Pub Date : 2024-08-06eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1397477
S Spulber, L Reis, P Alexe, S Ceccatelli
Glyphosate-based herbicides (GBH) are a widely used group of pesticides that have glyphosate (GLY) as main active compound and are used to control a wide range of weeds. Experimental and epidemiological studies point to neurotoxicity and endocrine disruption as main toxic effects. The aim of this study was to investigate the effects of developmental exposure to GLY and GBH on locomotor behavior, and the possible contribution of GR-mediated signaling. We used zebrafish (Danio rerio) larvae in a continuous exposure regimen to GLY or GBH in the rearing medium. Alongside TL wildtype, we used a mutant line carrying a mutation in the GR which prevents the GR from binding to DNA (grs357), as well as a transgenic strain expressing a variant of enhanced green fluorescent protein (d4eGFP) controlled by a promoter carrying multiple GR response elements (SR4G). We found that acute exposure to GBH, but not GLY, activates GR-mediated signaling. Using a continuous developmental exposure regime, we show that wildtype larvae exposed to GBH display decreased spontaneous activity and attenuated response to environmental stimuli, a pattern of alteration similar to the one observed in grs357 mutant larvae. In addition, developmental exposure to GBH has virtually no effects on the behavior of grs357 mutant larvae. Taken together, our data indicate that developmental exposure to GBH has more pronounced effects than GLY on behavior at 5 dpf, and that interference with GR-mediated signaling may have a relevant contribution.
草甘膦类除草剂(GBH)是一类广泛使用的杀虫剂,以草甘膦(GLY)为主要活性化合物,用于控制多种杂草。实验和流行病学研究表明,神经毒性和内分泌紊乱是主要的毒性效应。本研究的目的是调查发育期接触 GLY 和 GBH 对运动行为的影响,以及 GR 介导的信号转导可能造成的影响。我们使用斑马鱼(Danio rerio)幼体在饲养培养基中连续暴露于 GLY 或 GBH。除 TL 野生型外,我们还使用了一种携带 GR 突变的突变品系(grs357),该突变品系可阻止 GR 与 DNA 结合;此外,我们还使用了一种表达增强型绿色荧光蛋白(d4eGFP)的转基因品系,该变体由携带多个 GR 响应元件(SR4G)的启动子控制。我们发现,急性暴露于 GBH(而非 GLY)会激活 GR 介导的信号传导。通过持续的发育暴露机制,我们发现暴露于 GBH 的野生型幼虫的自发活动减少,对环境刺激的反应减弱,这种改变模式类似于在 grs357 突变体幼虫中观察到的模式。此外,发育期暴露于 GBH 对 grs357 突变体幼虫的行为几乎没有影响。总之,我们的数据表明,发育暴露于 GBH 比暴露于 GLY 对 5 dpf 幼虫的行为有更明显的影响,而干扰 GR 介导的信号传导可能有相关的作用。
{"title":"Decreased activity in zebrafish larvae exposed to glyphosate-based herbicides during development-potential mediation by glucocorticoid receptor.","authors":"S Spulber, L Reis, P Alexe, S Ceccatelli","doi":"10.3389/ftox.2024.1397477","DOIUrl":"10.3389/ftox.2024.1397477","url":null,"abstract":"<p><p>Glyphosate-based herbicides (GBH) are a widely used group of pesticides that have glyphosate (GLY) as main active compound and are used to control a wide range of weeds. Experimental and epidemiological studies point to neurotoxicity and endocrine disruption as main toxic effects. The aim of this study was to investigate the effects of developmental exposure to GLY and GBH on locomotor behavior, and the possible contribution of GR-mediated signaling. We used zebrafish (<i>Danio rerio</i>) larvae in a continuous exposure regimen to GLY or GBH in the rearing medium. Alongside TL wildtype, we used a mutant line carrying a mutation in the GR which prevents the GR from binding to DNA (gr<sup>s357</sup>), as well as a transgenic strain expressing a variant of enhanced green fluorescent protein (d4eGFP) controlled by a promoter carrying multiple GR response elements (SR4G). We found that acute exposure to GBH, but not GLY, activates GR-mediated signaling. Using a continuous developmental exposure regime, we show that wildtype larvae exposed to GBH display decreased spontaneous activity and attenuated response to environmental stimuli, a pattern of alteration similar to the one observed in gr<sup>s357</sup> mutant larvae. In addition, developmental exposure to GBH has virtually no effects on the behavior of gr<sup>s357</sup> mutant larvae. Taken together, our data indicate that developmental exposure to GBH has more pronounced effects than GLY on behavior at 5 dpf, and that interference with GR-mediated signaling may have a relevant contribution.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1416708
Triana Acevedo-Huergo, Jonathan Sánchez-Yépez, María Soledad Mendoza-Trejo, Isela Hernández-Plata, Magda Giordano, Verónica Mireya Rodríguez
The herbicide atrazine (ATR) has been one of the most widely used herbicides worldwide. However, due to its indiscriminate use, it has been considered an environmental contaminant. Several studies have classified ATR as an endocrine disruptor, and it has been found to have neurotoxic effects on behavior, along with alterations in the dopaminergic, GABAergic, and glutamatergic systems in the basal ganglia of male rodents. These findings suggest that these neurotransmitter systems are targets of this herbicide. However, there are no studies evaluating the neurotoxicity of ATR in female rodents. Our study aimed to assess the effects of repeated IP injections of 100 mg ATR/kg or a vehicle every other day for 2 weeks (six injections) on the locomotor activity, content of monoamines, GABA, glutamate, and glutamine in the striatum, nucleus accumbens, ventral midbrain, and prefrontal cortex, and tyrosine hydroxylase (TH) protein levels in striatum and nucleus accumbens of female rats. Repeated 100 mg ATR/kg injections immediately decreased all the locomotor activity parameters evaluated, and such hypoactivity persisted for at least 48 h after the last ATR administration. The ATR administration increased dopamine and DOPAC content in the nucleus accumbens and the dopamine and DOPAC and serotonin and 5-HIAA content in the ventral midbrain. In contrast, the TH protein levels in the striatum and nucleus accumbens were similar between groups. Meanwhile, GABA, glutamine, and glutamate levels remained unaltered in all brain regions evaluated. The observed behavioral alterations could be associated with the monoamine changes presented by the rats. These data reveal that the nucleus accumbens and ventral midbrain are susceptible to repeated ATR exposure in female rats.
{"title":"Hypoactivity and neurochemical alterations in the basal ganglia of female Sprague-Dawley rats after repeated exposure to atrazine.","authors":"Triana Acevedo-Huergo, Jonathan Sánchez-Yépez, María Soledad Mendoza-Trejo, Isela Hernández-Plata, Magda Giordano, Verónica Mireya Rodríguez","doi":"10.3389/ftox.2024.1416708","DOIUrl":"10.3389/ftox.2024.1416708","url":null,"abstract":"<p><p>The herbicide atrazine (ATR) has been one of the most widely used herbicides worldwide. However, due to its indiscriminate use, it has been considered an environmental contaminant. Several studies have classified ATR as an endocrine disruptor, and it has been found to have neurotoxic effects on behavior, along with alterations in the dopaminergic, GABAergic, and glutamatergic systems in the basal ganglia of male rodents. These findings suggest that these neurotransmitter systems are targets of this herbicide. However, there are no studies evaluating the neurotoxicity of ATR in female rodents. Our study aimed to assess the effects of repeated IP injections of 100 mg ATR/kg or a vehicle every other day for 2 weeks (six injections) on the locomotor activity, content of monoamines, GABA, glutamate, and glutamine in the striatum, nucleus accumbens, ventral midbrain, and prefrontal cortex, and tyrosine hydroxylase (TH) protein levels in striatum and nucleus accumbens of female rats. Repeated 100 mg ATR/kg injections immediately decreased all the locomotor activity parameters evaluated, and such hypoactivity persisted for at least 48 h after the last ATR administration. The ATR administration increased dopamine and DOPAC content in the nucleus accumbens and the dopamine and DOPAC and serotonin and 5-HIAA content in the ventral midbrain. In contrast, the TH protein levels in the striatum and nucleus accumbens were similar between groups. Meanwhile, GABA, glutamine, and glutamate levels remained unaltered in all brain regions evaluated. The observed behavioral alterations could be associated with the monoamine changes presented by the rats. These data reveal that the nucleus accumbens and ventral midbrain are susceptible to repeated ATR exposure in female rats.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1331803
Rita Hargitai, Lucia Parráková, Tünde Szatmári, Pablo Monfort-Lanzas, Valentina Galbiati, Karine Audouze, Florence Jornod, Yvonne C M Staal, Sabina Burla, Aline Chary, Arno C Gutleb, Katalin Lumniczky, Rob J Vandebriel, Johanna M Gostner
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
{"title":"Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers.","authors":"Rita Hargitai, Lucia Parráková, Tünde Szatmári, Pablo Monfort-Lanzas, Valentina Galbiati, Karine Audouze, Florence Jornod, Yvonne C M Staal, Sabina Burla, Aline Chary, Arno C Gutleb, Katalin Lumniczky, Rob J Vandebriel, Johanna M Gostner","doi":"10.3389/ftox.2024.1331803","DOIUrl":"10.3389/ftox.2024.1331803","url":null,"abstract":"<p><p>Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317441/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.3389/ftox.2024.1371131
R. Semelka, M. Ramalho
To demonstrate and evaluate factors contributing to near-cures in patients with Gadolinium Deposition Disease (GDD) undergoing intravenous (IV) DTPA chelation.Patients who had undergone or are currently undergoing DTPA chelation for GDD were included in this report based on their medical records that showed their perceived improvement was at least 80% back to normal. A survey was developed that included factors commonly reported by patients treated in one clinic to determine if these ‘near-cured’ (pre-MRI baseline health) individuals possessed certain factors and lacked others. The anonymized survey was emailed to these individuals by the principal treating physician, the only investigator not blinded to the subjects. This report describes clinical documentation of patient status and their underlying factors in individuals treated by the primary author, and no research was performed. The survey was sent to sixteen individuals; Fourteen patients completed it (10 females; 41.1 ± 11.2 y/o).The most common factor was the administration of ≤5 lifetime doses of a Gadolinium-Based Contrast Agents (GBCA) (12/14). Unconfounded agents triggering GDD were seen in nine subjects. Most subjects (12/14) initiated chelation in the first year after the causative GBCA, and most (11/14) underwent ≤10 chelations with DTPA. Good healthcare status prior to MRI was observed in 5 subjects. The majority (11/14) described their immune status as strong. Severe physical disability prior to chelation was seen in 1.Subjects with GDD can experience near-cure with IV DTPA chelation. Factors surveyed that predict near-cure include the start of chelation in the first year, few GBCA administrations, and good health status before MRI with GBCA injection. Nonetheless, a few patients with predictors of less successful outcomes still experienced near-cure.
{"title":"Near-cure in patients with Gadolinium deposition disease undergoing intravenous DTPA chelation","authors":"R. Semelka, M. Ramalho","doi":"10.3389/ftox.2024.1371131","DOIUrl":"https://doi.org/10.3389/ftox.2024.1371131","url":null,"abstract":"To demonstrate and evaluate factors contributing to near-cures in patients with Gadolinium Deposition Disease (GDD) undergoing intravenous (IV) DTPA chelation.Patients who had undergone or are currently undergoing DTPA chelation for GDD were included in this report based on their medical records that showed their perceived improvement was at least 80% back to normal. A survey was developed that included factors commonly reported by patients treated in one clinic to determine if these ‘near-cured’ (pre-MRI baseline health) individuals possessed certain factors and lacked others. The anonymized survey was emailed to these individuals by the principal treating physician, the only investigator not blinded to the subjects. This report describes clinical documentation of patient status and their underlying factors in individuals treated by the primary author, and no research was performed. The survey was sent to sixteen individuals; Fourteen patients completed it (10 females; 41.1 ± 11.2 y/o).The most common factor was the administration of ≤5 lifetime doses of a Gadolinium-Based Contrast Agents (GBCA) (12/14). Unconfounded agents triggering GDD were seen in nine subjects. Most subjects (12/14) initiated chelation in the first year after the causative GBCA, and most (11/14) underwent ≤10 chelations with DTPA. Good healthcare status prior to MRI was observed in 5 subjects. The majority (11/14) described their immune status as strong. Severe physical disability prior to chelation was seen in 1.Subjects with GDD can experience near-cure with IV DTPA chelation. Factors surveyed that predict near-cure include the start of chelation in the first year, few GBCA administrations, and good health status before MRI with GBCA injection. Nonetheless, a few patients with predictors of less successful outcomes still experienced near-cure.","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141806320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.3389/ftox.2024.1412864
I. Cattani-Cavalieri, Marina Trombetta-Lima, Hong Yan, Ana L. Manzano-Covarrubias, H. Baarsma, Asmaa Oun, Melissa Mol van der Veen, Emily Oosterhout, Amalia M. Dolga, R. Ostrom, S. Valença, Martina Schmidt
Introduction: Air pollution from diesel combustion is linked in part to the generation of diesel exhaust particles (DEP). DEP exposure induces various processes, including inflammation and oxidative stress, which ultimately contribute to a decline in lung function. Cyclic AMP (cAMP) signaling is critical for lung homeostasis. The impact of DEP on cAMP signaling is largely unknown.Methods: We exposed human bronchial epithelial (BEAS-2B) cells to DEP for 24–72 h and evaluated mitochondrial bioenergetics, markers of oxidative stress and inflammation and the components of cAMP signaling. Mitochondrial bioenergetics was measured at 72 h to capture the potential and accumulative effects of prolonged DEP exposure on mitochondrial function.Results: DEP profoundly altered mitochondrial morphology and network integrity, reduced both basal and ATP-linked respiration as well as the glycolytic capacity of mitochondria. DEP exposure increased gene expression of oxidative stress and inflammation markers such as interleukin-8 and interleukin-6. DEP significantly affected mRNA levels of exchange protein directly activated by cAMP-1 and -2 (Epac1, Epac2), appeared to increase Epac1 protein, but left phospho-PKA levels unhanged. DEP exposure increased A-kinase anchoring protein 1, β2‐adrenoceptor and prostanoid E receptor subtype 4 mRNA levels. Interestingly, DEP decreased mRNA levels of adenylyl cyclase 9 and reduced cAMP levels stimulated by forskolin (AC activator), fenoterol (β2-AR agonist) or PGE2 (EPR agonist).Discussion: Our findings suggest that DEP induces mitochondrial dysfunction, a process accompanied by oxidative stress and inflammation, and broadly dampens cAMP signaling. These epithelial responses may contribute to lung dysfunction induced by air pollution exposure.
导言:柴油燃烧造成的空气污染部分与柴油废气微粒(DEP)的产生有关。接触柴油机废气微粒会诱发各种过程,包括炎症和氧化应激,最终导致肺功能下降。环磷酸腺苷(cAMP)信号传导对肺的平衡至关重要。DEP对cAMP信号转导的影响尚不清楚:我们将人支气管上皮细胞(BEAS-2B)暴露于 DEP 24-72 小时,并评估了线粒体生物能、氧化应激和炎症指标以及 cAMP 信号转导的成分。线粒体生物能在 72 小时后进行测量,以捕捉长期暴露于 DEP 对线粒体功能的潜在和累积效应:结果:DEP 严重改变了线粒体的形态和网络完整性,降低了线粒体的基础呼吸和 ATP 链接呼吸以及糖酵解能力。暴露于DEP会增加氧化应激和炎症标志物(如白细胞介素-8和白细胞介素-6)的基因表达。DEP明显影响了由cAMP直接激活的交换蛋白-1和-2(Epac1和Epac2)的mRNA水平,似乎增加了Epac1蛋白,但磷酸-PKA水平未受影响。暴露于 DEP 会增加 A 激酶锚定蛋白 1、β2-肾上腺素受体和前列腺素 E 受体亚型 4 的 mRNA 水平。有趣的是,在福斯可林(AC 激活剂)、非诺特罗(β2-AR 激动剂)或 PGE2(EPR 激动剂)的刺激下,DEP 降低了腺苷酸环化酶 9 的 mRNA 水平,并降低了 cAMP 水平:我们的研究结果表明,DEP 会诱导线粒体功能障碍,这一过程伴随着氧化应激和炎症,并广泛抑制 cAMP 信号传导。这些上皮反应可能是空气污染暴露诱发肺功能障碍的原因之一。
{"title":"Diesel exhaust particles alter mitochondrial bioenergetics and cAMP producing capacity in human bronchial epithelial cells","authors":"I. Cattani-Cavalieri, Marina Trombetta-Lima, Hong Yan, Ana L. Manzano-Covarrubias, H. Baarsma, Asmaa Oun, Melissa Mol van der Veen, Emily Oosterhout, Amalia M. Dolga, R. Ostrom, S. Valença, Martina Schmidt","doi":"10.3389/ftox.2024.1412864","DOIUrl":"https://doi.org/10.3389/ftox.2024.1412864","url":null,"abstract":"Introduction: Air pollution from diesel combustion is linked in part to the generation of diesel exhaust particles (DEP). DEP exposure induces various processes, including inflammation and oxidative stress, which ultimately contribute to a decline in lung function. Cyclic AMP (cAMP) signaling is critical for lung homeostasis. The impact of DEP on cAMP signaling is largely unknown.Methods: We exposed human bronchial epithelial (BEAS-2B) cells to DEP for 24–72 h and evaluated mitochondrial bioenergetics, markers of oxidative stress and inflammation and the components of cAMP signaling. Mitochondrial bioenergetics was measured at 72 h to capture the potential and accumulative effects of prolonged DEP exposure on mitochondrial function.Results: DEP profoundly altered mitochondrial morphology and network integrity, reduced both basal and ATP-linked respiration as well as the glycolytic capacity of mitochondria. DEP exposure increased gene expression of oxidative stress and inflammation markers such as interleukin-8 and interleukin-6. DEP significantly affected mRNA levels of exchange protein directly activated by cAMP-1 and -2 (Epac1, Epac2), appeared to increase Epac1 protein, but left phospho-PKA levels unhanged. DEP exposure increased A-kinase anchoring protein 1, β2‐adrenoceptor and prostanoid E receptor subtype 4 mRNA levels. Interestingly, DEP decreased mRNA levels of adenylyl cyclase 9 and reduced cAMP levels stimulated by forskolin (AC activator), fenoterol (β2-AR agonist) or PGE2 (EPR agonist).Discussion: Our findings suggest that DEP induces mitochondrial dysfunction, a process accompanied by oxidative stress and inflammation, and broadly dampens cAMP signaling. These epithelial responses may contribute to lung dysfunction induced by air pollution exposure.","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141803334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.3389/ftox.2024.1408808
E. Rogers, E. K. Breathwaite, T. Nguyen-Jones, S. M. Anderson, J. Odanga, D. T. Parks, K. Wolf, T. Stone, P. Balbuena, J. Chen, S. Presnell, J. R. Weaver, E. LeCluyse
Perturbation of thyroid hormone (T4) synthesis is known to cause numerous developmental, metabolic, and cognitive disorders in humans. Due to species differences in sensitivity to chemical exposures, there is a need for human-based in vitro approaches that recapitulate thyroid cellular architecture and T4 production when screening. To address these limitations, primary human thyrocytes, isolated from healthy adult donor tissues and cryopreserved at passage one (p’1) were characterized for cellular composition, 3D follicular architecture, and thyroglobulin (TG)/T4 expression and inhibition by prototype thyroid disrupting chemicals (TDC). Flow analysis of the post-thaw cell suspension showed >80% EpCAM-positive cells with 10%–50% CD90-positive cells. When seeded onto 96-well Matrigel®-coated plates and treated with bovine thyroid stimulating hormone (TSH), thyrocytes formed 3D microtissues during the initial 4–5 days of culture. The microtissues exhibited a stable morphology and size over a 14-day culture period. TG and T4 production were highest in microtissues when the proportion of CD90-positive cells, seeding density and thyroid stimulating hormone concentrations were between 10%–30%, 6K–12K cells per well, and 0.03–1 mIU/mL, respectively. At maximal TG and T4 production levels, average microtissue diameters ranged between 50 and 200 µm. The T4 IC50 values for two prototype TPO inhibitors, 6-propyl-2-thiouracil and methimazole, were ∼0.7 µM and ∼0.5 µM, respectively, in microtissue cultures treated between days 9 and 14. Overall, p’1 cryopreserved primary human thyrocytes in 3D microtissue culture represent a promising new model system to prioritize potential TDC acting directly on the thyroid as part of a weight-of-evidence hazard characterization.
{"title":"Characterization of a human thyroid microtissue model for testing thyroid disrupting chemicals","authors":"E. Rogers, E. K. Breathwaite, T. Nguyen-Jones, S. M. Anderson, J. Odanga, D. T. Parks, K. Wolf, T. Stone, P. Balbuena, J. Chen, S. Presnell, J. R. Weaver, E. LeCluyse","doi":"10.3389/ftox.2024.1408808","DOIUrl":"https://doi.org/10.3389/ftox.2024.1408808","url":null,"abstract":"Perturbation of thyroid hormone (T4) synthesis is known to cause numerous developmental, metabolic, and cognitive disorders in humans. Due to species differences in sensitivity to chemical exposures, there is a need for human-based in vitro approaches that recapitulate thyroid cellular architecture and T4 production when screening. To address these limitations, primary human thyrocytes, isolated from healthy adult donor tissues and cryopreserved at passage one (p’1) were characterized for cellular composition, 3D follicular architecture, and thyroglobulin (TG)/T4 expression and inhibition by prototype thyroid disrupting chemicals (TDC). Flow analysis of the post-thaw cell suspension showed >80% EpCAM-positive cells with 10%–50% CD90-positive cells. When seeded onto 96-well Matrigel®-coated plates and treated with bovine thyroid stimulating hormone (TSH), thyrocytes formed 3D microtissues during the initial 4–5 days of culture. The microtissues exhibited a stable morphology and size over a 14-day culture period. TG and T4 production were highest in microtissues when the proportion of CD90-positive cells, seeding density and thyroid stimulating hormone concentrations were between 10%–30%, 6K–12K cells per well, and 0.03–1 mIU/mL, respectively. At maximal TG and T4 production levels, average microtissue diameters ranged between 50 and 200 µm. The T4 IC50 values for two prototype TPO inhibitors, 6-propyl-2-thiouracil and methimazole, were ∼0.7 µM and ∼0.5 µM, respectively, in microtissue cultures treated between days 9 and 14. Overall, p’1 cryopreserved primary human thyrocytes in 3D microtissue culture represent a promising new model system to prioritize potential TDC acting directly on the thyroid as part of a weight-of-evidence hazard characterization.","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141809828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.3389/ftox.2024.1389160
Gelsomina Pillo, Federico Aldrovandi, Ada Mescoli, Giangabriele Maffei, M. Mascolo, Monica Vaccari, A. Colacci
Di(ethylhexyl) phthalate (DEHP) is a ubiquitous environmental contaminant to which humans are exposed via multiple routes. Human health risk assessments for this substance have recently been updated, focusing on reproductive toxicity, including DEHP, in the list of chemicals classified as carcinogenic, mutagenic, or toxic to reproduction (CMR). Moreover, DEHP has also been defined as probably and possibly carcinogenic to humans based on its carcinogenicity in rodents. However, the mechanism of action of DEHP and its relevance in humans remain unclear. Rodent data suggests that DEHP induces cancer through non-genotoxic mechanisms related to multiple molecular signals, including PPARα activation, perturbation of fatty acid metabolism, induction of cell proliferation, decreased apoptosis, production of reactive oxygen species, and oxidative stress. According to the DEHP toxicological dataset, several in vitro cell transformation assays have been performed using different protocols and cellular models to produce different results. This study aimed to evaluate the carcinogenic potential of DEHP by using the A31-1-1 BALB/c-3T3 cell line in a standard cell transformation assay. Additionally, transcriptomic analysis was performed to explore the molecular responses and identify the affected toxicological pathways. Although DEHP treatment did not induce transformation in BALB/c-3T3 cells, the transcriptomic results revealed significant modulation of several pathways associated with DEHP metabolism, tissue-specific functions related to systemic metabolism, and basal cellular signaling with pleiotropic outcomes. Among these signaling pathways, modulation of cell-regulating signaling pathways, such as Notch, Wnt, and TGF-β, can be highlighted. More specific modulation of such genes and pathways with double functions in metabolism and neurophysiology underlies the well-known crosstalk that may be crucial for the mechanism of action of DEHP. Our findings offer evidence to support the notion that these models are effective in minimizing the use of animal testing for toxicity assessment.
{"title":"An insight into carcinogenic activity and molecular mechanisms of Bis(2-ethylhexyl) phthalate","authors":"Gelsomina Pillo, Federico Aldrovandi, Ada Mescoli, Giangabriele Maffei, M. Mascolo, Monica Vaccari, A. Colacci","doi":"10.3389/ftox.2024.1389160","DOIUrl":"https://doi.org/10.3389/ftox.2024.1389160","url":null,"abstract":"Di(ethylhexyl) phthalate (DEHP) is a ubiquitous environmental contaminant to which humans are exposed via multiple routes. Human health risk assessments for this substance have recently been updated, focusing on reproductive toxicity, including DEHP, in the list of chemicals classified as carcinogenic, mutagenic, or toxic to reproduction (CMR). Moreover, DEHP has also been defined as probably and possibly carcinogenic to humans based on its carcinogenicity in rodents. However, the mechanism of action of DEHP and its relevance in humans remain unclear. Rodent data suggests that DEHP induces cancer through non-genotoxic mechanisms related to multiple molecular signals, including PPARα activation, perturbation of fatty acid metabolism, induction of cell proliferation, decreased apoptosis, production of reactive oxygen species, and oxidative stress. According to the DEHP toxicological dataset, several in vitro cell transformation assays have been performed using different protocols and cellular models to produce different results. This study aimed to evaluate the carcinogenic potential of DEHP by using the A31-1-1 BALB/c-3T3 cell line in a standard cell transformation assay. Additionally, transcriptomic analysis was performed to explore the molecular responses and identify the affected toxicological pathways. Although DEHP treatment did not induce transformation in BALB/c-3T3 cells, the transcriptomic results revealed significant modulation of several pathways associated with DEHP metabolism, tissue-specific functions related to systemic metabolism, and basal cellular signaling with pleiotropic outcomes. Among these signaling pathways, modulation of cell-regulating signaling pathways, such as Notch, Wnt, and TGF-β, can be highlighted. More specific modulation of such genes and pathways with double functions in metabolism and neurophysiology underlies the well-known crosstalk that may be crucial for the mechanism of action of DEHP. Our findings offer evidence to support the notion that these models are effective in minimizing the use of animal testing for toxicity assessment.","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141813826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.3389/ftox.2024.1393330
Mahmoud G. Soliman, Alberto Martinez-Serra, Marko Dobricic, Duong N. Trinh, Jack Cheeseman, Daniel I R Spencer, M. Monopoli
Engineered nanoparticles (NPs) pose a broad spectrum of interesting properties that make them useful for many applications. However, continuous exposure to NPs requires the need to deeply understand the outcomes when these NPs interact with different biological environments. After exposure within (to) these environments, the pristine surfaces of NPs strongly interact with the molecules from the surrounding medium, including metabolites, lipids, glycan, and proteins, forming the so-called protein corona (PC). It is well established that the NP-PC strongly influences the biological fate of various NPs types, including cellular uptake, toxicity, and biodistribution. Thus, for a proper assessment of potential hazards associated with engineered NPs, it is mandatory to study and evaluate the PC that forms around NPs. Herein, we describe protocols in detail for the isolation and characterization of NP-PC complexes and cover the following aspects: 1) isolation protocols for different nanomaterials in a range of exposing media, including magnetic isolation methods for superparamagnetic NPs, 2) NP physico-chemical characterization using advanced and standard techniques available in regular laboratories, and 3) NP- PC characterization of the protein and glycan components.
{"title":"Protocols for isolation and characterization of nanoparticle biomolecular corona complexes","authors":"Mahmoud G. Soliman, Alberto Martinez-Serra, Marko Dobricic, Duong N. Trinh, Jack Cheeseman, Daniel I R Spencer, M. Monopoli","doi":"10.3389/ftox.2024.1393330","DOIUrl":"https://doi.org/10.3389/ftox.2024.1393330","url":null,"abstract":"Engineered nanoparticles (NPs) pose a broad spectrum of interesting properties that make them useful for many applications. However, continuous exposure to NPs requires the need to deeply understand the outcomes when these NPs interact with different biological environments. After exposure within (to) these environments, the pristine surfaces of NPs strongly interact with the molecules from the surrounding medium, including metabolites, lipids, glycan, and proteins, forming the so-called protein corona (PC). It is well established that the NP-PC strongly influences the biological fate of various NPs types, including cellular uptake, toxicity, and biodistribution. Thus, for a proper assessment of potential hazards associated with engineered NPs, it is mandatory to study and evaluate the PC that forms around NPs. Herein, we describe protocols in detail for the isolation and characterization of NP-PC complexes and cover the following aspects: 1) isolation protocols for different nanomaterials in a range of exposing media, including magnetic isolation methods for superparamagnetic NPs, 2) NP physico-chemical characterization using advanced and standard techniques available in regular laboratories, and 3) NP- PC characterization of the protein and glycan components.","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141812507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.3389/ftox.2024.1437884
Brent Wyatt, A. P. Davis, Thomas C. Wiegers, Jolene Wiegers, Sakib Abrar, D. Sciaky, Fern Barkalow, Melissa Strong, C. Mattingly
In environmental health, the specific molecular mechanisms connecting a chemical exposure to an adverse endpoint are often unknown, reflecting knowledge gaps. At the public Comparative Toxicogenomics Database (CTD; https://ctdbase.org/), we integrate manually curated, literature-based interactions from CTD to compute four-unit blocks of information organized as a potential step-wise molecular mechanism, known as “CGPD-tetramers,” wherein a chemical interacts with a gene product to trigger a phenotype which can be linked to a disease. These computationally derived datasets can be used to fill the gaps and offer testable mechanistic information. Users can generate CGPD-tetramers for any combination of chemical, gene, phenotype, and/or disease of interest at CTD; however, such queries typically result in the generation of thousands of CGPD-tetramers. Here, we describe a novel approach to transform these large datasets into user-friendly chord diagrams using R. This visualization process is straightforward, simple to implement, and accessible to inexperienced users that have never used R before. Combining CGPD-tetramers into a single chord diagram helps identify potential key chemicals, genes, phenotypes, and diseases. This visualization allows users to more readily analyze computational datasets that can fill the exposure knowledge gaps in the environmental health continuum.
在环境健康领域,化学品暴露与不良终点之间的具体分子机制往往是未知的,这反映了知识上的差距。在公共比较毒物基因组学数据库(CTD; https://ctdbase.org/)中,我们整合了 CTD 中人工编辑的、基于文献的相互作用,计算出四个单位的信息块,作为潜在的逐步分子机制,即 "CGPD-tetramers",其中一种化学品与一种基因产物相互作用,引发一种表型,而这种表型可以与疾病联系起来。这些计算得出的数据集可以用来填补空白,提供可检验的机理信息。用户可以在 CTD 上为感兴趣的化学物质、基因、表型和/或疾病的任何组合生成 CGPD-四聚体;但是,这种查询通常会生成数千个 CGPD-四聚体。在这里,我们介绍了一种使用 R 将这些大型数据集转化为用户友好和弦图的新方法。这种可视化过程简单明了、易于实现,而且从未使用过 R 的无经验用户也可以使用。将 CGPD 四聚体组合成单个弦图有助于识别潜在的关键化学物质、基因、表型和疾病。这种可视化方法可以让用户更轻松地分析计算数据集,从而填补环境健康连续体中暴露知识的空白。
{"title":"Transforming environmental health datasets from the comparative toxicogenomics database into chord diagrams to visualize molecular mechanisms","authors":"Brent Wyatt, A. P. Davis, Thomas C. Wiegers, Jolene Wiegers, Sakib Abrar, D. Sciaky, Fern Barkalow, Melissa Strong, C. Mattingly","doi":"10.3389/ftox.2024.1437884","DOIUrl":"https://doi.org/10.3389/ftox.2024.1437884","url":null,"abstract":"In environmental health, the specific molecular mechanisms connecting a chemical exposure to an adverse endpoint are often unknown, reflecting knowledge gaps. At the public Comparative Toxicogenomics Database (CTD; https://ctdbase.org/), we integrate manually curated, literature-based interactions from CTD to compute four-unit blocks of information organized as a potential step-wise molecular mechanism, known as “CGPD-tetramers,” wherein a chemical interacts with a gene product to trigger a phenotype which can be linked to a disease. These computationally derived datasets can be used to fill the gaps and offer testable mechanistic information. Users can generate CGPD-tetramers for any combination of chemical, gene, phenotype, and/or disease of interest at CTD; however, such queries typically result in the generation of thousands of CGPD-tetramers. Here, we describe a novel approach to transform these large datasets into user-friendly chord diagrams using R. This visualization process is straightforward, simple to implement, and accessible to inexperienced users that have never used R before. Combining CGPD-tetramers into a single chord diagram helps identify potential key chemicals, genes, phenotypes, and diseases. This visualization allows users to more readily analyze computational datasets that can fill the exposure knowledge gaps in the environmental health continuum.","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141815234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.3389/ftox.2024.1425537
Yvonne Rericha, Lindsey St. Mary, Lisa Truong, Ryan McClure, J. K. Martin, Scott W. Leonard, Preethi Thunga, Michael T. Simonich, Katrina M. Waters, Jennifer A. Field, R. Tanguay
Per- and polyfluoroalkyl substances (PFAS) are a widespread and persistent class of contaminants posing significant environmental and human health concerns. Comprehensive understanding of the modes of action underlying toxicity among structurally diverse PFAS is mostly lacking. To address this need, we recently reported on our application of developing zebrafish to evaluate a large library of PFAS for developmental toxicity. In the present study, we prioritized 15 bioactive PFAS that induced significant morphological effects and performed RNA-sequencing to characterize early transcriptional responses at a single timepoint (48 h post fertilization) after early developmental exposures (8 h post fertilization). Internal concentrations of 5 of the 15 PFAS were measured from pooled whole fish samples across multiple timepoints between 24–120 h post fertilization, and additional temporal transcriptomics at several timepoints (48–96 h post fertilization) were conducted for Nafion byproduct 2. A broad range of differentially expressed gene counts were identified across the PFAS exposures. Most PFAS that elicited robust transcriptomic changes affected biological processes of the brain and nervous system development. While PFAS disrupted unique processes, we also found that similarities in some functional head groups of PFAS were associated with the disruption in expression of similar gene sets. Body burdens after early developmental exposures to select sulfonic acid PFAS, including Nafion byproduct 2, increased from the 24–96 h post fertilization sampling timepoints and were greater than those of sulfonamide PFAS of similar chain lengths. In parallel, the Nafion byproduct 2-induced transcriptional responses increased between 48 and 96 h post fertilization. PFAS characteristics based on toxicity, transcriptomic effects, and modes of action will contribute to further prioritization of PFAS structures for testing and informed hazard assessment.
{"title":"Diverse PFAS produce unique transcriptomic changes linked to developmental toxicity in zebrafish","authors":"Yvonne Rericha, Lindsey St. Mary, Lisa Truong, Ryan McClure, J. K. Martin, Scott W. Leonard, Preethi Thunga, Michael T. Simonich, Katrina M. Waters, Jennifer A. Field, R. Tanguay","doi":"10.3389/ftox.2024.1425537","DOIUrl":"https://doi.org/10.3389/ftox.2024.1425537","url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) are a widespread and persistent class of contaminants posing significant environmental and human health concerns. Comprehensive understanding of the modes of action underlying toxicity among structurally diverse PFAS is mostly lacking. To address this need, we recently reported on our application of developing zebrafish to evaluate a large library of PFAS for developmental toxicity. In the present study, we prioritized 15 bioactive PFAS that induced significant morphological effects and performed RNA-sequencing to characterize early transcriptional responses at a single timepoint (48 h post fertilization) after early developmental exposures (8 h post fertilization). Internal concentrations of 5 of the 15 PFAS were measured from pooled whole fish samples across multiple timepoints between 24–120 h post fertilization, and additional temporal transcriptomics at several timepoints (48–96 h post fertilization) were conducted for Nafion byproduct 2. A broad range of differentially expressed gene counts were identified across the PFAS exposures. Most PFAS that elicited robust transcriptomic changes affected biological processes of the brain and nervous system development. While PFAS disrupted unique processes, we also found that similarities in some functional head groups of PFAS were associated with the disruption in expression of similar gene sets. Body burdens after early developmental exposures to select sulfonic acid PFAS, including Nafion byproduct 2, increased from the 24–96 h post fertilization sampling timepoints and were greater than those of sulfonamide PFAS of similar chain lengths. In parallel, the Nafion byproduct 2-induced transcriptional responses increased between 48 and 96 h post fertilization. PFAS characteristics based on toxicity, transcriptomic effects, and modes of action will contribute to further prioritization of PFAS structures for testing and informed hazard assessment.","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141814026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}