首页 > 最新文献

Frontiers in neuroimaging最新文献

英文 中文
Multimodal functional imaging and clinical correlates of pain regions in chronic low-back pain patients treated with spinal cord stimulation: a pilot study. 脊髓刺激治疗慢性腰背痛患者疼痛区域的多模态功能成像和临床相关性:一项试点研究。
Pub Date : 2024-09-27 eCollection Date: 2024-01-01 DOI: 10.3389/fnimg.2024.1474060
Yazan Shamli Oghli, Arjun Ashok, Steven Glener, Isaiah Ailes, Mashaal Syed, Ki Chang Kang, Sara Naghizadehkashani, Islam Fayed, Feroze B Mohamed, Kiran Talekar, Laura Krisa, Chengyuan Wu, Caio Matias, Mahdi Alizadeh

Objective: Spinal cord stimulation (SCS) is an invasive treatment option for patients suffering from chronic low-back pain (cLBP). It is an effective treatment that has been shown to reduce pain and increase the quality of life in patients. However, the activation of pain processing regions of cLBP patients receiving SCS has not been assessed using objective, quantitative functional imaging techniques. The purpose of the present study was to compare quantitative resting-state (rs)-fMRI and arterial spin labeling (ASL) measures between SCS patients and healthy controls and to correlate clinical measures with quantitative multimodal imaging indices in pain regions.

Methods: Multi-delay 3D GRASE pseudo-continuous ASL and rs-fMRI data were acquired from five patients post-SCS with cLBP and five healthy controls. Three ASL measures and four rs-fMRI measures were derived and normalized into MNI space and smoothed. Averaged values for each measure from a pain atlas were extracted and compared between patients and controls. Clinical pain scores assessing intensity, sensitization, and catastrophizing, as well as others assessing global pain effects (sleep quality, disability, anxiety, and depression), were obtained in patients and correlated with pain regions using linear regression analysis.

Results: Arterial transit time derived from ASL and several rs-fMRI measures were significantly different in patients in regions involved with sensation (primary somatosensory cortex and ventral posterolateral thalamus [VPL]), pain input (posterior short gyrus of the insula [PS]), cognition (dorsolateral prefrontal cortex [DLPC] and posterior cingulate cortex [PCC]), and fear/stress response (hippocampus and hypothalamus). Unidimensional pain rating and sensitization scores were linearly associated with PS, VPL, DLPC, PCC, and/or amygdala activity in cLBP patients.

Conclusion: The present results provide evidence that ASL and rs-fMRI can contrast functional activation in pain regions of cLBP patients receiving SCS and healthy subjects, and they can be associated with clinical pain evaluations as quantitative assessment tools.

目的:脊髓刺激(SCS)是慢性腰背痛(cLBP)患者的一种侵入性治疗方法。它是一种有效的治疗方法,已被证明能减轻患者的疼痛并提高其生活质量。然而,目前尚未使用客观、定量的功能成像技术评估接受 SCS 治疗的慢性腰背痛患者疼痛处理区域的激活情况。本研究旨在比较 SCS 患者和健康对照组的定量静息态(rs)-fMRI 和动脉自旋标记(ASL)测量结果,并将临床测量结果与疼痛区域的定量多模态成像指数相关联:方法: 采集了五名SCS后cLBP患者和五名健康对照者的多延迟三维GRASE伪连续ASL和rs-fMRI数据。得出了三种 ASL 测量值和四种 rs-fMRI 测量值,并将其归一化到 MNI 空间并进行平滑处理。从疼痛图谱中提取每个测量值的平均值,并在患者和对照组之间进行比较。通过线性回归分析,获得了患者的临床疼痛评分(评估强度、敏感性和灾难性)以及其他评估整体疼痛影响的评分(睡眠质量、残疾、焦虑和抑郁),并将其与疼痛区域相关联:结果:ASL得出的动脉通过时间和几项rs-fMRI测量结果在患者的感觉(初级躯体感觉皮层和丘脑腹后外侧[VPL])、疼痛输入(岛叶后短回[PS])、认知(背外侧前额叶皮层[DLPC]和后扣带回皮层[PCC])和恐惧/压力反应(海马体和下丘脑)相关区域存在显著差异。cLBP 患者的单维疼痛评分和敏感化评分与 PS、VPL、DLPC、PCC 和/或杏仁核活动呈线性相关:本研究结果提供了证据,证明 ASL 和 rs-fMRI 可对比接受 SCS 的 cLBP 患者和健康受试者疼痛区域的功能激活,并可作为定量评估工具与临床疼痛评估相关联。
{"title":"Multimodal functional imaging and clinical correlates of pain regions in chronic low-back pain patients treated with spinal cord stimulation: a pilot study.","authors":"Yazan Shamli Oghli, Arjun Ashok, Steven Glener, Isaiah Ailes, Mashaal Syed, Ki Chang Kang, Sara Naghizadehkashani, Islam Fayed, Feroze B Mohamed, Kiran Talekar, Laura Krisa, Chengyuan Wu, Caio Matias, Mahdi Alizadeh","doi":"10.3389/fnimg.2024.1474060","DOIUrl":"https://doi.org/10.3389/fnimg.2024.1474060","url":null,"abstract":"<p><strong>Objective: </strong>Spinal cord stimulation (SCS) is an invasive treatment option for patients suffering from chronic low-back pain (cLBP). It is an effective treatment that has been shown to reduce pain and increase the quality of life in patients. However, the activation of pain processing regions of cLBP patients receiving SCS has not been assessed using objective, quantitative functional imaging techniques. The purpose of the present study was to compare quantitative resting-state (rs)-fMRI and arterial spin labeling (ASL) measures between SCS patients and healthy controls and to correlate clinical measures with quantitative multimodal imaging indices in pain regions.</p><p><strong>Methods: </strong>Multi-delay 3D GRASE pseudo-continuous ASL and rs-fMRI data were acquired from five patients post-SCS with cLBP and five healthy controls. Three ASL measures and four rs-fMRI measures were derived and normalized into MNI space and smoothed. Averaged values for each measure from a pain atlas were extracted and compared between patients and controls. Clinical pain scores assessing intensity, sensitization, and catastrophizing, as well as others assessing global pain effects (sleep quality, disability, anxiety, and depression), were obtained in patients and correlated with pain regions using linear regression analysis.</p><p><strong>Results: </strong>Arterial transit time derived from ASL and several rs-fMRI measures were significantly different in patients in regions involved with sensation (primary somatosensory cortex and ventral posterolateral thalamus [VPL]), pain input (posterior short gyrus of the insula [PS]), cognition (dorsolateral prefrontal cortex [DLPC] and posterior cingulate cortex [PCC]), and fear/stress response (hippocampus and hypothalamus). Unidimensional pain rating and sensitization scores were linearly associated with PS, VPL, DLPC, PCC, and/or amygdala activity in cLBP patients.</p><p><strong>Conclusion: </strong>The present results provide evidence that ASL and rs-fMRI can contrast functional activation in pain regions of cLBP patients receiving SCS and healthy subjects, and they can be associated with clinical pain evaluations as quantitative assessment tools.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1474060"},"PeriodicalIF":0.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative reliability assessment of brain MRI volumetric measurements in type II GM1 gangliosidosis patients. 对II型GM1神经节苷脂病患者脑部核磁共振成像容积测量的定量可靠性评估
Pub Date : 2024-09-13 eCollection Date: 2024-01-01 DOI: 10.3389/fnimg.2024.1410848
Christopher Zoppo, Josephine Kolstad, Jean Johnston, Precilla D'Souza, Anna Luisa Kühn, Zeynep Vardar, Ahmet Peker, Clifford Lindsay, Zubir S Rentiya, Robert King, Heather Gray-Edwards, Behroze Vachha, Maria T Acosta, Cynthia J Tifft, Mohammed Salman Shazeeb

Purpose: GM1-gangliosidosis (GM1) leads to extensive neurodegenerative changes and atrophy that precludes the use of automated MRI segmentation techniques for generating brain volumetrics. We developed a standardized segmentation protocol for brain MRIs of patients with type II GM1 and then assessed the inter- and intra-rater reliability of this methodology. The volumetric data may be used as a biomarker of disease burden and progression, and standardized methodology may support research into the natural history of the disease which is currently lacking in the literature.

Approach: Twenty-five brain MRIs were included in this study from 22 type II GM1 patients of which 8 were late-infantile subtype and 14 were juvenile subtype. The following structures were segmented by two rating teams on a slice-by-slice basis: whole brain, ventricles, cerebellum, lentiform nucleus, thalamus, corpus callosum, and caudate nucleus. The inter- and intra-rater reliability of the segmentation method was assessed with an intraclass correlation coefficient as well as Sorensen-Dice and Jaccard coefficients.

Results: Based on the Sorensen-Dice and Jaccard coefficients, the inter- and intra-rater reliability of the segmentation method was significantly better for the juvenile patients compared to late-infantile (p < 0.01). In addition, the agreement between the two rater teams and within themselves can be considered good with all p-values < 0.05.

Conclusions: The standardized segmentation approach described here has good inter- and intra-rater reliability and may provide greater accuracy and reproducibility for neuromorphological studies in this group of patients and help to further expand our understanding of the natural history of this disease.

目的:GM1-神经节苷脂病(GM1)会导致广泛的神经退行性病变和萎缩,因此无法使用自动磁共振成像分割技术生成脑体积测量结果。我们为 II 型 GM1 患者的脑部 MRI 制定了标准化分割方案,然后评估了该方法在评分者之间和评分者内部的可靠性。容积数据可用作疾病负担和进展的生物标志物,标准化方法可支持对该疾病自然史的研究,而目前缺乏这方面的文献:本研究纳入了 22 位 II 型 GM1 患者的 25 张脑核磁共振图像,其中 8 位为晚期婴幼儿亚型,14 位为青少年亚型。由两个评分小组对以下结构进行逐片分割:全脑、脑室、小脑、扁桃体核、丘脑、胼胝体和尾状核。使用类内相关系数以及索伦森-狄斯系数和雅卡德系数评估了分割方法在评分者之间和评分者内部的可靠性:根据 Sorensen-Dice 和 Jaccard 系数,与晚发型患者相比,青少年患者的分割方法在评分者之间和评分者内部的可靠性明显更高(P < 0.01)。此外,两组评分者之间以及评分者内部的一致性也很好,所有 p 值均小于 0.05:本文描述的标准化分割方法在评分者之间和评分者内部都具有良好的可靠性,可为该类患者的神经形态学研究提供更高的准确性和可重复性,并有助于进一步扩展我们对该疾病自然史的了解。
{"title":"Quantitative reliability assessment of brain MRI volumetric measurements in type II GM1 gangliosidosis patients.","authors":"Christopher Zoppo, Josephine Kolstad, Jean Johnston, Precilla D'Souza, Anna Luisa Kühn, Zeynep Vardar, Ahmet Peker, Clifford Lindsay, Zubir S Rentiya, Robert King, Heather Gray-Edwards, Behroze Vachha, Maria T Acosta, Cynthia J Tifft, Mohammed Salman Shazeeb","doi":"10.3389/fnimg.2024.1410848","DOIUrl":"10.3389/fnimg.2024.1410848","url":null,"abstract":"<p><strong>Purpose: </strong>GM1-gangliosidosis (GM1) leads to extensive neurodegenerative changes and atrophy that precludes the use of automated MRI segmentation techniques for generating brain volumetrics. We developed a standardized segmentation protocol for brain MRIs of patients with type II GM1 and then assessed the inter- and intra-rater reliability of this methodology. The volumetric data may be used as a biomarker of disease burden and progression, and standardized methodology may support research into the natural history of the disease which is currently lacking in the literature.</p><p><strong>Approach: </strong>Twenty-five brain MRIs were included in this study from 22 type II GM1 patients of which 8 were late-infantile subtype and 14 were juvenile subtype. The following structures were segmented by two rating teams on a slice-by-slice basis: whole brain, ventricles, cerebellum, lentiform nucleus, thalamus, corpus callosum, and caudate nucleus. The inter- and intra-rater reliability of the segmentation method was assessed with an intraclass correlation coefficient as well as Sorensen-Dice and Jaccard coefficients.</p><p><strong>Results: </strong>Based on the Sorensen-Dice and Jaccard coefficients, the inter- and intra-rater reliability of the segmentation method was significantly better for the juvenile patients compared to late-infantile (<i>p</i> < 0.01). In addition, the agreement between the two rater teams and within themselves can be considered good with all <i>p</i>-values < 0.05.</p><p><strong>Conclusions: </strong>The standardized segmentation approach described here has good inter- and intra-rater reliability and may provide greater accuracy and reproducibility for neuromorphological studies in this group of patients and help to further expand our understanding of the natural history of this disease.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1410848"},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing hippocampal stimulation in experimental temporal lobe epilepsy with functional MRI. 用功能磁共振成像探究实验性颞叶癫痫的海马刺激。
Pub Date : 2024-08-14 eCollection Date: 2024-01-01 DOI: 10.3389/fnimg.2024.1423770
Niels Schwaderlapp, Enya Paschen, Pierre LeVan, Dominik von Elverfeldt, Carola A Haas

Electrical neurostimulation is currently used to manage epilepsy, but the most effective approach for minimizing seizure occurrence is uncertain. While functional MRI (fMRI) can reveal which brain areas are affected by stimulation, simultaneous deep brain stimulation (DBS)-fMRI examinations in patients are rare and the possibility to investigate multiple stimulation protocols is limited. In this study, we utilized the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy (mTLE) to systematically examine the brain-wide responses to electrical stimulation using fMRI. We compared fMRI responses of saline-injected controls and epileptic mice during stimulation in the septal hippocampus (HC) at 10 Hz and demonstrated the effects of different stimulation amplitudes (80-230 μA) and frequencies (1-100 Hz) in epileptic mice. Motivated by recent studies exploring 1 Hz stimulation to prevent epileptic seizures, we furthermore investigated the effect of prolonged 1 Hz stimulation with fMRI. Compared to sham controls, epileptic mice showed less propagation to the contralateral HC, but significantly stronger responses in the ipsilateral HC and a wider spread to the entorhinal cortex and septal region. Varying the stimulation amplitude had little effect on the resulting activation patterns, whereas the stimulation frequency represented the key parameter and determined whether the induced activation remained local or spread from the hippocampal formation into cortical areas. Prolonged stimulation of epileptic mice at 1 Hz caused a slight reduction in local excitability. In this way, our study contributes to a better understanding of these stimulation paradigms.

目前,神经电刺激被用于控制癫痫,但最大限度减少癫痫发作的最有效方法尚不确定。虽然功能磁共振成像(fMRI)可以揭示哪些脑区受到刺激的影响,但同时对患者进行脑深部刺激(DBS)-fMRI检查的情况并不多见,而且研究多种刺激方案的可能性也很有限。在这项研究中,我们利用海马内凯恩酸盐中位颞叶癫痫(mTLE)小鼠模型,使用 fMRI 系统地检查了全脑对电刺激的反应。我们比较了生理盐水注射对照组和癫痫小鼠在隔侧海马(HC)受到 10 Hz 刺激时的 fMRI 反应,并证明了不同刺激幅度(80-230 μA)和频率(1-100 Hz)对癫痫小鼠的影响。最近有研究探索用 1 赫兹刺激来预防癫痫发作,受此启发,我们进一步用 fMRI 研究了长时间 1 赫兹刺激的效果。与假对照组相比,癫痫小鼠对对侧大脑皮质的传播较少,但对同侧大脑皮质的反应明显较强,对内侧皮质和隔区的传播也较广。改变刺激幅度对所产生的激活模式影响不大,而刺激频率则是关键参数,它决定了诱导的激活是保持在局部还是从海马形成扩散到皮层区域。对癫痫小鼠进行1赫兹的长时间刺激会导致局部兴奋性略微降低。因此,我们的研究有助于更好地理解这些刺激范式。
{"title":"Probing hippocampal stimulation in experimental temporal lobe epilepsy with functional MRI.","authors":"Niels Schwaderlapp, Enya Paschen, Pierre LeVan, Dominik von Elverfeldt, Carola A Haas","doi":"10.3389/fnimg.2024.1423770","DOIUrl":"https://doi.org/10.3389/fnimg.2024.1423770","url":null,"abstract":"<p><p>Electrical neurostimulation is currently used to manage epilepsy, but the most effective approach for minimizing seizure occurrence is uncertain. While functional MRI (fMRI) can reveal which brain areas are affected by stimulation, simultaneous deep brain stimulation (DBS)-fMRI examinations in patients are rare and the possibility to investigate multiple stimulation protocols is limited. In this study, we utilized the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy (mTLE) to systematically examine the brain-wide responses to electrical stimulation using fMRI. We compared fMRI responses of saline-injected controls and epileptic mice during stimulation in the septal hippocampus (HC) at 10 Hz and demonstrated the effects of different stimulation amplitudes (80-230 μA) and frequencies (1-100 Hz) in epileptic mice. Motivated by recent studies exploring 1 Hz stimulation to prevent epileptic seizures, we furthermore investigated the effect of prolonged 1 Hz stimulation with fMRI. Compared to sham controls, epileptic mice showed less propagation to the contralateral HC, but significantly stronger responses in the ipsilateral HC and a wider spread to the entorhinal cortex and septal region. Varying the stimulation amplitude had little effect on the resulting activation patterns, whereas the stimulation frequency represented the key parameter and determined whether the induced activation remained local or spread from the hippocampal formation into cortical areas. Prolonged stimulation of epileptic mice at 1 Hz caused a slight reduction in local excitability. In this way, our study contributes to a better understanding of these stimulation paradigms.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1423770"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The importance of brain mapping for rehabilitation in birth nonprogressive neuromuscular diseases 脑图谱对出生后非进行性神经肌肉疾病康复的重要性
Pub Date : 2024-07-15 DOI: 10.3389/fnimg.2024.1359491
Aleksandra Tolmacheva, Olga Agranovich, E. Blagovechtchenski
While motor mapping has been extensively studied in acquired motor conditions, a lack has been observed in terms of research on neurological disorders present since birth, with damage to the spinal cord and peripheral nerves (hence, defined in this study as nonprogressive neuromuscular diseases). Despite an injury at the level below the brain, the subsequent changes in the motor system involve cortical reorganization. In the scientific community, the need for a comprehensive approach targeting the brain is increasingly recognized for greater motor recovery in these patients. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) are the most utilized techniques for motor mapping. The knowledge obtained through motor mapping may be used to develop effective individual neuromodulation therapy that helps in functional motor recovery. This brief review compares the results of the brain mapping of a few existing studies in individuals with nonprogressive motor disorders of nonbrain origin present at birth to the brain mapping of individuals with similar acquired motor conditions. The review reveals some particular features in terms of central adaptation in individuals with birth conditions compared to their acquired counterparts, such as the nonsomatotopic presentation of involved muscles in the sensorimotor cortex and nonadjacent cortical areas. This topic is undoubtedly intriguing, justifying further research in the field. This review also discusses the benefits these patients can obtain from neuromodulation therapy addressed to the central nervous system and the importance of individual neurophysiological assessment in designing rehabilitation therapy for children with birth motor disorders.
虽然运动图谱对获得性运动病症进行了广泛的研究,但对自出生以来就存在的、脊髓和周围神经受损的神经系统疾病(因此,本研究将其定义为非进行性神经肌肉疾病)的研究却很缺乏。尽管受伤部位在大脑以下,但随后运动系统的变化涉及大脑皮层的重组。在科学界,人们越来越认识到需要一种针对大脑的综合方法来促进这些患者的运动康复。经颅磁刺激(TMS)和功能磁共振成像(fMRI)是最常用的运动图谱绘制技术。通过绘制运动图谱获得的知识可用于开发有效的个体神经调控疗法,帮助患者实现功能性运动恢复。这篇简短的综述将现有的几项研究结果进行了比较,这些研究的对象是出生时即患有非脑源性非进行性运动障碍的患者,以及患有类似后天性运动障碍的患者。与获得性运动障碍患者相比,该综述揭示了先天性运动障碍患者在中枢适应方面的一些特殊特征,如受累肌肉在感觉运动皮层和非相邻皮层区域的非同位呈现。毫无疑问,这一话题非常引人关注,值得在该领域开展进一步研究。本综述还讨论了中枢神经系统神经调控疗法可为这些患者带来的益处,以及个体神经生理学评估在设计先天性运动障碍儿童康复疗法中的重要性。
{"title":"The importance of brain mapping for rehabilitation in birth nonprogressive neuromuscular diseases","authors":"Aleksandra Tolmacheva, Olga Agranovich, E. Blagovechtchenski","doi":"10.3389/fnimg.2024.1359491","DOIUrl":"https://doi.org/10.3389/fnimg.2024.1359491","url":null,"abstract":"While motor mapping has been extensively studied in acquired motor conditions, a lack has been observed in terms of research on neurological disorders present since birth, with damage to the spinal cord and peripheral nerves (hence, defined in this study as nonprogressive neuromuscular diseases). Despite an injury at the level below the brain, the subsequent changes in the motor system involve cortical reorganization. In the scientific community, the need for a comprehensive approach targeting the brain is increasingly recognized for greater motor recovery in these patients. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) are the most utilized techniques for motor mapping. The knowledge obtained through motor mapping may be used to develop effective individual neuromodulation therapy that helps in functional motor recovery. This brief review compares the results of the brain mapping of a few existing studies in individuals with nonprogressive motor disorders of nonbrain origin present at birth to the brain mapping of individuals with similar acquired motor conditions. The review reveals some particular features in terms of central adaptation in individuals with birth conditions compared to their acquired counterparts, such as the nonsomatotopic presentation of involved muscles in the sensorimotor cortex and nonadjacent cortical areas. This topic is undoubtedly intriguing, justifying further research in the field. This review also discusses the benefits these patients can obtain from neuromodulation therapy addressed to the central nervous system and the importance of individual neurophysiological assessment in designing rehabilitation therapy for children with birth motor disorders.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"26 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic off-resonance correction improves functional image analysis in fMRI of awake behaving non-human primates. 动态非共振校正改进了清醒状态下的非人灵长类 fMRI 功能图像分析。
Pub Date : 2024-06-25 eCollection Date: 2024-01-01 DOI: 10.3389/fnimg.2024.1336887
Mo Shahdloo, Nima Khalighinejad, Luke Priestley, Matthew Rushworth, Mark Chiew

Introduction: Use of functional MRI in awake non-human primate (NHPs) has recently increased. Scanning animals while awake makes data collection possible in the absence of anesthetic modulation and with an extended range of possible experimental designs. Robust awake NHP imaging however is challenging due to the strong artifacts caused by time-varying off-resonance changes introduced by the animal's body motion. In this study, we sought to thoroughly investigate the effect of a newly proposed dynamic off-resonance correction method on brain activation estimates using extended awake NHP data.

Methods: We correct for dynamic B0 changes in reconstruction of highly accelerated simultaneous multi-slice EPI acquisitions by estimating and correcting for dynamic field perturbations. Functional MRI data were collected in four male rhesus monkeys performing a decision-making task in the scanner, and analyses of improvements in sensitivity and reliability were performed compared to conventional image reconstruction.

Results: Applying the correction resulted in reduced bias and improved temporal stability in the reconstructed time-series data. We found increased sensitivity to functional activation at the individual and group levels, as well as improved reliability of statistical parameter estimates.

Conclusions: Our results show significant improvements in image fidelity using our proposed correction strategy, as well as greatly enhanced and more reliable activation estimates in GLM analyses.

介绍:最近,在清醒的非人灵长类动物(NHPs)中使用功能磁共振成像的情况有所增加。在清醒状态下对动物进行扫描,可以在没有麻醉调节的情况下收集数据,并扩大了实验设计的范围。然而,由于动物身体运动带来的时变非共振变化会产生强烈的伪影,因此对清醒状态下的非人灵长类动物进行稳健成像具有挑战性。在这项研究中,我们试图利用扩展的清醒 NHP 数据彻底研究新提出的动态非共振校正方法对大脑激活估计的影响:方法:我们通过估计和校正动态场扰动,在重建高度加速的同步多切片 EPI 采集时校正动态 B0 变化。我们收集了四只雄性恒河猴在扫描仪中执行决策任务时的功能磁共振成像数据,并分析了与传统图像重建相比灵敏度和可靠性的改善情况:结果:采用校正后,重建的时间序列数据偏差减少,时间稳定性提高。我们发现个体和群体层面的功能激活灵敏度提高了,统计参数估计的可靠性也提高了:我们的研究结果表明,使用我们提出的校正策略,图像的保真度有了明显提高,在 GLM 分析中的激活估计值也大大增强,更加可靠。
{"title":"Dynamic off-resonance correction improves functional image analysis in fMRI of awake behaving non-human primates.","authors":"Mo Shahdloo, Nima Khalighinejad, Luke Priestley, Matthew Rushworth, Mark Chiew","doi":"10.3389/fnimg.2024.1336887","DOIUrl":"10.3389/fnimg.2024.1336887","url":null,"abstract":"<p><strong>Introduction: </strong>Use of functional MRI in awake non-human primate (NHPs) has recently increased. Scanning animals while awake makes data collection possible in the absence of anesthetic modulation and with an extended range of possible experimental designs. Robust awake NHP imaging however is challenging due to the strong artifacts caused by time-varying off-resonance changes introduced by the animal's body motion. In this study, we sought to thoroughly investigate the effect of a newly proposed dynamic off-resonance correction method on brain activation estimates using extended awake NHP data.</p><p><strong>Methods: </strong>We correct for dynamic B0 changes in reconstruction of highly accelerated simultaneous multi-slice EPI acquisitions by estimating and correcting for dynamic field perturbations. Functional MRI data were collected in four male rhesus monkeys performing a decision-making task in the scanner, and analyses of improvements in sensitivity and reliability were performed compared to conventional image reconstruction.</p><p><strong>Results: </strong>Applying the correction resulted in reduced bias and improved temporal stability in the reconstructed time-series data. We found increased sensitivity to functional activation at the individual and group levels, as well as improved reliability of statistical parameter estimates.</p><p><strong>Conclusions: </strong>Our results show significant improvements in image fidelity using our proposed correction strategy, as well as greatly enhanced and more reliable activation estimates in GLM analyses.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1336887"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroimaging evaluation of the long term impact of a novel paired meditation practice on brain function 新型配对冥想练习对大脑功能长期影响的神经影像学评估
Pub Date : 2024-06-10 DOI: 10.3389/fnimg.2024.1368537
Andrew B. Newberg, N. Wintering, Chloe Hriso, Faezeh Vedaei, Sara Gottfried, Reneita Ross
A growing number of advanced neuroimaging studies have compared brain structure and function in long term meditators to non-meditators. The goal is to determine if there may be long term effects on the brain from practicing meditation. In this paper, we present new data on the long term effects of a novel meditation practice in which the focus is on clitoral stimulation. The findings from such a study have implications for potential therapeutic uses with regard to various neurological or psychiatric conditions.We evaluated the cerebral glucose metabolism in 40 subjects with an extended history (>1 year of practice, 2–3 times per week) performing the meditation practice called Orgasmic Meditation (OM) and compared their brains to a group of non-meditating healthy controls (N = 19). Both meditation and non-meditation subjects underwent brain PET after injection with 148 to 296 MBq of FDG using a standard imaging protocol. Resting FDG PET scans of the OM group were compared to the resting scans of healthy, non-meditating, controls using statistical parametric mapping.The OM group showed significant differences in metabolic activity at rest compared to the controls. Specifically, there was significantly lower metabolism in select areas of the frontal, temporal, and parietal lobes, as well as the anterior cingulate, insula, and thalamus, in the OM group compared to the controls. In addition, there were notable distinctions between the males and females with the females demonstrating significantly lower metabolism in the thalamus and insula.Overall, these findings suggest that the long term meditation practitioners of OM have different patterns of resting brain metabolism. Since these areas of the brain in which OM practitioners differ from controls are involved in cognition, attention, and emotional regulation, such findings have implications for understanding how this meditation practice might affect practitioners over long periods of time.
越来越多的高级神经成像研究对长期冥想者和非冥想者的大脑结构和功能进行了比较。目的是确定冥想练习是否会对大脑产生长期影响。在本文中,我们介绍了一种新的冥想练习的长期影响的新数据,这种冥想练习的重点是阴蒂刺激。我们评估了 40 名长期(超过 1 年的练习时间,每周 2-3 次)进行名为 "高潮冥想"(OM)的冥想练习的受试者的大脑葡萄糖代谢情况,并将他们的大脑与一组未进行冥想的健康对照组(N = 19)进行了比较。冥想和非冥想受试者在注射 148 至 296 MBq 的 FDG 后,都按照标准成像方案进行了脑 PET 扫描。使用统计参数映射法将 OM 组的静息 FDG PET 扫描与非冥想健康对照组的静息扫描进行比较。具体来说,与对照组相比,OM 组的额叶、颞叶、顶叶以及前扣带回、岛叶和丘脑等特定区域的代谢率明显较低。此外,男性和女性之间也有明显区别,女性丘脑和岛叶的新陈代谢明显较低。总之,这些研究结果表明,OM 的长期冥想练习者具有不同的静息大脑新陈代谢模式。由于 OM 练习者与对照组不同的这些大脑区域涉及认知、注意力和情绪调节,因此这些发现对于了解这种冥想练习如何长期影响练习者具有重要意义。
{"title":"Neuroimaging evaluation of the long term impact of a novel paired meditation practice on brain function","authors":"Andrew B. Newberg, N. Wintering, Chloe Hriso, Faezeh Vedaei, Sara Gottfried, Reneita Ross","doi":"10.3389/fnimg.2024.1368537","DOIUrl":"https://doi.org/10.3389/fnimg.2024.1368537","url":null,"abstract":"A growing number of advanced neuroimaging studies have compared brain structure and function in long term meditators to non-meditators. The goal is to determine if there may be long term effects on the brain from practicing meditation. In this paper, we present new data on the long term effects of a novel meditation practice in which the focus is on clitoral stimulation. The findings from such a study have implications for potential therapeutic uses with regard to various neurological or psychiatric conditions.We evaluated the cerebral glucose metabolism in 40 subjects with an extended history (>1 year of practice, 2–3 times per week) performing the meditation practice called Orgasmic Meditation (OM) and compared their brains to a group of non-meditating healthy controls (N = 19). Both meditation and non-meditation subjects underwent brain PET after injection with 148 to 296 MBq of FDG using a standard imaging protocol. Resting FDG PET scans of the OM group were compared to the resting scans of healthy, non-meditating, controls using statistical parametric mapping.The OM group showed significant differences in metabolic activity at rest compared to the controls. Specifically, there was significantly lower metabolism in select areas of the frontal, temporal, and parietal lobes, as well as the anterior cingulate, insula, and thalamus, in the OM group compared to the controls. In addition, there were notable distinctions between the males and females with the females demonstrating significantly lower metabolism in the thalamus and insula.Overall, these findings suggest that the long term meditation practitioners of OM have different patterns of resting brain metabolism. Since these areas of the brain in which OM practitioners differ from controls are involved in cognition, attention, and emotional regulation, such findings have implications for understanding how this meditation practice might affect practitioners over long periods of time.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":" October","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141364647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D inversion recovery ultrashort echo time MRI can detect demyelination in cuprizone-treated mice. 三维反转恢复超短回波时间核磁共振成像可检测铜绿素治疗小鼠的脱髓鞘现象。
Pub Date : 2024-05-09 eCollection Date: 2024-01-01 DOI: 10.3389/fnimg.2024.1356713
Adam C Searleman, Yajun Ma, Srihari Sampath, Srinath Sampath, Robert Bussell, Eric Y Chang, Lisa Deaton, Andrew M Schumacher, Jiang Du

Purpose: To test the ability of inversion-recovery ultrashort echo time (IR-UTE) MRI to directly detect demyelination in mice using a standard cuprizone mouse model.

Methods: Non-aqueous myelin protons have ultrashort T2s and are "invisible" with conventional MRI sequences but can be detected with UTE sequences. The IR-UTE sequence uses an adiabatic inversion-recovery preparation to suppress the long T2 water signal so that the remaining signal is from the ultrashort T2 myelin component. In this study, eight 8-week-old C57BL/6 mice were fed cuprizone (n = 4) or control chow (n = 4) for 5 weeks and then imaged by 3D IR-UTE MRI. The differences in IR-UTE signal were compared in the major white matter tracts in the brain and correlated with the Luxol Fast Blue histochemical marker of myelin.

Results: IR-UTE signal decreased in cuprizone-treated mice in white matter known to be sensitive to demyelination in this model, such as the corpus callosum, but not in white matter known to be resistant to demyelination, such as the internal capsule. These findings correlated with histochemical staining of myelin content.

Conclusions: 3D IR-UTE MRI was sensitive to cuprizone-induced demyelination in the mouse brain, and is a promising noninvasive method for measuring brain myelin content.

目的:测试反转恢复超短回波时间(IR-UTE)核磁共振成像(MRI)使用标准铜绿素小鼠模型直接检测小鼠脱髓鞘的能力:方法:非水髓鞘质子具有超短 T2,在传统磁共振成像序列中 "看不见",但在 UTE 序列中可以检测到。IR-UTE序列使用绝热反转恢复准备来抑制长T2水信号,使剩余信号来自超短T2髓鞘成分。在这项研究中,8只8周大的C57BL/6小鼠被喂食铜绿素(n = 4)或对照组饲料(n = 4)5周,然后通过三维IR-UTE MRI成像。比较了大脑主要白质束中 IR-UTE 信号的差异,并将其与髓鞘的 Luxol Fast Blue 组织化学标记物相关联:结果:经杯三氮处理的小鼠,在该模型中对脱髓鞘敏感的白质(如胼胝体)中,IR-UTE信号下降,而在对脱髓鞘有抵抗力的白质(如内囊)中,IR-UTE信号则没有下降。这些发现与髓鞘含量的组织化学染色结果相关:结论:三维红外UTE磁共振成像对铜绿素诱导的小鼠大脑脱髓鞘很敏感,是一种很有前途的测量大脑髓鞘含量的无创方法。
{"title":"3D inversion recovery ultrashort echo time MRI can detect demyelination in cuprizone-treated mice.","authors":"Adam C Searleman, Yajun Ma, Srihari Sampath, Srinath Sampath, Robert Bussell, Eric Y Chang, Lisa Deaton, Andrew M Schumacher, Jiang Du","doi":"10.3389/fnimg.2024.1356713","DOIUrl":"10.3389/fnimg.2024.1356713","url":null,"abstract":"<p><strong>Purpose: </strong>To test the ability of inversion-recovery ultrashort echo time (IR-UTE) MRI to directly detect demyelination in mice using a standard cuprizone mouse model.</p><p><strong>Methods: </strong>Non-aqueous myelin protons have ultrashort T<sub>2</sub>s and are \"invisible\" with conventional MRI sequences but can be detected with UTE sequences. The IR-UTE sequence uses an adiabatic inversion-recovery preparation to suppress the long T<sub>2</sub> water signal so that the remaining signal is from the ultrashort T<sub>2</sub> myelin component. In this study, eight 8-week-old C57BL/6 mice were fed cuprizone (<i>n</i> = 4) or control chow (<i>n</i> = 4) for 5 weeks and then imaged by 3D IR-UTE MRI. The differences in IR-UTE signal were compared in the major white matter tracts in the brain and correlated with the Luxol Fast Blue histochemical marker of myelin.</p><p><strong>Results: </strong>IR-UTE signal decreased in cuprizone-treated mice in white matter known to be sensitive to demyelination in this model, such as the corpus callosum, but not in white matter known to be resistant to demyelination, such as the internal capsule. These findings correlated with histochemical staining of myelin content.</p><p><strong>Conclusions: </strong>3D IR-UTE MRI was sensitive to cuprizone-induced demyelination in the mouse brain, and is a promising noninvasive method for measuring brain myelin content.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1356713"},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141089409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: A structural connectivity atlas of limbic brainstem nuclei. 更正:边缘脑干核团结构连接图谱。
Pub Date : 2024-04-30 eCollection Date: 2024-01-01 DOI: 10.3389/fnimg.2024.1405806
Simon Levinson, Michelle Miller, Ahmed Iftekhar, Monica Justo, Daniel Arriola, Wenxin Wei, Saman Hazany, Josue M Avecillas-Chasin, Taylor P Kuhn, Andreas Horn, Ausaf A Bari

[This corrects the article DOI: 10.3389/fnimg.2022.1009399.].

[This corrects the article DOI: 10.3389/fnimg.2022.1009399.].
{"title":"Corrigendum: A structural connectivity atlas of limbic brainstem nuclei.","authors":"Simon Levinson, Michelle Miller, Ahmed Iftekhar, Monica Justo, Daniel Arriola, Wenxin Wei, Saman Hazany, Josue M Avecillas-Chasin, Taylor P Kuhn, Andreas Horn, Ausaf A Bari","doi":"10.3389/fnimg.2024.1405806","DOIUrl":"https://doi.org/10.3389/fnimg.2024.1405806","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.3389/fnimg.2022.1009399.].</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1405806"},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140946562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and evaluation of a neurofeedback system using finger tapping and near-infrared spectroscopy 利用手指敲击和近红外光谱构建和评估神经反馈系统
Pub Date : 2024-04-25 DOI: 10.3389/fnimg.2024.1361513
Shingo Takahashi, Daishi Takahashi, Yuki Kuroiwa, Noriko Sakurai, Naoki Kodama
Neurofeedback using near-infrared spectroscopy (NIRS) has been used in patients with stroke and other patients, but few studies have included older people or patients with cognitive impairment.We constructed a NIRS-based neurofeedback system and used finger tapping to investigate whether neurofeedback can be implemented in older adults while finger tapping and whether brain activity improves in older adults and healthy participants. Our simple neurofeedback system was constructed using a portable wearable optical topography (WOT-HS) device. Brain activity was evaluated in 10 older and 31 healthy young individuals by measuring oxygenated hemoglobin concentration during finger tapping and neurofeedback implementation.During neurofeedback, the concentration of oxygenated hemoglobin increased in the prefrontal regions in both the young and older participants.The results of this study demonstrate the usefulness of neurofeedback using simple NIRS devices for older adults and its potential to mitigate cognitive decline.
我们构建了一个基于近红外光谱(NIRS)的神经反馈系统,并使用手指敲击来研究是否可以在老年人手指敲击时实施神经反馈,以及老年人和健康参与者的大脑活动是否有所改善。我们使用便携式可穿戴光学地形图(WOT-HS)设备构建了简单的神经反馈系统。通过测量手指敲击和神经反馈实施过程中的氧合血红蛋白浓度,对 10 名老年人和 31 名健康年轻人的大脑活动进行了评估。在神经反馈过程中,年轻人和老年人前额叶区域的氧合血红蛋白浓度都有所增加。
{"title":"Construction and evaluation of a neurofeedback system using finger tapping and near-infrared spectroscopy","authors":"Shingo Takahashi, Daishi Takahashi, Yuki Kuroiwa, Noriko Sakurai, Naoki Kodama","doi":"10.3389/fnimg.2024.1361513","DOIUrl":"https://doi.org/10.3389/fnimg.2024.1361513","url":null,"abstract":"Neurofeedback using near-infrared spectroscopy (NIRS) has been used in patients with stroke and other patients, but few studies have included older people or patients with cognitive impairment.We constructed a NIRS-based neurofeedback system and used finger tapping to investigate whether neurofeedback can be implemented in older adults while finger tapping and whether brain activity improves in older adults and healthy participants. Our simple neurofeedback system was constructed using a portable wearable optical topography (WOT-HS) device. Brain activity was evaluated in 10 older and 31 healthy young individuals by measuring oxygenated hemoglobin concentration during finger tapping and neurofeedback implementation.During neurofeedback, the concentration of oxygenated hemoglobin increased in the prefrontal regions in both the young and older participants.The results of this study demonstrate the usefulness of neurofeedback using simple NIRS devices for older adults and its potential to mitigate cognitive decline.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"52 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of partial volume correction and analysis of longitudinal [18F]GTP1 tau PET imaging in Alzheimer's disease using linear mixed-effects models 使用线性混合效应模型评估部分体积校正和分析阿尔茨海默病的纵向[18F]GTP1 tau PET 成像
Pub Date : 2024-03-28 DOI: 10.3389/fnimg.2024.1355402
S. S. Sanabria Bohórquez, Suzanne Baker, P. Manser, Matteo Tonietto, Christopher Galli, Kristin R. Wildsmith, Yixuan Zou, G. Kerchner, R. Weimer, E. Teng
We evaluated the impact of partial volume correction (PVC) methods on the quantification of longitudinal [18F]GTP1 tau positron-emission tomography (PET) in Alzheimer's disease and the suitability of describing the tau pathology burden temporal trajectories using linear mixed-effects models (LMEM).We applied van Cittert iterative deconvolution (VC), 2-compartment, and 3-compartment, and the geometric transfer matrix plus region-based voxelwise methods to data acquired in an Alzheimer's disease natural history study over 18 months at a single imaging site. We determined the optimal PVC method by comparing the standardized uptake value ratio change (%ΔSUVR) between diagnostic and tau burden–level groups and the longitudinal repeatability derived from the LMEM. The performance of LMEM analysis for calculating %ΔSUVR was evaluated in a natural history study and in a multisite clinical trial of semorinemab in prodromal to mild Alzheimer's disease by comparing results to traditional per-visit estimates.The VC, 2-compartment, and 3-compartment PVC methods had similar performance, whereas region-based voxelwise overcorrected regions with a higher tau burden. The lowest within-subject variability and acceptable group separation scores were observed without PVC. The LMEM-derived %ΔSUVR values were similar to the per-visit estimates with lower variability.The results indicate that the tested PVC methods do not offer a clear advantage or improvement over non-PVC images for the quantification of longitudinal [18F]GTP1 PET data. LMEM offers a robust framework for the longitudinal tau PET quantification with low longitudinal test–retest variability.NCT02640092 and NCT03289143.
我们评估了部分容积校正(PVC)方法对阿尔茨海默病纵向[18F]GTP1 tau正电子发射断层扫描(PET)量化的影响,以及使用线性混合效应模型(LMEM)描述tau病理负担时间轨迹的适宜性。我们将 Van Cittert 迭代解卷积 (VC)、2 室和 3 室以及几何转移矩阵加基于区域的体素方法应用于一项阿尔茨海默病自然史研究中在单个成像站点获取的 18 个月的数据。我们通过比较诊断组和 tau 负担水平组之间的标准化摄取值比变化(%ΔSUVR)以及 LMEM 得出的纵向可重复性,确定了最佳 PVC 方法。在一项自然史研究和一项针对前驱期至轻度阿尔茨海默病的semorinemab多点临床试验中,通过将结果与传统的每次探访估计值进行比较,评估了LMEM分析法计算%ΔSUVR的性能。在不使用PVC的情况下,受试者内变异性最低,组间分离得分也可接受。结果表明,在纵向[18F]GTP1 PET 数据的量化方面,测试的 PVC 方法与非 PVC 图像相比没有明显的优势或改进。LMEM为纵向tau PET量化提供了一个稳健的框架,纵向测试-再测试变异性较低。
{"title":"Evaluation of partial volume correction and analysis of longitudinal [18F]GTP1 tau PET imaging in Alzheimer's disease using linear mixed-effects models","authors":"S. S. Sanabria Bohórquez, Suzanne Baker, P. Manser, Matteo Tonietto, Christopher Galli, Kristin R. Wildsmith, Yixuan Zou, G. Kerchner, R. Weimer, E. Teng","doi":"10.3389/fnimg.2024.1355402","DOIUrl":"https://doi.org/10.3389/fnimg.2024.1355402","url":null,"abstract":"We evaluated the impact of partial volume correction (PVC) methods on the quantification of longitudinal [18F]GTP1 tau positron-emission tomography (PET) in Alzheimer's disease and the suitability of describing the tau pathology burden temporal trajectories using linear mixed-effects models (LMEM).We applied van Cittert iterative deconvolution (VC), 2-compartment, and 3-compartment, and the geometric transfer matrix plus region-based voxelwise methods to data acquired in an Alzheimer's disease natural history study over 18 months at a single imaging site. We determined the optimal PVC method by comparing the standardized uptake value ratio change (%ΔSUVR) between diagnostic and tau burden–level groups and the longitudinal repeatability derived from the LMEM. The performance of LMEM analysis for calculating %ΔSUVR was evaluated in a natural history study and in a multisite clinical trial of semorinemab in prodromal to mild Alzheimer's disease by comparing results to traditional per-visit estimates.The VC, 2-compartment, and 3-compartment PVC methods had similar performance, whereas region-based voxelwise overcorrected regions with a higher tau burden. The lowest within-subject variability and acceptable group separation scores were observed without PVC. The LMEM-derived %ΔSUVR values were similar to the per-visit estimates with lower variability.The results indicate that the tested PVC methods do not offer a clear advantage or improvement over non-PVC images for the quantification of longitudinal [18F]GTP1 PET data. LMEM offers a robust framework for the longitudinal tau PET quantification with low longitudinal test–retest variability.NCT02640092 and NCT03289143.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"29 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140371939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in neuroimaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1