Introduction: Neuropathic pain is characterized by mechanical allodynia and thermal (heat and cold) hypersensitivity, yet the underlying neural mechanisms remain poorly understood.
Methods: Using chemogenetic excitation and inhibition, we examined the role of inhibitory interneurons in the basolateral amygdala (BLA) in modulating pain perception following nerve injury.
Results: Chemogenetic excitation of parvalbumin-positive (PV+) interneurons significantly alleviated mechanical allodynia but had minimal effects on thermal hypersensitivity. However, inhibition of PV+ interneurons did not produce significant changes in pain sensitivity, suggesting that reductions in perisomatic inhibition do not contribute to chronic pain states. In contrast, bidirectional modulation of somatostatin-positive (SST+) interneurons influenced pain perception in a modality-specific manner. Both excitation and inhibition of SST+ interneurons alleviated mechanical allodynia, indicating a potential compensatory role in nociceptive processing. Additionally, SST+ neuron excitation reduced cold hypersensitivity without affecting heat hypersensitivity, whereas inhibition improved heat hypersensitivity but not cold responses.
Discussion: Our findings suggest that, in addition to PV+ neurons, SST+ interneurons in the BLA play complex roles in modulating neuropathic pain following nerve injury and may serve as a potential target for future neuromodulation interventions in chronic pain management.
扫码关注我们
求助内容:
应助结果提醒方式:
