Pub Date : 2023-01-01Epub Date: 2023-07-21DOI: 10.1016/bs.aambs.2023.07.004
Caihong Weng, Xiaowei Peng, Yejun Han
Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.
{"title":"From methane to value-added bioproducts: microbial metabolism, enzymes, and metabolic engineering.","authors":"Caihong Weng, Xiaowei Peng, Yejun Han","doi":"10.1016/bs.aambs.2023.07.004","DOIUrl":"10.1016/bs.aambs.2023.07.004","url":null,"abstract":"<p><p>Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10034055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/bs.aambs.2023.05.001
Bo Li, Tao Yan
Bacterial antimicrobial resistance (AMR) is a persisting and growing threat to human health. Characterization of antibiotic resistance genes (ARGs) in the environment is important to understand and control ARG-associated microbial risks. Numerous challenges exist in monitoring ARGs in the environment, due to the extraordinary diversity of ARGs, low abundance of ARGs with respect to the complex environmental microbiomes, difficulties in linking ARGs with bacterial hosts by molecular methods, difficulties in achieving quantification and high throughput simultaneously, difficulties in assessing mobility potential of ARGs, and difficulties in determining the specific AMR determinant genes. Advances in the next generation sequencing (NGS) technologies and related computational and bioinformatic tools are facilitating rapid identification and characterization ARGs in genomes and metagenomes from environmental samples. This chapter discusses NGS-based strategies, including amplicon-based sequencing, whole genome sequencing, bacterial population-targeted metagenome sequencing, metagenomic NGS, quantitative metagenomic sequencing, and functional/phenotypic metagenomic sequencing. Current bioinformatic tools for analyzing sequencing data for studying environmental ARGs are also discussed.
{"title":"Metagenomic next generation sequencing for studying antibiotic resistance genes in the environment.","authors":"Bo Li, Tao Yan","doi":"10.1016/bs.aambs.2023.05.001","DOIUrl":"https://doi.org/10.1016/bs.aambs.2023.05.001","url":null,"abstract":"<p><p>Bacterial antimicrobial resistance (AMR) is a persisting and growing threat to human health. Characterization of antibiotic resistance genes (ARGs) in the environment is important to understand and control ARG-associated microbial risks. Numerous challenges exist in monitoring ARGs in the environment, due to the extraordinary diversity of ARGs, low abundance of ARGs with respect to the complex environmental microbiomes, difficulties in linking ARGs with bacterial hosts by molecular methods, difficulties in achieving quantification and high throughput simultaneously, difficulties in assessing mobility potential of ARGs, and difficulties in determining the specific AMR determinant genes. Advances in the next generation sequencing (NGS) technologies and related computational and bioinformatic tools are facilitating rapid identification and characterization ARGs in genomes and metagenomes from environmental samples. This chapter discusses NGS-based strategies, including amplicon-based sequencing, whole genome sequencing, bacterial population-targeted metagenome sequencing, metagenomic NGS, quantitative metagenomic sequencing, and functional/phenotypic metagenomic sequencing. Current bioinformatic tools for analyzing sequencing data for studying environmental ARGs are also discussed.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9861872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-09DOI: 10.1016/bs.aambs.2023.08.003
Jerzy Falandysz, Alwyn R Fernandes
Scandium (Sc) and Yttrium (Y) along with the other rare earth elements (REE) are being increasingly extracted to meet the escalating demand for their use in modern high technology applications. Concern has been voiced that releases from this escalating usage may pollute environments, including the habitats of wild species of mushrooms, many of which are foraged and prized as foods. This review collates the scarce information on occurrence of these elements in wild mushrooms and also reviews soil substrate levels, including forested habitats. Sc and Y occurred at lower levels in mushrooms (<1.0-1000 µg kg-1 dw for Sc and<1.8-1500 µg kg-1 dw for Y) compared to the corresponding range for the sum of the lanthanides in the same species (16-8400 µg kg-1 dw). The reported species showed considerably more variation in Y contents than Sc which show a narrow median distribution range (20-40 µg kg-1 dw). Data allowing temporal examination was very limited but showed no increasing trend between the 1970s to 2019, nor were any geographical influences apparent. The study of the essentiality, toxicity or other effects of REE including Sc and Y at levels of current dietary intake are as yet undefined. High intake scenarios using the highest median concentrations of Sc and Y, resulted in daily intakes of 1.2 and 3.3 μg respectively from 300 g portions of mushroom meals. These could be considered as low unless future toxicological insights make these intake levels relevant.
钪(Sc)和钇(Y)以及其他稀土元素(REE)的提取量越来越大,以满足现代高科技应用对它们不断增长的需求。人们担心,这种不断增长的使用量可能会污染环境,包括野生蘑菇物种的栖息地,其中许多蘑菇都是觅食的珍品。本综述整理了有关这些元素在野生蘑菇中出现情况的稀缺信息,并回顾了土壤基质水平,包括森林栖息地。与同一物种中镧系元素总和的相应范围(16-8400 µg kg-1 dw)相比,Sc 和 Y 在蘑菇中的含量较低(Sc 为 -1 dw,Y 为 1 dw)。所报告的物种中 Y 含量的变化要比 Sc 大得多,后者的分布中值范围较窄(20-40 微克千克-1 dw)。可用于时间研究的数据非常有限,但在 20 世纪 70 年代至 2019 年期间没有显示出增加趋势,也没有明显的地理影响。在目前的膳食摄入量水平下,对包括 Sc 和 Y 在内的稀土元素的本质、毒性或其他影响的研究尚不明确。使用 Sc 和 Y 的最高中值浓度进行高摄入量假设,300 克蘑菇餐的日摄入量分别为 1.2 微克和 3.3 微克。这些摄入量可视为低摄入量,除非未来的毒理学研究表明这些摄入量具有相关性。
{"title":"A critical review of the occurrence of scandium and yttrium in mushrooms.","authors":"Jerzy Falandysz, Alwyn R Fernandes","doi":"10.1016/bs.aambs.2023.08.003","DOIUrl":"10.1016/bs.aambs.2023.08.003","url":null,"abstract":"<p><p>Scandium (Sc) and Yttrium (Y) along with the other rare earth elements (REE) are being increasingly extracted to meet the escalating demand for their use in modern high technology applications. Concern has been voiced that releases from this escalating usage may pollute environments, including the habitats of wild species of mushrooms, many of which are foraged and prized as foods. This review collates the scarce information on occurrence of these elements in wild mushrooms and also reviews soil substrate levels, including forested habitats. Sc and Y occurred at lower levels in mushrooms (<1.0-1000 µg kg<sup>-1</sup> dw for Sc and<1.8-1500 µg kg<sup>-1</sup> dw for Y) compared to the corresponding range for the sum of the lanthanides in the same species (16-8400 µg kg<sup>-1</sup> dw). The reported species showed considerably more variation in Y contents than Sc which show a narrow median distribution range (20-40 µg kg<sup>-1</sup> dw). Data allowing temporal examination was very limited but showed no increasing trend between the 1970s to 2019, nor were any geographical influences apparent. The study of the essentiality, toxicity or other effects of REE including Sc and Y at levels of current dietary intake are as yet undefined. High intake scenarios using the highest median concentrations of Sc and Y, resulted in daily intakes of 1.2 and 3.3 μg respectively from 300 g portions of mushroom meals. These could be considered as low unless future toxicological insights make these intake levels relevant.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-10-20DOI: 10.1016/bs.aambs.2023.09.001
Amy Ruth Quinton, Harry Benjamin McDowell, Egbert Hoiczyk
Encapsulins, virus capsid-like bacterial nanocompartments have emerged as promising tools in medicine, imaging, and material sciences. Recent work has shown that these protein-bound icosahedral 'organelles' possess distinct properties that make them exceptionally usable for nanotechnology applications. A key factor contributing to their appeal is their ability to self-assemble, coupled with their capacity to encapsulate a wide range of cargos. Their genetic manipulability, stability, biocompatibility, and nano-size further enhance their utility, offering outstanding possibilities for practical biotechnology applications. In particular, their amenability to engineering has led to their extensive modification, including the packaging of non-native cargos and the utilization of the shell surface for displaying immunogenic or targeting proteins and peptides. This inherent versatility, combined with the ease of expressing encapsulins in heterologous hosts, promises to provide broad usability. Although mostly not yet commercialized, encapsulins have started to demonstrate their vast potential for biotechnology, from drug delivery to biofuel production and the synthesis of valuable inorganic materials. In this review, we will initially discuss the structure, function and diversity of encapsulins, which form the basis for these emerging applications, before reviewing ongoing practical uses and highlighting promising applications in medicine, engineering and environmental sciences.
{"title":"Encapsulins: Nanotechnology's future in a shell.","authors":"Amy Ruth Quinton, Harry Benjamin McDowell, Egbert Hoiczyk","doi":"10.1016/bs.aambs.2023.09.001","DOIUrl":"10.1016/bs.aambs.2023.09.001","url":null,"abstract":"<p><p>Encapsulins, virus capsid-like bacterial nanocompartments have emerged as promising tools in medicine, imaging, and material sciences. Recent work has shown that these protein-bound icosahedral 'organelles' possess distinct properties that make them exceptionally usable for nanotechnology applications. A key factor contributing to their appeal is their ability to self-assemble, coupled with their capacity to encapsulate a wide range of cargos. Their genetic manipulability, stability, biocompatibility, and nano-size further enhance their utility, offering outstanding possibilities for practical biotechnology applications. In particular, their amenability to engineering has led to their extensive modification, including the packaging of non-native cargos and the utilization of the shell surface for displaying immunogenic or targeting proteins and peptides. This inherent versatility, combined with the ease of expressing encapsulins in heterologous hosts, promises to provide broad usability. Although mostly not yet commercialized, encapsulins have started to demonstrate their vast potential for biotechnology, from drug delivery to biofuel production and the synthesis of valuable inorganic materials. In this review, we will initially discuss the structure, function and diversity of encapsulins, which form the basis for these emerging applications, before reviewing ongoing practical uses and highlighting promising applications in medicine, engineering and environmental sciences.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/bs.aambs.2023.04.002
Julia M Münch, Morgan S Sobol, Benedikt Brors, Anne-Kristin Kaster
Transcriptomics, or more specifically mRNA sequencing, is a powerful tool to study gene expression at the single-cell level (scRNA-seq) which enables new insights into a plethora of biological processes. While methods for single-cell RNA-seq in eukaryotes are well established, application to prokaryotes is still challenging. Reasons for that are rigid and diverse cell wall structures hampering lysis, the lack of polyadenylated transcripts impeding mRNA enrichment, and minute amounts of RNA requiring amplification steps before sequencing. Despite those obstacles, several promising scRNA-seq approaches for bacteria have been published recently, albeit difficulties in the experimental workflow and data processing and analysis remain. In particular, bias is often introduced by amplification which makes it difficult to distinguish between technical noise and biological variation. Future optimization of experimental procedures and data analysis algorithms are needed for the improvement of scRNA-seq but also to aid in the emergence of prokaryotic single-cell multi-omics. to help address 21st century challenges in the biotechnology and health sector.
{"title":"Single-cell transcriptomics and data analyses for prokaryotes-Past, present and future concepts.","authors":"Julia M Münch, Morgan S Sobol, Benedikt Brors, Anne-Kristin Kaster","doi":"10.1016/bs.aambs.2023.04.002","DOIUrl":"https://doi.org/10.1016/bs.aambs.2023.04.002","url":null,"abstract":"<p><p>Transcriptomics, or more specifically mRNA sequencing, is a powerful tool to study gene expression at the single-cell level (scRNA-seq) which enables new insights into a plethora of biological processes. While methods for single-cell RNA-seq in eukaryotes are well established, application to prokaryotes is still challenging. Reasons for that are rigid and diverse cell wall structures hampering lysis, the lack of polyadenylated transcripts impeding mRNA enrichment, and minute amounts of RNA requiring amplification steps before sequencing. Despite those obstacles, several promising scRNA-seq approaches for bacteria have been published recently, albeit difficulties in the experimental workflow and data processing and analysis remain. In particular, bias is often introduced by amplification which makes it difficult to distinguish between technical noise and biological variation. Future optimization of experimental procedures and data analysis algorithms are needed for the improvement of scRNA-seq but also to aid in the emergence of prokaryotic single-cell multi-omics. to help address 21st century challenges in the biotechnology and health sector.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9861871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-07-28DOI: 10.1016/bs.aambs.2023.07.001
S Z Yang, L T Peng
Pathogenic fungi are widespread and cause a variety of diseases in human beings and other organisms. At present, limited classes of antifungal agents are available to treat invasive fungal diseases. With the wide use of the commercial antifungal agents, drug resistance of pathogenic fungi are continuously increasing. Therefore, exploring effective antifungal agents with novel drug targets is urgently needed to cope with the challenges that the antifungal area faces. pH homeostasis is vital for multiple cellular processes, revealing the potential for defining novel drug targets. Fungi have evolved a number of strategies to maintain a stable pH internal environment in response to rapid metabolism and a dramatically changing extracellular environment. Among them, plasma membrane H+-ATPase (PMA) and vacuolar H+-ATPase (V-ATPase) play a central role in the regulation of pH homeostasis system. In this chapter, we will summarize the current knowledge about pH homeostasis and its regulation mechanisms in pathogenic fungi, especially for the recent advances in PMA and V-ATPase, which would help in revealing the regulating mechanism of pH on cell growth and pathogenicity, and further designing effective drugs and identify new targets for combating fungal diseases.
{"title":"Significance of the plasma membrane H<sup>+</sup>-ATPase and V-ATPase for growth and pathogenicity in pathogenic fungi.","authors":"S Z Yang, L T Peng","doi":"10.1016/bs.aambs.2023.07.001","DOIUrl":"10.1016/bs.aambs.2023.07.001","url":null,"abstract":"<p><p>Pathogenic fungi are widespread and cause a variety of diseases in human beings and other organisms. At present, limited classes of antifungal agents are available to treat invasive fungal diseases. With the wide use of the commercial antifungal agents, drug resistance of pathogenic fungi are continuously increasing. Therefore, exploring effective antifungal agents with novel drug targets is urgently needed to cope with the challenges that the antifungal area faces. pH homeostasis is vital for multiple cellular processes, revealing the potential for defining novel drug targets. Fungi have evolved a number of strategies to maintain a stable pH internal environment in response to rapid metabolism and a dramatically changing extracellular environment. Among them, plasma membrane H<sup>+</sup>-ATPase (PMA) and vacuolar H<sup>+</sup>-ATPase (V-ATPase) play a central role in the regulation of pH homeostasis system. In this chapter, we will summarize the current knowledge about pH homeostasis and its regulation mechanisms in pathogenic fungi, especially for the recent advances in PMA and V-ATPase, which would help in revealing the regulating mechanism of pH on cell growth and pathogenicity, and further designing effective drugs and identify new targets for combating fungal diseases.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10034054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-07-23DOI: 10.1016/bs.aambs.2023.07.003
Hakuto Kageyama, Rungaroon Waditee-Sirisattha
Cyanobacteria are ubiquitously distributed in nature and are the most abundant photoautotrophs on Earth. Their long evolutionary history reveals that cyanobacteria have a remarkable capacity and strong adaptive tendencies to thrive in a variety of conditions. Thus, they can survive successfully, especially in harsh environmental conditions such as salty environments, high radiation, or extreme temperatures. Among others, salt stress because of excessive salt accumulation in salty environments, is the most common abiotic stress in nature and hampers agricultural growth and productivity worldwide. These detrimental effects point to the importance of understanding the molecular mechanisms underlying the salt stress response. While it is generally accepted that the stress response mechanism is a complex network, fewer efforts have been made to represent it as a network. Substantial evidence revealed that salt-tolerant cyanobacteria have evolved genomic specific mechanisms and high adaptability in response to environmental changes. For example, extended gene families and/or clusters of genes encoding proteins involved in the adaptation to high salinity have been collectively reported. This chapter focuses on recent advances and provides an overview of the molecular basis of halotolerance mechanisms in salt‑tolerant cyanobacteria as well as multiple regulatory pathways. We elaborate on the major protective mechanisms, molecular mechanisms associated with halotolerance, and the global transcriptional landscape to provide a gateway to uncover gene regulation principles. Both knowledge and omics approaches are utilized in this chapter to decipher the mechanistic insights into halotolerance. Collectively, this chapter would have a profound impact on providing a comprehensive understanding of halotolerance in salt‑tolerant cyanobacteria.
{"title":"Halotolerance mechanisms in salt‑tolerant cyanobacteria.","authors":"Hakuto Kageyama, Rungaroon Waditee-Sirisattha","doi":"10.1016/bs.aambs.2023.07.003","DOIUrl":"10.1016/bs.aambs.2023.07.003","url":null,"abstract":"<p><p>Cyanobacteria are ubiquitously distributed in nature and are the most abundant photoautotrophs on Earth. Their long evolutionary history reveals that cyanobacteria have a remarkable capacity and strong adaptive tendencies to thrive in a variety of conditions. Thus, they can survive successfully, especially in harsh environmental conditions such as salty environments, high radiation, or extreme temperatures. Among others, salt stress because of excessive salt accumulation in salty environments, is the most common abiotic stress in nature and hampers agricultural growth and productivity worldwide. These detrimental effects point to the importance of understanding the molecular mechanisms underlying the salt stress response. While it is generally accepted that the stress response mechanism is a complex network, fewer efforts have been made to represent it as a network. Substantial evidence revealed that salt-tolerant cyanobacteria have evolved genomic specific mechanisms and high adaptability in response to environmental changes. For example, extended gene families and/or clusters of genes encoding proteins involved in the adaptation to high salinity have been collectively reported. This chapter focuses on recent advances and provides an overview of the molecular basis of halotolerance mechanisms in salt‑tolerant cyanobacteria as well as multiple regulatory pathways. We elaborate on the major protective mechanisms, molecular mechanisms associated with halotolerance, and the global transcriptional landscape to provide a gateway to uncover gene regulation principles. Both knowledge and omics approaches are utilized in this chapter to decipher the mechanistic insights into halotolerance. Collectively, this chapter would have a profound impact on providing a comprehensive understanding of halotolerance in salt‑tolerant cyanobacteria.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10034060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extracellular polymeric substances (EPS) are extracellular metabolites of microorganisms, highly associated with microbial function, adaptation, and growth. The main compounds in EPS have been revealed to be proteins, polysaccharides, nucleic acids, humic substances, lipids, etc. EPS are not only biomass, but also a biogenic material. EPS have high specific surface, abundant functional groups, and excellent degradability. In addition, they are more extensible to the environment than the microbial cells themselves, which exhibits their huge advantages. Therefore, they have been applied in many fields, such as the environment, ecosystem, basic commodities, and medicine. However, the functions of EPS highly depend on the suitable extraction process, as different extraction methods have different effects on their composition, structure, and function. There are many types of EPS extraction methods, in which physical and chemical methods have been widely utilized. This review summarizes the extraction methods and applications of EPS. In addition, it considers some important gaps in current knowledge, and indicates perspectives of EPS for their future study.
{"title":"Extraction and application of extracellular polymeric substances from fungi.","authors":"Sijia Wu, Hongxun Huo, Yixiao Shi, Feiran Zhang, Tingting Gu, Zhen Li","doi":"10.1016/bs.aambs.2023.08.001","DOIUrl":"10.1016/bs.aambs.2023.08.001","url":null,"abstract":"<p><p>Extracellular polymeric substances (EPS) are extracellular metabolites of microorganisms, highly associated with microbial function, adaptation, and growth. The main compounds in EPS have been revealed to be proteins, polysaccharides, nucleic acids, humic substances, lipids, etc. EPS are not only biomass, but also a biogenic material. EPS have high specific surface, abundant functional groups, and excellent degradability. In addition, they are more extensible to the environment than the microbial cells themselves, which exhibits their huge advantages. Therefore, they have been applied in many fields, such as the environment, ecosystem, basic commodities, and medicine. However, the functions of EPS highly depend on the suitable extraction process, as different extraction methods have different effects on their composition, structure, and function. There are many types of EPS extraction methods, in which physical and chemical methods have been widely utilized. This review summarizes the extraction methods and applications of EPS. In addition, it considers some important gaps in current knowledge, and indicates perspectives of EPS for their future study.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/bs.aambs.2022.11.002
Wang Hai-De, Liu Shuai, Wang Bing-Bing, Liu Jie, Xu Jian-Zhong, Zhang Wei-Guo
As a semi-essential amino acid, l-arginine (l-Arg) plays an important role in food, health care, and medical treatment. At present, the main method of producing l-Arg is the use of microbial fermentation. Therefore, the selection and breeding of high-efficiency microbial strains is the top priority. To continuously improve the l-Arg production performance of the strains, a series of metabolic engineering strategies have been tried to transform the strains. The production of l-Arg by metabolically engineered Corynebacterium glutamicum (C. glutamicum) reached a relatively high level. Escherichia coli (E. coli), as a strain with great potential for l-Arg production, also has a large number of research strategies aimed at screening effective E. coli for producing l-Arg. E. coli also has a number of advantages over C. glutamicum in producing l-Arg. Therefore, it is of great significance to screen out excellent and stable E. coli to produce l-Arg. Here, based on recent research results, we review the metabolic pathways of l-Arg production in E. coli, the research progress of l-Arg production in E. coli, and various regulatory strategies implemented in E. coli.
{"title":"Metabolic engineering of Escherichia coli for efficient production of l-arginine.","authors":"Wang Hai-De, Liu Shuai, Wang Bing-Bing, Liu Jie, Xu Jian-Zhong, Zhang Wei-Guo","doi":"10.1016/bs.aambs.2022.11.002","DOIUrl":"https://doi.org/10.1016/bs.aambs.2022.11.002","url":null,"abstract":"<p><p>As a semi-essential amino acid, l-arginine (l-Arg) plays an important role in food, health care, and medical treatment. At present, the main method of producing l-Arg is the use of microbial fermentation. Therefore, the selection and breeding of high-efficiency microbial strains is the top priority. To continuously improve the l-Arg production performance of the strains, a series of metabolic engineering strategies have been tried to transform the strains. The production of l-Arg by metabolically engineered Corynebacterium glutamicum (C. glutamicum) reached a relatively high level. Escherichia coli (E. coli), as a strain with great potential for l-Arg production, also has a large number of research strategies aimed at screening effective E. coli for producing l-Arg. E. coli also has a number of advantages over C. glutamicum in producing l-Arg. Therefore, it is of great significance to screen out excellent and stable E. coli to produce l-Arg. Here, based on recent research results, we review the metabolic pathways of l-Arg production in E. coli, the research progress of l-Arg production in E. coli, and various regulatory strategies implemented in E. coli.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9815493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/bs.aambs.2023.01.001
Mona Golmohammadzadeh, Danielle L Sexton, Shweta Parmar, Elitza I Tocheva
For decades, bacteria were thought of as "bags" of enzymes, lacking organelles and significant subcellular structures. This stood in sharp contrast with eukaryotes, where intracellular compartmentalization and the role of large-scale order had been known for a long time. However, the emerging field of Bacterial Cell Biology has established that bacteria are in fact highly organized, with most macromolecular components having specific subcellular locations that can change depending on the cell's physiological state (Barry & Gitai, 2011; Lenz & Søgaard-Andersen, 2011; Thanbichler & Shapiro, 2008). For example, we now know that many processes in bacteria are orchestrated by cytoskeletal proteins, which polymerize into surprisingly diverse superstructures, such as rings, sheets, and tread-milling rods (Pilhofer & Jensen, 2013). These superstructures connect individual proteins, macromolecular assemblies, and even two neighboring cells, to affect essential higher-order processes including cell division, DNA segregation, and motility. Understanding these processes requires resolving the in vivo dynamics and ultrastructure at different functional stages of the cell, at macromolecular resolution and in 3-dimensions (3D). Fluorescence light microscopy (fLM) of tagged proteins is highly valuable for investigating protein localization and dynamics, and the resolution power of transmission electron microscopy (TEM) is required to elucidate the structure of macromolecular complexes in vivo and in vitro. This chapter summarizes the most recent advances in LM and TEM approaches that have revolutionized our knowledge and understanding of the microbial world.
{"title":"Advanced imaging techniques: microscopy.","authors":"Mona Golmohammadzadeh, Danielle L Sexton, Shweta Parmar, Elitza I Tocheva","doi":"10.1016/bs.aambs.2023.01.001","DOIUrl":"https://doi.org/10.1016/bs.aambs.2023.01.001","url":null,"abstract":"<p><p>For decades, bacteria were thought of as \"bags\" of enzymes, lacking organelles and significant subcellular structures. This stood in sharp contrast with eukaryotes, where intracellular compartmentalization and the role of large-scale order had been known for a long time. However, the emerging field of Bacterial Cell Biology has established that bacteria are in fact highly organized, with most macromolecular components having specific subcellular locations that can change depending on the cell's physiological state (Barry & Gitai, 2011; Lenz & Søgaard-Andersen, 2011; Thanbichler & Shapiro, 2008). For example, we now know that many processes in bacteria are orchestrated by cytoskeletal proteins, which polymerize into surprisingly diverse superstructures, such as rings, sheets, and tread-milling rods (Pilhofer & Jensen, 2013). These superstructures connect individual proteins, macromolecular assemblies, and even two neighboring cells, to affect essential higher-order processes including cell division, DNA segregation, and motility. Understanding these processes requires resolving the in vivo dynamics and ultrastructure at different functional stages of the cell, at macromolecular resolution and in 3-dimensions (3D). Fluorescence light microscopy (fLM) of tagged proteins is highly valuable for investigating protein localization and dynamics, and the resolution power of transmission electron microscopy (TEM) is required to elucidate the structure of macromolecular complexes in vivo and in vitro. This chapter summarizes the most recent advances in LM and TEM approaches that have revolutionized our knowledge and understanding of the microbial world.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9815497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}