。研究了它的电化学制氢反应,并与之前报道的配体中含有氨基的 Ni(II) 复合物[Ni(LNH2)2](BF4)2(LNH2 = 6-((二苯基膦)甲基)-吡啶-2-胺)进行了比较。X 射线晶体结构显示,该化合物为顺式四配位方形平面结构(τ4 = 0.25),反阴离子 BF4- 弱地呈现在 Ni(II) 离子上。根据 UV-vis 和 NMR 光谱特征评估了溶液中的结构,结果显示在二氯甲烷中为四配位方平面结构,在乙腈中为与溶剂分子结合的五配位或六配位结构。以 AcOH 为质子源的电化学制氢反应与 [Ni(LNH2)2](BF4)2 的表现相似,催化电流(icat)与添加的 AcOH 浓度的平方根成正比。这表明反应机理是 EECC,决定速率的步骤是双电子还原的 Ni(0) 物种与接近的质子反应形成 Ni(II)-Hー 物种的阶段。在与之前研究相同的条件下(复合物:1 mM,电解质 [n-Bu4N](ClO4):0.1 M in MeCN (3 mL),AcOH = 145 equiv.(在 MeCN 中 pKa = 22.3))时,TOF 和电位值分别为 1060 s-1 和 710 mV。与[Ni(LNH2)2](BF4)2(TOF 8800 s-1,过电位 430 mV)相比,这些数值在过电位方面更高,在 TOF 方面更小。通过 DFT 计算评估了起始材料 [NiII(LH)2]2+ 的结构和氢化物 Ni(II) 复合物 [NiIIH(LH)2]+ 的形成,后者是氢进化反应的一个反应中间体。根据这两种络合物的氢演化行为结果,可以清楚地证明氨基在氢生成反应中作为质子转移位点起着重要作用。
{"title":"Electrochemical Hydrogen Generation by Four-Coordinate Square-Planar Ni(II) Complex with N2P2-Type Ligand","authors":"Hidenori Miyake, Satomi Hirasawa, Yurika Uno, Kenichi Nakao, Takuma Kato, Yuko Wasada, Yoshikuni Hara, Tomohiro Ozawa, Tomohiko Inomata, Hideki Masuda","doi":"10.1039/d4ya00345d","DOIUrl":"https://doi.org/10.1039/d4ya00345d","url":null,"abstract":"A Ni(II) complex with N2P2-type ligand, [Ni(LH)2](BF4)2 (LH = 2-((diphenylphosphino)methyl)-pyridine), was prepared and characterized structurally, spectroscopically, and electrochemically. Its electrochemical hydrogen production reaction was investigated, which was compared with that of the previously reported Ni(II) complex bearing amino group in the ligand, [Ni(LNH2)2](BF4)2 (LNH2 = 6-((diphenylphosphino)methyl)-pyridin-2-amine). The X-ray crystal structure reveals to be a four-coordinate square planar structure (τ4 = 0.25) in the cis form, with the counter anion BF4– weakly presenting on the Ni(II) ion. The structure in the solution was assessed on the basis of UV-vis and NMR spectral features, which showed four coordinate square planar structure in dichloromethane and five- or six-coordinate structure bound with solvent molecules in acetonitrile. The electrochemical hydrogen production reaction using AcOH as a proton source showed similar behaviour to that of [Ni(LNH2)2](BF4)2, with the catalytic current (icat) proportional to the square root of the concentration of AcOH added. It indicates that the reaction mechanism is EECC and that the rate-determining step is the reaction stage of the two-electron reduced Ni(0) species with the approaching proton to form the Ni(II)–Hー species. The TOF and overpotential values, when evaluated under the same conditions as in the previous study (complex: 1 mM, electrolyte [n-Bu4N](ClO4): 0.1 M in MeCN (3 mL), AcOH = 145 equiv. (pKa = 22.3 in MeCN)), were evaluated to be 1060 s–1 and 710 mV, respectively. These values were higher in the overpotential and smaller in TOF, as compared to those of [Ni(LNH2)2](BF4)2 (TOF 8800 s–1, overpotential 430 mV). The structure of the starting material [NiII(LH)2]2+ and the formation of the hydride Ni(II) complex [NiIIH(LH)2]+, a reaction intermediate in the hydrogen evolution reaction, were evaluated by DFT calculations. Based on the results of the hydrogen evolution behaviour by these two complexes, it was clearly demonstrated that the amino group functions importantly as a proton transfer site in the hydrogen generation reaction.","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical modeling and extensive analysis of an extremely efficient RbGeI3-based perovskite solar cell by incorporating a variety of ETL and HTL materials to enhance PV performance 通过采用各种 ETL 和 HTL 材料提高光伏性能,对基于 RbGeI3 的高效包晶体太阳能电池进行数值建模和广泛分析
IF 3.2 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-08 DOI: 10.1039/D4YA00323C
Md. Mojahidur Rahman, Md. Hasan Ali, Md. Dulal Haque and Abu Zafor Md. Touhidul Islam

The immense demand for electrical energy motivated us to manipulate solar energy by means of conversion through solar cells (SCs). Advancements in photovoltaic (PV) technology are occurring very rapidly. In recent years, extensive research has been conducted on halide perovskite-based SCs because of their superior optoelectronic properties, enhanced efficiency, lightweight nature, and low cost. However, concerns have arisen regarding their longevity, stability, and commerciality due to the presence of toxic lead (Pb). The most prominent purpose of this investigation is to discover additional efficient, sustainable, and eco-friendly device architectures. In this study, we investigated an all-inorganic, lead-free rubidium germanium iodide (RbGeI3)-based PSC device with the assistance of the SCAPS-1D simulator. Several electron transport layers (ETLs) and hole transport layers (HTLs) were incorporated with the perovskite layer, and an efficient primary structure was discovered. Then, the impact of temperature; back metal work function; series and shunt resistance; surface recombination velocity of carriers; thickness of the perovskite absorber layer, electron transport material (ETM), and hole transport material (HTM); carrier concentration of the perovskite absorber layer, ETM, and HTM; defect density of the perovskite absorber layer, ETM, and HTM; and defect density of the HTL/absorber and absorber/ETL interfaces on the PV performance of the proposed PSC device was analyzed. The optimized device exhibited a power conversion efficiency (PCE) of 30.35%, with superior values for open circuit voltage (Voc), short circuit current density (Jsc), and fill factor (FF) of 1.067 V, 33.15 mA cm−2, and 85.82%, respectively. The investigations in this study may be valuable and impactful to solar cell material researchers and move the research interest forward by one step so that experimental work with non-toxic RbGeI3-based PSC devices will be performed in the future.

对电能的巨大需求促使我们通过太阳能电池(SC)进行转换来利用太阳能。光伏(PV)技术的发展日新月异。近年来,人们对基于卤化物过氧化物的太阳能电池进行了广泛的研究,因为它们具有卓越的光电特性、更高的效率、轻质和低成本。然而,由于存在有毒的铅(Pb),人们对其寿命、稳定性和商业性产生了担忧。这项研究的最主要目的是发现更多高效、可持续和环保的器件架构。在这项研究中,我们在 SCAPS-1D 模拟器的帮助下,研究了一种基于无机无铅碘化铷锗(RbGeI3)的 PSC 器件。在过氧化物层中加入了多个电子传输层(ETL)和空穴传输层(HTL),并发现了一种高效的初级结构。然后,分析了温度;背金属功函数;串联和并联电阻;载流子表面重组速度;包晶吸收层、电子传输材料(ETM)和空穴传输材料(HTM)的厚度;包晶吸收层、ETM 和 HTM 的载流子浓度;包晶吸收层、ETM 和 HTM 的缺陷密度;以及 HTL/吸收层和吸收层/ETL 接口的缺陷密度对所提 PSC 器件光伏性能的影响。优化器件的功率转换效率 (PCE) 为 30.35%,开路电压 (Voc)、短路电流密度 (Jsc) 和填充因子 (FF) 分别为 1.067 V、33.15 mA cm-2 和 85.82%。这项研究可能对太阳能电池材料研究人员有价值和影响,并将研究兴趣向前推进了一步,从而在未来开展基于无毒 RbGeI3 的 PSC 器件的实验工作。
{"title":"Numerical modeling and extensive analysis of an extremely efficient RbGeI3-based perovskite solar cell by incorporating a variety of ETL and HTL materials to enhance PV performance","authors":"Md. Mojahidur Rahman, Md. Hasan Ali, Md. Dulal Haque and Abu Zafor Md. Touhidul Islam","doi":"10.1039/D4YA00323C","DOIUrl":"10.1039/D4YA00323C","url":null,"abstract":"<p >The immense demand for electrical energy motivated us to manipulate solar energy by means of conversion through solar cells (SCs). Advancements in photovoltaic (PV) technology are occurring very rapidly. In recent years, extensive research has been conducted on halide perovskite-based SCs because of their superior optoelectronic properties, enhanced efficiency, lightweight nature, and low cost. However, concerns have arisen regarding their longevity, stability, and commerciality due to the presence of toxic lead (Pb). The most prominent purpose of this investigation is to discover additional efficient, sustainable, and eco-friendly device architectures. In this study, we investigated an all-inorganic, lead-free rubidium germanium iodide (RbGeI<small><sub>3</sub></small>)-based PSC device with the assistance of the SCAPS-1D simulator. Several electron transport layers (ETLs) and hole transport layers (HTLs) were incorporated with the perovskite layer, and an efficient primary structure was discovered. Then, the impact of temperature; back metal work function; series and shunt resistance; surface recombination velocity of carriers; thickness of the perovskite absorber layer, electron transport material (ETM), and hole transport material (HTM); carrier concentration of the perovskite absorber layer, ETM, and HTM; defect density of the perovskite absorber layer, ETM, and HTM; and defect density of the HTL/absorber and absorber/ETL interfaces on the PV performance of the proposed PSC device was analyzed. The optimized device exhibited a power conversion efficiency (PCE) of 30.35%, with superior values for open circuit voltage (<em>V</em><small><sub>oc</sub></small>), short circuit current density (<em>J</em><small><sub>sc</sub></small>), and fill factor (FF) of 1.067 V, 33.15 mA cm<small><sup>−2</sup></small>, and 85.82%, respectively. The investigations in this study may be valuable and impactful to solar cell material researchers and move the research interest forward by one step so that experimental work with non-toxic RbGeI<small><sub>3</sub></small>-based PSC devices will be performed in the future.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00323c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of tuning decision trees in random forest regression on predicting porosity of a hydrocarbon reservoir. A case study: volve oil field, north sea 在随机森林回归中调整决策树对预测油气藏孔隙度的影响。案例研究:北海沃尔维油田
IF 3.2 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-08 DOI: 10.1039/D4YA00313F
Kushan Sandunil, Ziad Bennour, Hisham Ben Mahmud and Ausama Giwelli
<p >Machine learning (ML) has emerged as a powerful tool in petroleum engineering for automatically interpreting well logs and characterizing reservoir properties such as porosity. As a result, researchers are trying to enhance the performance of ML models further to widen their applicability in the real world. Random forest regression (RFR) is one such widely used ML technique that was developed by combining multiple decision trees. To improve its performance, one of its hyperparameters, the number of trees in the forest (<em>n_estimators</em>), is tuned during model optimization. However, the existing literature lacks in-depth studies on the influence of <em>n_estimators</em> on the RFR model when used for predicting porosity, given that <em>n_estimators</em> is one of the most influential hyperparameters that can be tuned to optimize the RFR algorithm. In this study, the effects of <em>n_estimators</em> on the RFR model in porosity prediction were investigated. Furthermore, <em>n_estimators</em>’ interactions with two other key hyperparameters, namely the number of features considered for the best split (<em>max_features</em>) and the minimum number of samples required to be at a leaf node (<em>min_samples_leaf</em>) were explored. The RFR models were developed using 4 input features, namely, resistivity log (RES), neutron porosity log (NPHI), gamma ray log (GR), and the corresponding depths obtained from the Volve oil field in the North Sea, and calculated porosity was used as the target data. The methodology consisted of 4 approaches. In the first approach, only <em>n_estimators</em> were changed; in the second approach, <em>n_estimators</em> were changed along with <em>max_features</em>; in the third approach, <em>n_estimators</em> were changed along with <em>min_samples_leaf</em>; and in the final approach, all three hyperparameters were tuned. Altogether 24 RFR models were developed, and models were evaluated using adjusted <em>R</em><small><sup>2</sup></small> (adj. <em>R</em><small><sup>2</sup></small>), root mean squared error (RMSE), and their computational times. The obtained results showed that the highest performance with an adj. <em>R</em><small><sup>2</sup></small> value of 0.8505 was achieved when <em>n_estimators</em> was 81, <em>max_features</em> was 2 and <em>min_samples_leaf</em> was 1. In approach 2, when <em>n_estimators’</em> upper limit was increased from 10 to 100, there was a test model performance growth of more than 1.60%, whereas increasing <em>n_estimators’</em> upper limit from 100 to 1000 showed a performance drop of around 0.4%. Models developed by tuning <em>n_estimators</em> from 1 to 100 in intervals of 10 had healthy test model adj. <em>R</em><small><sup>2</sup></small> values and lower computational times, making them the best <em>n_estimators’</em> range and interval when both performances and computational times were taken into consideration to predict the porosity of the Volve oil field in the North Sea.
机器学习(ML)已成为石油工程中预测孔隙度等储层属性的有力工具。随机森林回归(RFR)就是这样一种广泛使用的 ML 技术。为了优化其性能,需要调整其超参数之一,即森林中的树数(n_estimators)。现有文献缺乏对用于预测孔隙率的 n_estimators 对 RFR 模型影响的深入研究。本研究调查了 n_estimators 在孔隙度预测中对 RFR 模型的影响。此外,还探讨了 n_estimators 与另外两个关键超参数(即最佳分割所考虑的特征数(max_features)和叶节点所需的最小样本数(min_samples_leaf))之间的相互作用。RFR 模型是利用从 Volve 油田获得的 4 个输入特征开发的,即电阻率测井、中子孔隙度测井、伽马射线测井和相应的深度。计算出的孔隙度被用作目标数据。该方法包括 4 种方法。在第一种方法中,只对 n_estimators 进行了修改;在第二种方法中,对 n_estimators 和 max_features 进行了修改;在第三种方法中,对 n_estimators 和 min_samples_leaf 进行了修改;在最后一种方法中,对所有三个超参数进行了调整。使用调整后的 R2 (adj.R2)、均方根误差和计算时间对模型进行了评估。结果显示,当 n_estimators 为 81、max_features 为 2、min_samples_leaf 为 1 时,性能最高,adj. R2 值为 0.8505。 在方法 2 中,当 n_estimators 上限从 10 增加到 100 时,测试模型的性能增长超过 1.60%,而当 n_estimators 上限从 100 增加到 1000 时,性能下降约 0.4%。将 n_estimators 以 10 为间隔从 1 调整到 100 所建立的模型具有较好的测试模型辅助 R2 值和较低的计算时间,因此,当同时考虑性能和计算时间时,它们是预测 Volve 油田孔隙度的最佳 n_estimators 范围和间隔。此外,研究还得出结论,只需调整 n_estimators 和 max_features,即可显著提高 RFR 模型的性能。
{"title":"Effects of tuning decision trees in random forest regression on predicting porosity of a hydrocarbon reservoir. A case study: volve oil field, north sea","authors":"Kushan Sandunil, Ziad Bennour, Hisham Ben Mahmud and Ausama Giwelli","doi":"10.1039/D4YA00313F","DOIUrl":"10.1039/D4YA00313F","url":null,"abstract":"&lt;p &gt;Machine learning (ML) has emerged as a powerful tool in petroleum engineering for automatically interpreting well logs and characterizing reservoir properties such as porosity. As a result, researchers are trying to enhance the performance of ML models further to widen their applicability in the real world. Random forest regression (RFR) is one such widely used ML technique that was developed by combining multiple decision trees. To improve its performance, one of its hyperparameters, the number of trees in the forest (&lt;em&gt;n_estimators&lt;/em&gt;), is tuned during model optimization. However, the existing literature lacks in-depth studies on the influence of &lt;em&gt;n_estimators&lt;/em&gt; on the RFR model when used for predicting porosity, given that &lt;em&gt;n_estimators&lt;/em&gt; is one of the most influential hyperparameters that can be tuned to optimize the RFR algorithm. In this study, the effects of &lt;em&gt;n_estimators&lt;/em&gt; on the RFR model in porosity prediction were investigated. Furthermore, &lt;em&gt;n_estimators&lt;/em&gt;’ interactions with two other key hyperparameters, namely the number of features considered for the best split (&lt;em&gt;max_features&lt;/em&gt;) and the minimum number of samples required to be at a leaf node (&lt;em&gt;min_samples_leaf&lt;/em&gt;) were explored. The RFR models were developed using 4 input features, namely, resistivity log (RES), neutron porosity log (NPHI), gamma ray log (GR), and the corresponding depths obtained from the Volve oil field in the North Sea, and calculated porosity was used as the target data. The methodology consisted of 4 approaches. In the first approach, only &lt;em&gt;n_estimators&lt;/em&gt; were changed; in the second approach, &lt;em&gt;n_estimators&lt;/em&gt; were changed along with &lt;em&gt;max_features&lt;/em&gt;; in the third approach, &lt;em&gt;n_estimators&lt;/em&gt; were changed along with &lt;em&gt;min_samples_leaf&lt;/em&gt;; and in the final approach, all three hyperparameters were tuned. Altogether 24 RFR models were developed, and models were evaluated using adjusted &lt;em&gt;R&lt;/em&gt;&lt;small&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/small&gt; (adj. &lt;em&gt;R&lt;/em&gt;&lt;small&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/small&gt;), root mean squared error (RMSE), and their computational times. The obtained results showed that the highest performance with an adj. &lt;em&gt;R&lt;/em&gt;&lt;small&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/small&gt; value of 0.8505 was achieved when &lt;em&gt;n_estimators&lt;/em&gt; was 81, &lt;em&gt;max_features&lt;/em&gt; was 2 and &lt;em&gt;min_samples_leaf&lt;/em&gt; was 1. In approach 2, when &lt;em&gt;n_estimators’&lt;/em&gt; upper limit was increased from 10 to 100, there was a test model performance growth of more than 1.60%, whereas increasing &lt;em&gt;n_estimators’&lt;/em&gt; upper limit from 100 to 1000 showed a performance drop of around 0.4%. Models developed by tuning &lt;em&gt;n_estimators&lt;/em&gt; from 1 to 100 in intervals of 10 had healthy test model adj. &lt;em&gt;R&lt;/em&gt;&lt;small&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/small&gt; values and lower computational times, making them the best &lt;em&gt;n_estimators’&lt;/em&gt; range and interval when both performances and computational times were taken into consideration to predict the porosity of the Volve oil field in the North Sea.","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00313f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking high-efficiency energy storage and conversion with biocompatible electrodes: the key role of interfacial interaction assembly and structural design† 利用生物兼容电极实现高效能量存储和转换:界面相互作用组装和结构设计的关键作用
IF 3.2 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-07 DOI: 10.1039/D4YA00387J
Jeongyeon Ahn, Hyeseoung Lim, Jongkuk Ko and Jinhan Cho

Biocompatible electrodes, situated at the intersection of bioelectronics and soft electronics, hold the promise of groundbreaking advancements in human–machine interaction and bio-inspired applications. Their development relies on achieving stable, robust deposition of electrically and/or electrochemically active components on biocompatible substrates, ensuring operational stability under various mechanical stresses. However, despite notable progress, most biocompatible electrodes still struggle to simultaneously achieve high mechanical flexibility, electrical conductivity, electrochemical activity, and long-term stability at the same time. These challenges present critical barriers to the development of more advanced biocompatible devices, particularly in the field of energy storage and conversion. The key lies in optimizing the complementary interfacial interactions between active components (i.e., electrical and/or electrochemical components) and biocompatible substrates, and between adjacent active components, as well as in the structural design of the electrodes. In this perspective, we review recent approaches for preparing textile- and hydrogel-based biocompatible electrodes that can achieve high electrical conductivity without compromising favorable properties of biocompatible substrates (i.e., textile and hydrogel) for energy storage and conversion devices. In particular, we highlight the critical role of the interfacial interactions between electrode components and demonstrate how these interactions significantly enhance the energy performance and operational stability.

生物兼容电极位于生物电子学和软电子学的交叉点,有望在人机交互和生物启发应用领域取得突破性进展。它们的开发有赖于在生物相容性基底上实现稳定、坚固的电和/或电化学活性成分沉积,确保在各种机械应力下的运行稳定性。然而,尽管取得了显著进展,大多数生物兼容电极仍难以同时实现高机械灵活性、导电性、电化学活性和长期稳定性。这些挑战为开发更先进的生物兼容设备,尤其是能源存储和转换领域的设备,设置了关键的障碍。关键在于优化活性成分(即电和/或电化学活性成分)与生物兼容基底之间、相邻活性成分之间以及电极结构设计中的互补界面相互作用。在这一视角中,我们首先回顾了用于能量存储和转换设备的生物兼容电极的最新进展,并探讨了在显著提高性能方面仍然存在的挑战。我们特别强调了电极元件之间界面相互作用的关键作用,并展示了这些相互作用如何显著提高能量性能和运行稳定性。
{"title":"Unlocking high-efficiency energy storage and conversion with biocompatible electrodes: the key role of interfacial interaction assembly and structural design†","authors":"Jeongyeon Ahn, Hyeseoung Lim, Jongkuk Ko and Jinhan Cho","doi":"10.1039/D4YA00387J","DOIUrl":"10.1039/D4YA00387J","url":null,"abstract":"<p >Biocompatible electrodes, situated at the intersection of bioelectronics and soft electronics, hold the promise of groundbreaking advancements in human–machine interaction and bio-inspired applications. Their development relies on achieving stable, robust deposition of electrically and/or electrochemically active components on biocompatible substrates, ensuring operational stability under various mechanical stresses. However, despite notable progress, most biocompatible electrodes still struggle to simultaneously achieve high mechanical flexibility, electrical conductivity, electrochemical activity, and long-term stability at the same time. These challenges present critical barriers to the development of more advanced biocompatible devices, particularly in the field of energy storage and conversion. The key lies in optimizing the complementary interfacial interactions between active components (<em>i.e.</em>, electrical and/or electrochemical components) and biocompatible substrates, and between adjacent active components, as well as in the structural design of the electrodes. In this perspective, we review recent approaches for preparing textile- and hydrogel-based biocompatible electrodes that can achieve high electrical conductivity without compromising favorable properties of biocompatible substrates (<em>i.e.</em>, textile and hydrogel) for energy storage and conversion devices. In particular, we highlight the critical role of the interfacial interactions between electrode components and demonstrate how these interactions significantly enhance the energy performance and operational stability.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00387j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective electroreduction of CO2 into CO over Ag and Cu decorated carbon nanoflakes† 在银和铜装饰的纳米碳片上选择性地将 CO2 电还原成 CO
IF 3.2 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-06 DOI: 10.1039/D4YA00462K
Ahmad Faraz, Waheed Iqbal, Shayan Gul, Fehmida K. Kanodarwala, Muhammad Nadeem Zafar, Guobao Xu and Muhammad Arif Nadeem

The electrocatalytic CO2 reduction reaction (eCO2RR) has the potential to effectively cut carbon emission. However, the activity and selectivity of eCO2RR catalysts are topical due to the intricacy of the reaction components and mechanism. Herein, we have decorated silver and copper nanoparticles over carbon nanoflakes to achieve an Ag–Cu NPs/C system that enables selective reduction of CO2 into CO. The catalyst is prepared by incorporating Ag nanoparticles into a Cu-BTC MOF (HKUST-1) and subsequent carbonization that alters the surface composition, with improved activity and faradaic efficiency (FE) towards selective CO2 reduction. The evaluation of electrocatalytic performance reveals that the synthesized catalyst exhibits enhanced electrocatalytic activity and selectivity with a FECO of ∼ 90% at −0.79 VRHE and a current density (j) of 44.15 mA cm−2 compared to Ag-NPs and Cu/C. The durability test over 40 h confirms the outstanding stability of Ag–Cu NPs/C. The lower Tafel slope value of only 75 mV dec−1 corresponds to the fast reaction kinetics on the surface of Ag–Cu NPs/C. The synthetic protocol in this work offers an easy approach to the betterment of a cost-effective electrocatalyst with improved FE.

电催化二氧化碳还原反应(eCO2RR)具有有效减少碳排放的潜力。然而,由于反应组分和机理的复杂性,eCO2RR 催化剂的活性和选择性一直是个难题。在此,我们将银纳米颗粒和铜纳米颗粒装饰在纳米碳片上,得到了一种银-铜 NPs/C 系统,该系统可将 CO2 选择性地还原成 CO。该催化剂的制备方法是将银纳米颗粒加入铜-四氯化碳 MOF(HKUST-1),然后进行碳化,从而改变其表面成分,从而提高了选择性还原 CO2 的活性和法拉第效率(FE)。电催化性能评估结果表明,与 Ag-NPs 和 Cu/C 相比,合成催化剂的电催化活性和选择性均有所提高,在 -0.79 VRHE 条件下的 FECO 为 90%,电流密度 (j) 为 44.15 mA cm-2。超过 40 小时的耐久性测试证实了 Ag-Cu NPs/C 的出色稳定性。仅为 75 mV dec-1 的较低 Tafel 斜坡值与 Ag-Cu NPs/C 表面的快速反应动力学相吻合。这项工作中的合成方案提供了一种简便的方法,可以更好地改进具有成本效益的电催化剂,并提高其 FE。
{"title":"Selective electroreduction of CO2 into CO over Ag and Cu decorated carbon nanoflakes†","authors":"Ahmad Faraz, Waheed Iqbal, Shayan Gul, Fehmida K. Kanodarwala, Muhammad Nadeem Zafar, Guobao Xu and Muhammad Arif Nadeem","doi":"10.1039/D4YA00462K","DOIUrl":"10.1039/D4YA00462K","url":null,"abstract":"<p >The electrocatalytic CO<small><sub>2</sub></small> reduction reaction (eCO<small><sub>2</sub></small>RR) has the potential to effectively cut carbon emission. However, the activity and selectivity of eCO<small><sub>2</sub></small>RR catalysts are topical due to the intricacy of the reaction components and mechanism. Herein, we have decorated silver and copper nanoparticles over carbon nanoflakes to achieve an Ag–Cu NPs/C system that enables selective reduction of CO<small><sub>2</sub></small> into CO. The catalyst is prepared by incorporating Ag nanoparticles into a Cu-BTC MOF (HKUST-1) and subsequent carbonization that alters the surface composition, with improved activity and faradaic efficiency (FE) towards selective CO<small><sub>2</sub></small> reduction. The evaluation of electrocatalytic performance reveals that the synthesized catalyst exhibits enhanced electrocatalytic activity and selectivity with a FE<small><sub>CO</sub></small> of ∼ 90% at −0.79 V<small><sub>RHE</sub></small> and a current density (<em>j</em>) of 44.15 mA cm<small><sup>−2</sup></small> compared to Ag-NPs and Cu/C. The durability test over 40 h confirms the outstanding stability of Ag–Cu NPs/C. The lower Tafel slope value of only 75 mV dec<small><sup>−1</sup></small> corresponds to the fast reaction kinetics on the surface of Ag–Cu NPs/C. The synthetic protocol in this work offers an easy approach to the betterment of a cost-effective electrocatalyst with improved FE.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00462k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in layered double hydroxide (LDH)-based materials: fabrication, modification strategies, characterization, promising environmental catalytic applications, and prospective aspects 层状双氢氧化物(LDH)基材料的最新进展:制备、改性策略、表征、有前景的环境催化应用及展望
IF 3.2 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-05 DOI: 10.1039/D4YA00272E
Amal A. Altalhi, Eslam A. Mohamed and Nabel A. Negm

Layered double hydroxides (LDHs) are clay networks with brucite (Mg(OH2)) layers that are coupled with anions between the produced layers. The building structure of LDHs follows the formula [M1−x2+Mx3+(OH)2]x+(An)x/n·yH2O, where M3+ and M2 are trivalent and divalent cations in the structural units (sheets), respectively; x is the M3+ to (M2+ + M3+) cation ratio of the structure; and An is an interlayer anion. LDHs can be created utilizing simple approaches that regulate the layer structure, chemical composition, and shape of the crystals generated by adapting production parameters. The first method of modifying LDH composites is through intercalation, involving the insertion of inorganic or organic precursors into their composition, which can then be employed for a variety of purposes. The next method is a simple physical mixing technique between the created LDHs and advanced materials, such as activated carbon, graphene and its derivatives, and carbon nanotubes, for utilization as base substances in energy storage, supercapacitors, photo- and electrocatalysts, water splitting, and toxic gas removal from the surrounding environment. The final strategy is the synthesis of polymer–LDH composites by inserting effective polymers during the manufacturing process of LDHs to create nano-composites that can be utilized for energy, fire retardant, gas barrier, and wastewater cleaning applications. LDHs are a type of fine chemical that can be designed to have a desired chemical structure and performance for various purposes, such as redox reactions, bromination, ethoxylation, aldol condensation, NOx and SOx elimination, and biofuel production. Because LDH substances are not harmful to the environment, their different applications are unique in terms of green chemistry as they are recyclable and eco-friendly catalysts. The present review investigated the various methods used to create LDHs and the improvement of the produced composites via enhanced temperature calcination; intercalation of their structures by small-, medium-, and high-nuclear anions; and support by carbon compounds. The evaluation methods and the best prospective uses, such as biofuel generation, catalysis, water splitting, charge transfer, and wastewater treatment, are comprehensively reported according to the most current studies, and the future directions of LDHs are highlighted.

层状双氢氧化物(LDHs)是具有青金石(Mg(OH2))层的粘土网络,在生成的层之间有阴离子耦合。层状双氢氧化物的结构式如下[其中 M3+ 和 M2 是结构单元(薄片)中的三价和二价阳离子,x 是结构中 M3+ 与(M2++M3+)阳离子的比率,An 是层间阴离子。LDH 可以利用简单的方法制造,通过调整生产参数来调节层结构、化学成分和所生成晶体的形状。改变 LDH 复合材料的第一种方法是插层法,即在其成分中插入无机或有机前体,然后将其用于各种用途。第二种方法是在已生成的 LDH 以及活性炭、石墨烯及其衍生物和碳纳米管等先进材料之间采用简单的物理混合技术,将其作为基础物质用于能源储存、超级电容器、光催化剂和电催化剂、水分离以及清除周围环境中的有毒气体。最后一种策略是合成聚合物-LDH 复合材料,在制造 LDH 的过程中加入有效的聚合物,以制造纳米复合材料,用于能源、阻燃、气体阻隔和废水清洁。LDH 是一种精细化学品,可以设计成所需的化学结构和性能,用于氧化还原反应、溴化、乙氧基化、醛醇缩合、消除氮氧化物和硫氧化物以及生物燃料生产等多种用途。由于 LDH 物质对环境无害,使用它们的不同应用在绿色化学方面具有独特性,因为它们是可回收的环保催化剂。本综述研究了用于制备 LDH 的各种方法,以及通过高温煅烧、小核、中核和高核阴离子对其结构的插层和碳化合物的支撑来改进所生产的复合材料。根据目前的最新研究,全面报告了评估方法以及生物燃料生成、催化、水分离、电荷转移和废水处理等最佳前瞻性用途,并强调了 LDHs 的潜在前景。
{"title":"Recent advances in layered double hydroxide (LDH)-based materials: fabrication, modification strategies, characterization, promising environmental catalytic applications, and prospective aspects","authors":"Amal A. Altalhi, Eslam A. Mohamed and Nabel A. Negm","doi":"10.1039/D4YA00272E","DOIUrl":"10.1039/D4YA00272E","url":null,"abstract":"<p >Layered double hydroxides (LDHs) are clay networks with brucite (Mg(OH<small><sub>2</sub></small>)) layers that are coupled with anions between the produced layers. The building structure of LDHs follows the formula [M<small><sub>1−<em>x</em></sub></small><small><sup>2+</sup></small>M<small><sub><em>x</em></sub></small><small><sup>3+</sup></small>(OH)<small><sub>2</sub></small>]<small><sup><em>x</em>+</sup></small>(A<small><sup><em>n</em>−</sup></small>)<small><sub><em>x</em>/<em>n</em></sub></small>·<em>y</em>H<small><sub>2</sub></small>O, where M<small><sup>3+</sup></small> and M<small><sup>2</sup></small> are trivalent and divalent cations in the structural units (sheets), respectively; <em>x</em> is the M<small><sup>3+</sup></small> to (M<small><sup>2+</sup></small> + M<small><sup>3+</sup></small>) cation ratio of the structure; and A<small><sup><em>n</em></sup></small> is an interlayer anion. LDHs can be created utilizing simple approaches that regulate the layer structure, chemical composition, and shape of the crystals generated by adapting production parameters. The first method of modifying LDH composites is through intercalation, involving the insertion of inorganic or organic precursors into their composition, which can then be employed for a variety of purposes. The next method is a simple physical mixing technique between the created LDHs and advanced materials, such as activated carbon, graphene and its derivatives, and carbon nanotubes, for utilization as base substances in energy storage, supercapacitors, photo- and electrocatalysts, water splitting, and toxic gas removal from the surrounding environment. The final strategy is the synthesis of polymer–LDH composites by inserting effective polymers during the manufacturing process of LDHs to create nano-composites that can be utilized for energy, fire retardant, gas barrier, and wastewater cleaning applications. LDHs are a type of fine chemical that can be designed to have a desired chemical structure and performance for various purposes, such as redox reactions, bromination, ethoxylation, aldol condensation, NO<small><sub><em>x</em></sub></small> and SO<small><sub><em>x</em></sub></small> elimination, and biofuel production. Because LDH substances are not harmful to the environment, their different applications are unique in terms of green chemistry as they are recyclable and eco-friendly catalysts. The present review investigated the various methods used to create LDHs and the improvement of the produced composites <em>via</em> enhanced temperature calcination; intercalation of their structures by small-, medium-, and high-nuclear anions; and support by carbon compounds. The evaluation methods and the best prospective uses, such as biofuel generation, catalysis, water splitting, charge transfer, and wastewater treatment, are comprehensively reported according to the most current studies, and the future directions of LDHs are highlighted.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00272e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the role of polymer interactions during water electrolysis under basic conditions with bifunctional cobalt corroles† 探索双功能钴腐蚀剂在碱性条件下电解水过程中聚合物相互作用的作用
IF 3.2 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-07-31 DOI: 10.1039/D4YA00257A
Sameeta Sahoo, Elizabeth K. Johnson, Xiangru Wei, Sen Zhang and Charles W. Machan

With green hydrogen fuel continuing to be an important option for energy storage, studies on water-splitting reactions have attracted increasing attention. Within a multitude of parameters that have the potential to be explored to enhance water electrolysis, one of the most consequential factors is the development of an efficient electrocatalyst. The effectiveness of Co(III) corroles as electrocatalysts has largely been investigated in homogenous, non-aqueous or acidic environments. We report the use of heterogenized Co(III) corroles as bifunctional catalysts for water splitting under basic conditions, finding that the inclusion of alkyl chains on the ligand framework has a beneficial impact on electrocatalytic properties. Two new corroles have been isolated where the para positions in the fluorophenyl meso substituents of the parent cobalt(III) 5,10,15-tris(pentafluorophenyl)corrole Co(tpfpc)1 have been modified with heptyl, [Co(ttfphc)] 2 and dodecyl [Co(ttfpdc)] 3 amines via a nucleophilic aromatic substitution reaction. The electronic structure of these new complexes and properties of the resultant catalyst inks are significantly altered relative to the parent complex by the presence of the alkyl chains, as evidenced by changes in catalytic onset potentials and Tafel behavior during water splitting at pH 14. All catalysts were found to exhibit bifunctional behavior with reasonable stability, and the interactions of the alkyl amine groups with the supporting polymer in the catalyst ink have been found to have an important role in altering corrole aggregation and therefore Co active site accessibility during deposition of the catalyst inks.

随着绿色氢燃料继续成为能源储存的重要选择,有关水电解反应的研究吸引了越来越多的关注。在有可能提高水电解效果的众多参数中,最重要的因素之一是开发一种高效的电催化剂。作为电催化剂的 Co(III)腐蚀剂的有效性主要是在均质、非水或酸性环境中进行研究的。我们报告了在碱性条件下使用异质化 Co(III) 腐蚀物作为双功能催化剂进行水分离的情况,发现在配体框架上加入烷基链会对电催化性能产生有利影响。通过亲核芳香取代反应,母体钴(III)5,10,15-三(五氟苯基)珊瑚 Co(tpfpc) 1 的氟苯基中取代基的对位被庚基 [Co(ttfphc)] 2 和十二烷基 [Co(ttfpdc)] 3 改性。由于烷基链的存在,这些新络合物的电子结构和由此产生的催化剂墨水的性质与母体络合物相比发生了显著的变化,在 pH 值为 14 的条件下进行水分离时催化起始电位和塔菲尔行为的变化就是证明。研究发现,所有催化剂都表现出具有合理稳定性的双功能行为,而烷基胺基团与催化剂墨水中的支撑聚合物之间的相互作用在改变珊瑚虫聚集方面起着重要作用,因此在催化剂墨水的沉积过程中也改变了活性位点的可及性。
{"title":"Exploring the role of polymer interactions during water electrolysis under basic conditions with bifunctional cobalt corroles†","authors":"Sameeta Sahoo, Elizabeth K. Johnson, Xiangru Wei, Sen Zhang and Charles W. Machan","doi":"10.1039/D4YA00257A","DOIUrl":"10.1039/D4YA00257A","url":null,"abstract":"<p >With green hydrogen fuel continuing to be an important option for energy storage, studies on water-splitting reactions have attracted increasing attention. Within a multitude of parameters that have the potential to be explored to enhance water electrolysis, one of the most consequential factors is the development of an efficient electrocatalyst. The effectiveness of Co(<small>III</small>) corroles as electrocatalysts has largely been investigated in homogenous, non-aqueous or acidic environments. We report the use of heterogenized Co(<small>III</small>) corroles as bifunctional catalysts for water splitting under basic conditions, finding that the inclusion of alkyl chains on the ligand framework has a beneficial impact on electrocatalytic properties. Two new corroles have been isolated where the <em>para</em> positions in the fluorophenyl <em>meso</em> substituents of the parent cobalt(<small>III</small>) 5,10,15-tris(pentafluorophenyl)corrole <strong>Co(tpfpc)</strong><strong>1</strong> have been modified with heptyl, [<strong>Co(ttfphc)</strong>] <strong>2</strong> and dodecyl [<strong>Co(ttfpdc)</strong>] <strong>3</strong> amines <em>via</em> a nucleophilic aromatic substitution reaction. The electronic structure of these new complexes and properties of the resultant catalyst inks are significantly altered relative to the parent complex by the presence of the alkyl chains, as evidenced by changes in catalytic onset potentials and Tafel behavior during water splitting at pH 14. All catalysts were found to exhibit bifunctional behavior with reasonable stability, and the interactions of the alkyl amine groups with the supporting polymer in the catalyst ink have been found to have an important role in altering corrole aggregation and therefore Co active site accessibility during deposition of the catalyst inks.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00257a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable synthesis of activated porous carbon from lignin for enhanced CO2 capture: A comparative study of physicochemical activation routes 从木质素中可持续合成活性多孔碳以增强二氧化碳捕获:物理化学活化路线的比较研究
Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-07-30 DOI: 10.1039/d4ya00305e
Himanshu Patel, Amar K. Mohanty, Manjusri Misra
A sustainable and readily available material-lignin protobind 2400 was upcycled to activated porous carbon (APC) compatible with post-combustion CO2 capture. The effectiveness of the novel two-step physicochemical activation using KOH + CO2 and ZnCl2 + CO2 was compared with that of the respective physical (only CO2) and chemical activation (only KOH or ZnCl2). The effect of carbonization conditions (N2 or CO2 purging) on the resulting APC properties and CO2 adsorption performance was studied. The maximum BET surface area of 1480 m2/g and the best CO2 adsorption capacity of 5.68, 3.66, and 2.67 mmol/g were observed at 0, 25, and 40 C/1 bar, respectively. From the precursor to the final product, the APC yield falls within the range of 14.5-40.8 wt.%. The APC derived from lignin exhibited better CO2/N2 selectivity. The isosteric heat of adsorption for all the APCs remained below 40 kJ/mol, which suggested a lower energy requirement during the regeneration. The excellent reusability with fluctuations of only 0.51% in the amount of CO2 adsorbed over ten consecutive adsorption/desorption cycles, highlights the APC’s outstanding recyclability.
一种可持续且易于获得的材料--木质素原粘合剂 2400 被升级改造为可用于燃烧后二氧化碳捕集的活性多孔碳 (APC)。比较了使用 KOH + CO2 和 ZnCl2 + CO2 的新型两步物理化学活化与各自的物理(仅 CO2)和化学(仅 KOH 或 ZnCl2)活化的效果。研究了碳化条件(N2 或 CO2 吹扫)对所得 APC 特性和 CO2 吸附性能的影响。在 0、25 和 40 C/1 bar 条件下,观察到最大 BET 表面积为 1480 m2/g,最佳二氧化碳吸附容量分别为 5.68、3.66 和 2.67 mmol/g。从前驱体到最终产品,APC 的产量在 14.5-40.8 wt.% 之间。从木质素中提取的 APC 具有更好的 CO2/N2 选择性。所有 APC 的等效吸附热均低于 40 kJ/mol,这表明再生过程中的能量需求较低。在连续十次吸附/解吸循环中,二氧化碳吸附量的波动仅为 0.51%,出色的可再利用性凸显了 APC 的出色可回收性。
{"title":"Sustainable synthesis of activated porous carbon from lignin for enhanced CO2 capture: A comparative study of physicochemical activation routes","authors":"Himanshu Patel, Amar K. Mohanty, Manjusri Misra","doi":"10.1039/d4ya00305e","DOIUrl":"https://doi.org/10.1039/d4ya00305e","url":null,"abstract":"A sustainable and readily available material-lignin protobind 2400 was upcycled to activated porous carbon (APC) compatible with post-combustion CO2 capture. The effectiveness of the novel two-step physicochemical activation using KOH + CO2 and ZnCl2 + CO2 was compared with that of the respective physical (only CO2) and chemical activation (only KOH or ZnCl2). The effect of carbonization conditions (N2 or CO2 purging) on the resulting APC properties and CO2 adsorption performance was studied. The maximum BET surface area of 1480 m2/g and the best CO2 adsorption capacity of 5.68, 3.66, and 2.67 mmol/g were observed at 0, 25, and 40 C/1 bar, respectively. From the precursor to the final product, the APC yield falls within the range of 14.5-40.8 wt.%. The APC derived from lignin exhibited better CO2/N2 selectivity. The isosteric heat of adsorption for all the APCs remained below 40 kJ/mol, which suggested a lower energy requirement during the regeneration. The excellent reusability with fluctuations of only 0.51% in the amount of CO2 adsorbed over ten consecutive adsorption/desorption cycles, highlights the APC’s outstanding recyclability.","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling interfacial ionic transport in Li2VO2F cathodes during battery operation† 电池运行过程中 Li2VO2F 阴极的界面离子传输建模
IF 3.2 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-07-30 DOI: 10.1039/D4YA00163J
Jolla Kullgren, Jin Hyun Chang, Simon Loftager, Shweta Dhillon, Tejs Vegge and Daniel Brandell

Transition metal oxyflourides have gained considerable interest as potential high-capacity cathode materials for Li-ion batteries. So far, commercialization has been hindered by the poor cyclability and fast degradation of this class of materials. The degradation process is believed to start at the surface and progresses toward the bulk. In this context, a suitable cathode-electrolyte interphase (CEI) appears to be a crucial factor where the formation of LiF has been identified as a key component promoting interfacial stability. In the current work, we make use of a combined density functional theory (DFT) and kinetic Monte Carlo (kMC) approach. Using DFT, we determine relevant interfaces between Li2VO2F and LiF. Rejection-free kMC simulations with parameters based on DFT are then used to probe the kinetics in the charging and discharging process of the Li2VO2F phase. We find that the interface formed by joining Li2VO2F and LiF via their most stable surface terminations has a modest but positive effect on the charging rate, where the LiF phase acts as a funnel that facilitates the Li extraction from the bulk of the Li2VO2F phase. However, the same interface has a severe impeding effect on the discharging of partially delithiated structures, which is orders of magnitudes slower than in the charging process. We find that the key property controlling the kinetics in the discharging process is the difference in stability of Li vacancies in the Li2VO2F and LiF phases.

作为锂离子电池的潜在高容量阴极材料,过渡金属氧氟化物已引起了人们的极大兴趣。迄今为止,这一类材料循环性差、降解快,阻碍了其商业化。降解过程被认为是从表面开始,然后向块体发展。在这种情况下,合适的阴极-电解质间相(CEI)似乎是一个关键因素,而 LiF 的形成被认为是促进界面稳定性的一个关键因素。在目前的工作中,我们采用了密度泛函理论(DFT)和动力学蒙特卡罗(kMC)相结合的方法。利用 DFT,我们确定了 Li2VO2F 和 LiF 之间的相关界面。然后使用基于 DFT 参数的无排斥 kMC 模拟来探究 Li2VO2F 相充放电过程的动力学。我们发现,Li2VO2F 和 LiF 通过其最稳定的表面端点连接形成的界面对充电速率有适度但积极的影响,其中 LiF 相起到漏斗的作用,有助于从 Li2VO2F 相的主体中提取锂。然而,同一界面对部分脱锂化结构的放电具有严重的阻碍作用,放电速度比充电过程慢几个数量级。我们发现,控制放电过程动力学的关键特性是 Li2VO2F 和 LiF 相中锂空位稳定性的差异。
{"title":"Modelling interfacial ionic transport in Li2VO2F cathodes during battery operation†","authors":"Jolla Kullgren, Jin Hyun Chang, Simon Loftager, Shweta Dhillon, Tejs Vegge and Daniel Brandell","doi":"10.1039/D4YA00163J","DOIUrl":"10.1039/D4YA00163J","url":null,"abstract":"<p >Transition metal oxyflourides have gained considerable interest as potential high-capacity cathode materials for Li-ion batteries. So far, commercialization has been hindered by the poor cyclability and fast degradation of this class of materials. The degradation process is believed to start at the surface and progresses toward the bulk. In this context, a suitable cathode-electrolyte interphase (CEI) appears to be a crucial factor where the formation of LiF has been identified as a key component promoting interfacial stability. In the current work, we make use of a combined density functional theory (DFT) and kinetic Monte Carlo (kMC) approach. Using DFT, we determine relevant interfaces between Li<small><sub>2</sub></small>VO<small><sub>2</sub></small>F and LiF. Rejection-free kMC simulations with parameters based on DFT are then used to probe the kinetics in the charging and discharging process of the Li<small><sub>2</sub></small>VO<small><sub>2</sub></small>F phase. We find that the interface formed by joining Li<small><sub>2</sub></small>VO<small><sub>2</sub></small>F and LiF <em>via</em> their most stable surface terminations has a modest but positive effect on the charging rate, where the LiF phase acts as a funnel that facilitates the Li extraction from the bulk of the Li<small><sub>2</sub></small>VO<small><sub>2</sub></small>F phase. However, the same interface has a severe impeding effect on the discharging of partially delithiated structures, which is orders of magnitudes slower than in the charging process. We find that the key property controlling the kinetics in the discharging process is the difference in stability of Li vacancies in the Li<small><sub>2</sub></small>VO<small><sub>2</sub></small>F and LiF phases.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00163j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Energy advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1