Mohammad Muzahidur Rahman Bhuiyan, Inshad Rahman Noman, Md Munna Aziz, Md Mizanur Rahaman, Md Rashedul Islam, Mia Md Tofayel Gonee Manik, Kallol Das
Our study focused on plant breeding, from traditional methods to the present most advanced genetic and data-driven concepts. Conventional breeding techniques, such as mass selection and cross-breeding, have been instrumental in crop improvement, although they possess inherent limitations in precision and efficiency. Advanced molecular methods allow breeders to improve crops quicker by more accurately targeting specific traits. Data analytics and information technology (IT) are crucial in modern plant breeding, providing tools for data management, analysis, and interpretation of large volumes of data from genomic, phenotypic, and environmental sources. Meanwhile, emerging technologies in machine learning, high-throughput phenotyping, and the Internet of Things (IoT) provide real-time insights into the performance and responses of plants to environmental variables, enabling precision breeding. These tools will allow breeders to select complex traits related to yield, disease resistance, and abiotic stress tolerance more precisely and effectively. Moreover, this data-driven approach will enable breeders to use resources judiciously and make crops resilient, thus contributing to sustainable agriculture. Data analytics integrated into IT will enhance traditional breeding and other key applications in sustainable agriculture, such as crop yield improvement, biofortification, and climate change adaptation. This review aims to highlight the role of interdisciplinary collaboration among breeders, data scientists, and agronomists in absorbing these technologies. Further, this review discusses the future trends that will make plant breeding even more effective with this new wave of artificial intelligence (AI), blockchain, and collaborative platforms, bringing new data transparency, collaboration, and predictability levels. Data and IT-based breeding will greatly contribute to future global food security and sustainable food production. Thus, creating high-performing, resource-efficient crops will be the foundation of a future agricultural vision that balances environmental care. More technological integration in plant breeding is needed for resilient and sustainable food systems to handle the growing population and changing climate challenges.
{"title":"Transformation of Plant Breeding Using Data Analytics and Information Technology: Innovations, Applications, and Prospective Directions.","authors":"Mohammad Muzahidur Rahman Bhuiyan, Inshad Rahman Noman, Md Munna Aziz, Md Mizanur Rahaman, Md Rashedul Islam, Mia Md Tofayel Gonee Manik, Kallol Das","doi":"10.31083/FBE27936","DOIUrl":"10.31083/FBE27936","url":null,"abstract":"<p><p>Our study focused on plant breeding, from traditional methods to the present most advanced genetic and data-driven concepts. Conventional breeding techniques, such as mass selection and cross-breeding, have been instrumental in crop improvement, although they possess inherent limitations in precision and efficiency. Advanced molecular methods allow breeders to improve crops quicker by more accurately targeting specific traits. Data analytics and information technology (IT) are crucial in modern plant breeding, providing tools for data management, analysis, and interpretation of large volumes of data from genomic, phenotypic, and environmental sources. Meanwhile, emerging technologies in machine learning, high-throughput phenotyping, and the Internet of Things (IoT) provide real-time insights into the performance and responses of plants to environmental variables, enabling precision breeding. These tools will allow breeders to select complex traits related to yield, disease resistance, and abiotic stress tolerance more precisely and effectively. Moreover, this data-driven approach will enable breeders to use resources judiciously and make crops resilient, thus contributing to sustainable agriculture. Data analytics integrated into IT will enhance traditional breeding and other key applications in sustainable agriculture, such as crop yield improvement, biofortification, and climate change adaptation. This review aims to highlight the role of interdisciplinary collaboration among breeders, data scientists, and agronomists in absorbing these technologies. Further, this review discusses the future trends that will make plant breeding even more effective with this new wave of artificial intelligence (AI), blockchain, and collaborative platforms, bringing new data transparency, collaboration, and predictability levels. Data and IT-based breeding will greatly contribute to future global food security and sustainable food production. Thus, creating high-performing, resource-efficient crops will be the foundation of a future agricultural vision that balances environmental care. More technological integration in plant breeding is needed for resilient and sustainable food systems to handle the growing population and changing climate challenges.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"17 1","pages":"27936"},"PeriodicalIF":0.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena A Yildirim, Georgi Yu Laptev, Larisa A Ilina, Ekaterina S Ponomareva, Evgeni A Brazhnik, Tatyana S Smetannikova, Natalia I Novikova, Daria G Turina, Valentina A Filippova, Andrei V Dubrovin, Alisa S Dubrovina, Kseniya A Kalitkina, Irina A Klyuchnikova, Vasiliy A Zaikin, Darren K Griffin, Michael N Romanov
Background: The microbiome composition in dairy cows (Bos taurus) directly impacts on health and reproductive performance. This study aimed to determine the metagenomic composition and predicted microbial community functions in the endometrium and rectal chyme of cows fed a complex feed additive (CFA). The latter included the Bacillus mucilaginosus 159 strain, a short-chain fatty acid, plus essential oils.
Methods: Clinically healthy cows were divided into two groups (n = 15 in each): (I) a control group fed the standard diet, and (II) an experimental group. CFA was introduced into the diet of Group II during the entire transit period at a dose of 50 g per animal per day; moreover, all animals received Pen-Strep 400 antibiotics to prevent endometritis and other pathologies. The microbial community composition from the endometrium and rectal chyme biotopes was assessed using targeted next-generation sequencing.
Results: Significant changes were observed in the composition and predicted metabolic pathways due to the CFA administration, with the endometrial microbiota being more responsive to CFA than the intestinal chyme microbiome. Remarkably, the Actinobacteriota representatives disappeared in the endometrium of Group II animals compared to controls, whose content ranged from 0.34 to 3.3%. The use of CFA also resulted in a less pronounced effect in four predicted metabolic pathways for microbial degradation of catechol in the endometrium compared to controls (p < 0.05).
Conclusions: Our findings support the concept of a relationship between the gut microbiome and the reproductive system microflora of cows, as we observed changes in the composition and predicted metabolic pathways of the endometrial microbiota after orally administering CFA. This emphasizes the need for an integrated approach combining the correction of microecological disorders in the intestines and the reproductive system simultaneously.
背景:奶牛体内微生物组的组成直接影响奶牛的健康和繁殖性能。本研究旨在测定饲喂复合饲料添加剂(CFA)的奶牛子宫内膜和直肠食糜的宏基因组组成并预测微生物群落功能。后者包括粘杆菌159菌株,一种短链脂肪酸,加上精油。方法:将临床健康奶牛分为两组(每组15头):对照组饲喂标准日粮,试验组饲喂标准日粮。第二组在整个过渡期内以50 g / d的剂量在饲粮中添加CFA;此外,所有动物都接受了Pen-Strep 400抗生素治疗,以预防子宫内膜炎和其他病理。使用靶向下一代测序技术评估子宫内膜和直肠食糜生物群落的微生物群落组成。结果:由于给药CFA,在组成和预测代谢途径上观察到显著的变化,子宫内膜微生物群对CFA的反应比肠道食糜微生物群更敏感。值得注意的是,与对照组相比,第二组动物子宫内膜中的放线菌群代表消失了,其含量在0.34 ~ 3.3%之间。与对照组相比,CFA的使用还导致子宫内膜微生物降解儿茶酚的四种预测代谢途径的影响不太明显(p < 0.05)。结论:我们的研究结果支持了奶牛肠道微生物群与生殖系统微生物群之间关系的概念,因为我们观察到口服CFA后子宫内膜微生物群组成的变化和预测的代谢途径。这强调需要采取综合方法,同时纠正肠道和生殖系统的微生态失调。
{"title":"Metagenomic Composition and Predicted Metabolic Pathway Analyses of the Endometrial and Rectal Microbiota in Dairy Cows Following the Introduction of a Complex Feed Additive.","authors":"Elena A Yildirim, Georgi Yu Laptev, Larisa A Ilina, Ekaterina S Ponomareva, Evgeni A Brazhnik, Tatyana S Smetannikova, Natalia I Novikova, Daria G Turina, Valentina A Filippova, Andrei V Dubrovin, Alisa S Dubrovina, Kseniya A Kalitkina, Irina A Klyuchnikova, Vasiliy A Zaikin, Darren K Griffin, Michael N Romanov","doi":"10.31083/FBE25725","DOIUrl":"10.31083/FBE25725","url":null,"abstract":"<p><strong>Background: </strong>The microbiome composition in dairy cows (<i>Bos taurus</i>) directly impacts on health and reproductive performance. This study aimed to determine the metagenomic composition and predicted microbial community functions in the endometrium and rectal chyme of cows fed a complex feed additive (CFA). The latter included the <i>Bacillus mucilaginosus</i> 159 strain, a short-chain fatty acid, plus essential oils.</p><p><strong>Methods: </strong>Clinically healthy cows were divided into two groups (<i>n</i> = 15 in each): (I) a control group fed the standard diet, and (II) an experimental group. CFA was introduced into the diet of Group II during the entire transit period at a dose of 50 g per animal per day; moreover, all animals received Pen-Strep 400 antibiotics to prevent endometritis and other pathologies. The microbial community composition from the endometrium and rectal chyme biotopes was assessed using targeted next-generation sequencing.</p><p><strong>Results: </strong>Significant changes were observed in the composition and predicted metabolic pathways due to the CFA administration, with the endometrial microbiota being more responsive to CFA than the intestinal chyme microbiome. Remarkably, the Actinobacteriota representatives disappeared in the endometrium of Group II animals compared to controls, whose content ranged from 0.34 to 3.3%. The use of CFA also resulted in a less pronounced effect in four predicted metabolic pathways for microbial degradation of catechol in the endometrium compared to controls (<i>p</i> < 0.05).</p><p><strong>Conclusions: </strong>Our findings support the concept of a relationship between the gut microbiome and the reproductive system microflora of cows, as we observed changes in the composition and predicted metabolic pathways of the endometrial microbiota after orally administering CFA. This emphasizes the need for an integrated approach combining the correction of microecological disorders in the intestines and the reproductive system simultaneously.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"17 1","pages":"25725"},"PeriodicalIF":0.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143732953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice. The production of MPs promotes benefits, including reducing deforestation and CO2 emissions. Several microorganism types, such as bacteria, yeast, fungi, and algae, use a variety of substrates for MP production, from agricultural residues to lignocellulosic biomass. These complex substrates, including lignocellulosic biomass, are converted to fermentable sugar through either chemical, physical, or biological methods. Indeed, fermentation can occur through submerged cultures or other methods. However, this depends on the substrate and microorganisms being utilized. MPs have properties that make them versatile and useful ingredients in various applications. Using residues and lignocellulosic biomass as raw materials for producing MPs offers sustainability, cost-effectiveness, and waste reduction advantages. These properties are consistent with the principles established by green chemistry, which aims to conserve resources effectively and operate sustainably in all areas. This review highlights the importance of studying manufacturing aspects and the characteristics associated with MPs, which can be implemented to solve problems and encourage novel methods in the global food/feed industry.
{"title":"Biomass-Based Microbial Protein Production: A Review of Processing and Properties.","authors":"Tawakalt Ayodele, Abodunrin Tijani, Musiliu Liadi, Kudirat Alarape, Clairmont Clementson, Ademola Hammed","doi":"10.31083/j.fbe1604040","DOIUrl":"10.31083/j.fbe1604040","url":null,"abstract":"<p><p>A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice. The production of MPs promotes benefits, including reducing deforestation and CO<sub>2</sub> emissions. Several microorganism types, such as bacteria, yeast, fungi, and algae, use a variety of substrates for MP production, from agricultural residues to lignocellulosic biomass. These complex substrates, including lignocellulosic biomass, are converted to fermentable sugar through either chemical, physical, or biological methods. Indeed, fermentation can occur through submerged cultures or other methods. However, this depends on the substrate and microorganisms being utilized. MPs have properties that make them versatile and useful ingredients in various applications. Using residues and lignocellulosic biomass as raw materials for producing MPs offers sustainability, cost-effectiveness, and waste reduction advantages. These properties are consistent with the principles established by green chemistry, which aims to conserve resources effectively and operate sustainably in all areas. This review highlights the importance of studying manufacturing aspects and the characteristics associated with MPs, which can be implemented to solve problems and encourage novel methods in the global food/feed industry.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"16 4","pages":"40"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafael de Souza Rodrigues, Antonia Queiroz Lima de Souza, Anderson Nogueira Barbosa, Sarah Raquel Silveira da Silva Santiago, Aldenora Dos Santos Vasconcelos, Roneres Deniz Barbosa, Thalita Caroline Lima Alves, Jeferson Chagas da Cruz, Gilvan Ferreira da Silva, Jania Lilia da Silva Bentes, Afonso Duarte Leão de Souza
Background: Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of Inga edulis, a native South American plant and one that is economically useful in the whole of the Amazon.
Methods: Among the 64 actinobacteria strains isolated from the rhizosphere of three Inga edulis plants, 20 strains were selected and submitted to dual-culture assays against five important phytopathogenic fungi and morphological and 16S rRNA gene analyses. Two strains, LaBMicrA B270 and B280, were also studied for production curves of metabolic extracts and antifungal activities, including their minimum inhibitory concentration (MIC) against phytopathogenic fungi.
Results: Among the 20 strains, 90% were identified as Streptomyces and 10% as Kitasatospora. All the strains showed antagonisms against two or more of five phytopathogens: Corynespora cassiicola, Colletotrichum guaranicola, Colletotrichum sp., Pestalotiopsis sp., and Sclerotium coffeicola. Streptomyces spp. strains LaBMicrA B270 and B280 were active against phytopathogens of the guarana plant (Paullinia cupana). Furthermore, AcOEt/2-propanol 9:1 extract from the 10-day strain LaBMicrA B280 cultured medium presented activity against all the phytopathogens tested, with a minimum inhibitory concentration of 125 μg/mL.
Conclusions: The results revealed various actinomycetes in three rhizospheres of I. edulis in the Amazon and the high potential of metabolic extracts from some of these bacterial strains against phytopathogenic fungi that destroy numerous crops.
{"title":"Biodiversity and Antifungal Activities of Amazonian Actinomycetes Isolated from Rhizospheres of <i>Inga edulis</i> Plants.","authors":"Rafael de Souza Rodrigues, Antonia Queiroz Lima de Souza, Anderson Nogueira Barbosa, Sarah Raquel Silveira da Silva Santiago, Aldenora Dos Santos Vasconcelos, Roneres Deniz Barbosa, Thalita Caroline Lima Alves, Jeferson Chagas da Cruz, Gilvan Ferreira da Silva, Jania Lilia da Silva Bentes, Afonso Duarte Leão de Souza","doi":"10.31083/j.fbe1604039","DOIUrl":"https://doi.org/10.31083/j.fbe1604039","url":null,"abstract":"<p><strong>Background: </strong>Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of <i>Inga edulis</i>, a native South American plant and one that is economically useful in the whole of the Amazon.</p><p><strong>Methods: </strong>Among the 64 actinobacteria strains isolated from the rhizosphere of three <i>Inga edulis</i> plants, 20 strains were selected and submitted to dual-culture assays against five important phytopathogenic fungi and morphological and 16S rRNA gene analyses. Two strains, LaBMicrA B270 and B280, were also studied for production curves of metabolic extracts and antifungal activities, including their minimum inhibitory concentration (MIC) against phytopathogenic fungi.</p><p><strong>Results: </strong>Among the 20 strains, 90% were identified as <i>Streptomyces</i> and 10% as <i>Kitasatospora</i>. All the strains showed antagonisms against two or more of five phytopathogens: <i>Corynespora cassiicola</i>, <i>Colletotrichum guaranicola</i>, <i>Colletotrichum</i> sp., <i>Pestalotiopsis</i> sp., and <i>Sclerotium coffeicola</i>. <i>Streptomyces</i> spp. strains LaBMicrA B270 and B280 were active against phytopathogens of the guarana plant (<i>Paullinia cupana</i>). Furthermore, AcOEt/2-propanol 9:1 extract from the 10-day strain LaBMicrA B280 cultured medium presented activity against all the phytopathogens tested, with a minimum inhibitory concentration of 125 μg/mL.</p><p><strong>Conclusions: </strong>The results revealed various actinomycetes in three rhizospheres of <i>I. edulis</i> in the Amazon and the high potential of metabolic extracts from some of these bacterial strains against phytopathogenic fungi that destroy numerous crops.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"16 4","pages":"39"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Escherichia coli (E. coli) is the most prominent bacterial pathogen that causes urinary tract infections (UTIs), and the rate of resistance to most used antibiotics is alarmingly increasing.
Methods: This study assessed the hostel gutters of two Nigerian universities, the University of Nigeria, Nsukka (UNN) and Kogi State University, Anyigba (KSU), for E. coli and its antimicrobial resistance genes (ARGs). Oxoid Chromogenic UTI agar was used to isolate uropathogenic E. coli (UPEC), identified using standard biochemical tests. The virulence and resistance genes of the isolates were further characterized using molecular techniques.
Results: A total of 906 UPEC were isolated in this study, of which 63 isolates were selected for antimicrobial susceptibility tests. The UPEC isolates showed 100% resistance to amoxicillin/clavulanic acid, vancomycin, and penicillin G, while a complete sensitivity of the isolates to meropenem and ciprofloxacin was observed. The index of isolates showing multidrug resistance ranged from 0.33 to 0.73. The level of multiple drug resistance (MDR) exhibited by the UPEC isolates from effluent was significantly higher compared to those from influent (p < 0.05). The ARGs detected were blaOXA-1 8 (38.1%), blaCTX-M3 8 (38.1%), and ant(2)-la 20 (95.2%). Virulence genes encodings beta-glucuronidase (uidA) and hemolysin A (hlyA) were detected in 95.2% of UPEC isolates.
Conclusion: The current study showed that UPEC is widely distributed in the environment of two Nigerian universities. The index range of MDR and the circulation of ARGs and virulence genes in the environment suggest a potential health concern, thus warranting further investigation.
{"title":"Detection and Molecular Characterization of <i>Escherichia coli</i> from Wastewater Environments in Two University Campuses in Nigeria.","authors":"Olubunmi Marvelous Emurotu, Chukwudi Anyanwu, Cornelius Arome Omatola, Ruth Foluke Aminu, Joseph Oyiguh Abraham, Gilbert Karngong Nfor, Sunday Ocholi Samson, S'fiso Thuthukani Gumbi","doi":"10.31083/j.fbe1604038","DOIUrl":"https://doi.org/10.31083/j.fbe1604038","url":null,"abstract":"<p><strong>Background: </strong><i>Escherichia coli</i> (<i>E. coli</i>) is the most prominent bacterial pathogen that causes urinary tract infections (UTIs), and the rate of resistance to most used antibiotics is alarmingly increasing.</p><p><strong>Methods: </strong>This study assessed the hostel gutters of two Nigerian universities, the University of Nigeria, Nsukka (UNN) and Kogi State University, Anyigba (KSU), for <i>E. coli</i> and its antimicrobial resistance genes (<i>ARGs</i>). Oxoid Chromogenic UTI agar was used to isolate uropathogenic <i>E. coli</i> (UPEC), identified using standard biochemical tests. The virulence and resistance genes of the isolates were further characterized using molecular techniques.</p><p><strong>Results: </strong>A total of 906 UPEC were isolated in this study, of which 63 isolates were selected for antimicrobial susceptibility tests. The UPEC isolates showed 100% resistance to amoxicillin/clavulanic acid, vancomycin, and penicillin G, while a complete sensitivity of the isolates to meropenem and ciprofloxacin was observed. The index of isolates showing multidrug resistance ranged from 0.33 to 0.73. The level of multiple drug resistance (MDR) exhibited by the UPEC isolates from effluent was significantly higher compared to those from influent (<i>p</i> < 0.05). The ARGs detected were <i>blaOXA-1</i> 8 (38.1%), <i>blaCTX-M3</i> 8 (38.1%), and <i>ant(2)-la</i> 20 (95.2%). Virulence genes encodings beta-glucuronidase (<i>uidA</i>) and hemolysin A (<i>hlyA</i>) were detected in 95.2% of UPEC isolates.</p><p><strong>Conclusion: </strong>The current study showed that UPEC is widely distributed in the environment of two Nigerian universities. The index range of MDR and the circulation of ARGs and virulence genes in the environment suggest a potential health concern, thus warranting further investigation.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"16 4","pages":"38"},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Eduarda Castro do Nascimento, Letícia Coelho Montagna, Laíza Manfroi, Yan de Oliveira Laaf, Luigi Ferrazza Maiochi, Marcus Adonai Castro da Silva, André Oliveira de Souza Lima
<p><strong>Background: </strong>Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials. Additionally, assessing the phosphorus removal performance of the PAO strain in common effluents is essential for its potential application in large-scale systems.</p><p><strong>Methods: </strong>A strain designated LAMA1607 was isolated from activated sludge and selected based on its ability to remove total phosphate from the culture medium. Genomic DNA was extracted and sequenced using the Illumina NovaSeq 6000 platform. Assembly and annotation were performed using CLC Genomics Workbench v.24.0 (QIAGEN®) and Rapid Annotation using Subsystem Technology (RAST)/Pathosystems Resource Integration Center (PATRIC) server tools. Functional prediction of uncharacterized proteins was completed using PHYRE2, and secondary metabolite identification was performed using antiSMASH. Further, additional enzymes with biotechnological applications were manually curated through the Association of Manufacturers and Formulators of Enzyme Products (AMFEP) list. The phosphorus removal capability was assessed in domestic and fishery effluents under enriched and unenriched conditions, where pH, microbial growth, and total phosphorus were monitored over 48 hours.</p><p><strong>Results: </strong>The genome sequence comprised 5,234,874 bp divided into 20 contigs, 5540 coding sequences, and a GC content of 38.0%; subsequently, LAMA1607 was identified through Basic Local Alignment Search Tool (BLAST) analysis as <i>Priestia megaterium</i>. Genome annotation revealed 27 genes potentially involved in phosphorus removal, including eight encoding transport proteins, three regulatory proteins, twelve enzymes, and others related to phosphorus incorporation and polyphosphate (polyP) granule formation. Moreover, other enzymes of interest were identified, such as hydrolases, lipases, proteases, and amylases, alongside secondary metabolite gene clusters, such as Non-ribosomal peptide synthetase-independent siderophore. <i>P. megaterium</i> LAMA1607 effectively removed up to 70% of the total phosphorus from the fishery effluent.</p><p><strong>Conclusions: </strong>Genomic analysis suggests that <i>P. megaterium</i> LAMA1607 possesses the mechanistic functions for phosphorus uptake, transport, and storage while also identifying additional biotechnologically relevant enzymes and capabilities. Meanwhile, tests on the effluent demonstrated significant phosphorus removal. These findings support the biotechnological potential and application of <i>P. megaterium</i> LAMA
{"title":"Newly Isolated <i>Priestia megaterium</i> LAMA1607 for Enhanced Biological Phosphorus Removal: A Genomic and Functional Characterization.","authors":"Maria Eduarda Castro do Nascimento, Letícia Coelho Montagna, Laíza Manfroi, Yan de Oliveira Laaf, Luigi Ferrazza Maiochi, Marcus Adonai Castro da Silva, André Oliveira de Souza Lima","doi":"10.31083/j.fbe1604037","DOIUrl":"https://doi.org/10.31083/j.fbe1604037","url":null,"abstract":"<p><strong>Background: </strong>Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials. Additionally, assessing the phosphorus removal performance of the PAO strain in common effluents is essential for its potential application in large-scale systems.</p><p><strong>Methods: </strong>A strain designated LAMA1607 was isolated from activated sludge and selected based on its ability to remove total phosphate from the culture medium. Genomic DNA was extracted and sequenced using the Illumina NovaSeq 6000 platform. Assembly and annotation were performed using CLC Genomics Workbench v.24.0 (QIAGEN®) and Rapid Annotation using Subsystem Technology (RAST)/Pathosystems Resource Integration Center (PATRIC) server tools. Functional prediction of uncharacterized proteins was completed using PHYRE2, and secondary metabolite identification was performed using antiSMASH. Further, additional enzymes with biotechnological applications were manually curated through the Association of Manufacturers and Formulators of Enzyme Products (AMFEP) list. The phosphorus removal capability was assessed in domestic and fishery effluents under enriched and unenriched conditions, where pH, microbial growth, and total phosphorus were monitored over 48 hours.</p><p><strong>Results: </strong>The genome sequence comprised 5,234,874 bp divided into 20 contigs, 5540 coding sequences, and a GC content of 38.0%; subsequently, LAMA1607 was identified through Basic Local Alignment Search Tool (BLAST) analysis as <i>Priestia megaterium</i>. Genome annotation revealed 27 genes potentially involved in phosphorus removal, including eight encoding transport proteins, three regulatory proteins, twelve enzymes, and others related to phosphorus incorporation and polyphosphate (polyP) granule formation. Moreover, other enzymes of interest were identified, such as hydrolases, lipases, proteases, and amylases, alongside secondary metabolite gene clusters, such as Non-ribosomal peptide synthetase-independent siderophore. <i>P. megaterium</i> LAMA1607 effectively removed up to 70% of the total phosphorus from the fishery effluent.</p><p><strong>Conclusions: </strong>Genomic analysis suggests that <i>P. megaterium</i> LAMA1607 possesses the mechanistic functions for phosphorus uptake, transport, and storage while also identifying additional biotechnologically relevant enzymes and capabilities. Meanwhile, tests on the effluent demonstrated significant phosphorus removal. These findings support the biotechnological potential and application of <i>P. megaterium</i> LAMA","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"16 4","pages":"37"},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important. Rapid and accurate detection of bacterial pathogens is paramount in healthcare, food safety, and environmental monitoring. Here, we analyze biofilm composition and describe the main groups of pathogens whose presence in a microbial community leads to infection (Staphylococcus aureus, Enterococcus spp., Cutibacterium spp., bacteria of the HACEK, etc.). Particular attention is paid to bacterial communities that can lead to the development of device-associated infections, damage, and disruption of the normal functioning of medical devices, such as cardiovascular implants, biliary stents, neurological, orthopedic, urological and penile implants, etc. Special consideration is given to tissue-located bacterial biofilms in the oral cavity, lungs and lower respiratory tract, upper respiratory tract, middle ear, cardiovascular system, skeletal system, wound surface, and urogenital system. We also describe methods used to analyze the bacterial composition in biofilms, such as microbiologically testing, staining, microcolony formation, cellular and extracellular biofilm components, and other methods. Finally, we present ways to reduce the incidence of biofilm-caused infections.
{"title":"Bacterial Communities and Their Role in Bacterial Infections.","authors":"Olga I Guliy, Stella S Evstigneeva","doi":"10.31083/j.fbe1604036","DOIUrl":"10.31083/j.fbe1604036","url":null,"abstract":"<p><p>Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important. Rapid and accurate detection of bacterial pathogens is paramount in healthcare, food safety, and environmental monitoring. Here, we analyze biofilm composition and describe the main groups of pathogens whose presence in a microbial community leads to infection (<i>Staphylococcus aureus</i>, <i>Enterococcus spp</i>., <i>Cutibacterium spp</i>., bacteria of the HACEK, etc.). Particular attention is paid to bacterial communities that can lead to the development of device-associated infections, damage, and disruption of the normal functioning of medical devices, such as cardiovascular implants, biliary stents, neurological, orthopedic, urological and penile implants, etc. Special consideration is given to tissue-located bacterial biofilms in the oral cavity, lungs and lower respiratory tract, upper respiratory tract, middle ear, cardiovascular system, skeletal system, wound surface, and urogenital system. We also describe methods used to analyze the bacterial composition in biofilms, such as microbiologically testing, staining, microcolony formation, cellular and extracellular biofilm components, and other methods. Finally, we present ways to reduce the incidence of biofilm-caused infections.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"16 4","pages":"36"},"PeriodicalIF":0.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Safa Hussein Baqer, Zena Kadhim Al-Younis, Sarmad Ghazi Al-Shawi
Background: Flavonoids are among the most important compounds found in plants, since laboratory studies have shown them to be a daily requirement in human diets due to their various health benefits. Therefore, this study focused on extracting, purifying, and measuring the antioxidant activity of the flavonoid quercetin, which is widely found in plants and possesses a variety of biological activities, from different plant sources.
Methods: The extraction of quercetin was performed using several methods (chemical, physical, and enzymatic) and several extraction solutions (water, ethanol, and chloroform) from several plants (spinach, dill, Onion Skin, Pistacia eurycarpa, sumac, digalkhasab chemri, and leelwi chemri). The alcoholic extract extracted by chemical method was purified and the content of total flavonoids based on quercetin in all plant extracts was determined using adsorption chromatography on a silica gel column (100-200 mesh), followed by thin layer chromatography (TLC). TLC and high performance liquid chromatography (HPLC) were used to assess the purity of quercetin. The ability of quercetin to capture free radicals using 2,2-diphenyl-1-picrylhydrazyl (DPPH) was compared to that of butylated hydroxytoluene (BHT). Statistical analyses were performed using completely randomized designs (CRD) for factorial experiments, and the least significant difference (LSD) test was used to calculate the significant differences between the averages of the coefficients at the 0.05 probability level.
Results: The alcoholic Pistacia extract extracted by chemical method yielded the highest concentration of quercetin (84.037 mg/g). Furthermore, it was found that quercetin purified from Pistacia possessed strong antioxidant activity, and its antioxidant activity increased with increased concentration.
Conclusions: Pistacia eurycarpa showed the highest quercetin content among the assessed plants. Moreover, solvents played a major role in extracting plant components due to the high polarity of flavonoids. Quercetin purified using a silica gel column demonstrated antioxidant activity.
{"title":"Extracting Quercetin from Different Plant Sources, Purifying It Using Different Extraction Methods (Chemical, Physical, and Enzymatic), and Measuring Its Antioxidant Activity.","authors":"Safa Hussein Baqer, Zena Kadhim Al-Younis, Sarmad Ghazi Al-Shawi","doi":"10.31083/j.fbe1604035","DOIUrl":"https://doi.org/10.31083/j.fbe1604035","url":null,"abstract":"<p><strong>Background: </strong>Flavonoids are among the most important compounds found in plants, since laboratory studies have shown them to be a daily requirement in human diets due to their various health benefits. Therefore, this study focused on extracting, purifying, and measuring the antioxidant activity of the flavonoid quercetin, which is widely found in plants and possesses a variety of biological activities, from different plant sources.</p><p><strong>Methods: </strong>The extraction of quercetin was performed using several methods (chemical, physical, and enzymatic) and several extraction solutions (water, ethanol, and chloroform) from several plants (spinach, dill, Onion Skin, <i>Pistacia eurycarpa</i>, sumac, digalkhasab chemri, and leelwi chemri). The alcoholic extract extracted by chemical method was purified and the content of total flavonoids based on quercetin in all plant extracts was determined using adsorption chromatography on a silica gel column (100-200 mesh), followed by thin layer chromatography (TLC). TLC and high performance liquid chromatography (HPLC) were used to assess the purity of quercetin. The ability of quercetin to capture free radicals using 2,2-diphenyl-1-picrylhydrazyl (DPPH) was compared to that of butylated hydroxytoluene (BHT). Statistical analyses were performed using completely randomized designs (CRD) for factorial experiments, and the least significant difference (LSD) test was used to calculate the significant differences between the averages of the coefficients at the 0.05 probability level.</p><p><strong>Results: </strong>The alcoholic <i>Pistacia</i> extract extracted by chemical method yielded the highest concentration of quercetin (84.037 mg/g). Furthermore, it was found that quercetin purified from <i>Pistacia</i> possessed strong antioxidant activity, and its antioxidant activity increased with increased concentration.</p><p><strong>Conclusions: </strong><i>Pistacia eurycarpa</i> showed the highest quercetin content among the assessed plants. Moreover, solvents played a major role in extracting plant components due to the high polarity of flavonoids. Quercetin purified using a silica gel column demonstrated antioxidant activity.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"16 4","pages":"35"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Galina Borisova, Maria Maleva, Tripti, Olga Voropaeva, Nadezhda Chukina, Anastasia Tugbaeva, Adarsh Kumar
Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed (Brassica napus L.) at copper action.
Methods: The prepared BF was based on novel metal tolerant strain of PGPR Buttiauxella sp. EA20 isolated from the rhizosphere of orchid Epipactis atrorubens and birch wood biochar (BC). The pot-scale experiments included six treatments: peat-containing control substrate (CS); CS + 200Cu (200 mg Cu/kg of soil); CS + 5% BC (v/v); CS + 5% BC + 200Cu; CS + 5% BF (v/v); CS + 5% BF + 200Cu.
Results: Single Cu treatment caused the decrease in rapeseed leaf area, shoot and root length, fresh and dry biomass, as well as an increase in water saturation deficit, possibly due to damage of cell membranes by lipid peroxidation. Addition of BF or BC alone mitigated these harmful effects of copper. Application of BF, regardless of Cu addition, increased the rapeseed leaf area (1.6 times on average), plant fresh and dry biomass (2.5 times on average), and photosynthetic pigment content (1.8 times on average). In addition, BF treatment along with Cu enhanced the antioxidant activity of B. napus due to the accumulation of non-enzymatic antioxidants such as carotenoids, free proline and soluble phenolic compounds, including flavonoids. Moreover, plant enrichment with copper and essential macronutrients such as nitrogen, phosphorus and potassium was observed.
Conclusions: The study concludes that application of complex biofertilizer based on metal tolerant PGPR strain Buttiauxella sp. EA20 and birch wood biochar mitigated the harmful effects of copper, enhanced the rapeseed growth and increased its biological value. Future perspective includes evaluation of the potential for using the resulting biofertilizer to improve the growth and biofortification of other crop species.
{"title":"Amalgamation of Metal Tolerant PGPR <i>Buttiauxella</i> sp. EA20 with Birch Wood Biochar Enhanced Growth and Biofortification of Rapeseed under Copper Action.","authors":"Galina Borisova, Maria Maleva, Tripti, Olga Voropaeva, Nadezhda Chukina, Anastasia Tugbaeva, Adarsh Kumar","doi":"10.31083/j.fbe1604034","DOIUrl":"https://doi.org/10.31083/j.fbe1604034","url":null,"abstract":"<p><strong>Background: </strong>Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed (<i>Brassica napus</i> L.) at copper action.</p><p><strong>Methods: </strong>The prepared BF was based on novel metal tolerant strain of PGPR <i>Buttiauxella</i> sp. EA20 isolated from the rhizosphere of orchid <i>Epipactis atrorubens</i> and birch wood biochar (BC). The pot-scale experiments included six treatments: peat-containing control substrate (CS); CS + 200Cu (200 mg Cu/kg of soil); CS + 5% BC (<i>v/v</i>); CS + 5% BC + 200Cu; CS + 5% BF (<i>v/v</i>); CS + 5% BF + 200Cu.</p><p><strong>Results: </strong>Single Cu treatment caused the decrease in rapeseed leaf area, shoot and root length, fresh and dry biomass, as well as an increase in water saturation deficit, possibly due to damage of cell membranes by lipid peroxidation. Addition of BF or BC alone mitigated these harmful effects of copper. Application of BF, regardless of Cu addition, increased the rapeseed leaf area (1.6 times on average), plant fresh and dry biomass (2.5 times on average), and photosynthetic pigment content (1.8 times on average). In addition, BF treatment along with Cu enhanced the antioxidant activity of <i>B. napus</i> due to the accumulation of non-enzymatic antioxidants such as carotenoids, free proline and soluble phenolic compounds, including flavonoids. Moreover, plant enrichment with copper and essential macronutrients such as nitrogen, phosphorus and potassium was observed.</p><p><strong>Conclusions: </strong>The study concludes that application of complex biofertilizer based on metal tolerant PGPR strain <i>Buttiauxella</i> sp. EA20 and birch wood biochar mitigated the harmful effects of copper, enhanced the rapeseed growth and increased its biological value. Future perspective includes evaluation of the potential for using the resulting biofertilizer to improve the growth and biofortification of other crop species.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"16 4","pages":"34"},"PeriodicalIF":0.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Catarina de F Caldas, Renata R Silva, Hugo M Meira, Goretti Sonia Silva, Leonie A Sarubbo, Juliana M Luna
Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.
Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.5% residual frying oil by Candida tropicalis (URM 1150) for 144 hours with 200 rpm agitation. The growth curve and production of the biosurfactant were evaluated. The emulsifying properties and stability of the biosurfactant were tested against pH, temperature, and NaCl variations. Toxicity assays were carried out on seeds, the microcrustacean Artemia salina, and the bivalve Anomalocardia brasiliana. Static and kinetic assays were performed, alongside stone washing to assess the removal capacity.
Results: The produced biosurfactant had a surface tension reduction capacity of 70 to 25 mN/m, yielding 7.1 g/L, and a critical micellar concentration (CMC) of 0.4%. During the initial 4-hour cultivation period, the growth curve showed an exponential phase, marked by a constant increase in production. In the final growth stage, biosurfactant production reached its maximum value of 7.1 g/L. After 120 h of cultivation, the maximum biomass output of 9.93 g/L was reached. The biosurfactant was applied in static and kinetic tests with seawater and sand contaminated with oil. The biosurfactant remained stable in the face of the tested variations. The biosurfactant is anionic in nature and showed no toxicity to the microcrustacean Artemia salina, vegetable seeds, or the bivalve Anomalocardia brasiliana, which exhibited 100% survival rates. The biomolecule removed 97% of the contaminated oil on the stone. The biosurfactant proved efficient and biocompatible for the bioremediation of oil derivatives, showing significant removal rates of hydrophobic compounds.
Conclusion: These results indicate that the biosurfactant has great potential for application as a remediation agent to clean up oil spills in coastal environments.
{"title":"Biosurfactant Production using <i>Candida tropicalis</i> URM 1150 and its Application in the Bioremediation of Coast Environments Impacted by Oil Spills.","authors":"Maria Catarina de F Caldas, Renata R Silva, Hugo M Meira, Goretti Sonia Silva, Leonie A Sarubbo, Juliana M Luna","doi":"10.31083/j.fbe1604033","DOIUrl":"https://doi.org/10.31083/j.fbe1604033","url":null,"abstract":"<p><strong>Background: </strong>This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.</p><p><strong>Methods: </strong>The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.5% residual frying oil by <i>Candida tropicalis</i> (URM 1150) for 144 hours with 200 rpm agitation. The growth curve and production of the biosurfactant were evaluated. The emulsifying properties and stability of the biosurfactant were tested against pH, temperature, and NaCl variations. Toxicity assays were carried out on seeds, the microcrustacean <i>Artemia salina,</i> and the bivalve <i>Anomalocardia brasiliana</i>. Static and kinetic assays were performed, alongside stone washing to assess the removal capacity.</p><p><strong>Results: </strong>The produced biosurfactant had a surface tension reduction capacity of 70 to 25 mN/m, yielding 7.1 g/L, and a critical micellar concentration (CMC) of 0.4%. During the initial 4-hour cultivation period, the growth curve showed an exponential phase, marked by a constant increase in production. In the final growth stage, biosurfactant production reached its maximum value of 7.1 g/L. After 120 h of cultivation, the maximum biomass output of 9.93 g/L was reached. The biosurfactant was applied in static and kinetic tests with seawater and sand contaminated with oil. The biosurfactant remained stable in the face of the tested variations. The biosurfactant is anionic in nature and showed no toxicity to the microcrustacean <i>Artemia salina</i>, vegetable seeds, or the bivalve <i>Anomalocardia brasiliana</i>, which exhibited 100% survival rates. The biomolecule removed 97% of the contaminated oil on the stone. The biosurfactant proved efficient and biocompatible for the bioremediation of oil derivatives, showing significant removal rates of hydrophobic compounds.</p><p><strong>Conclusion: </strong>These results indicate that the biosurfactant has great potential for application as a remediation agent to clean up oil spills in coastal environments.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"16 4","pages":"33"},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}