Modern power engine concepts and environmental restrictions demand oil-free lubrication of rotors, for example, by gas bearings. However, the stiffness and damping properties ruling the rotor’s dynamics are poorly documented for aerodynamic bearings and simple calculation methods are lacking. Based on the similarity between aerodynamic and hydrodynamic journal bearings, it is investigated to what extent the hydrodynamic bearing element types of the commercial FE program ANSYS are also suitable for air bearings. Within these elements, the compressibility of the gas is neglected. After verification of the ANSYS hydrodynamic element types with literature data for cylindrical hydrodynamic bearings, the stiffness and damping coefficients of a cylindrical aerodynamic bearing are calculated by using the ANSYS hydrodynamic element types. In the examined speed range, the results agree well with literature data that consider gas compressibility. Therefore, the FE elements designed for hydrodynamical journal bearings may also be used for simulating cylindrical aerodynamic bearings. The presented calculation approach provides a compact and easy-to-use method for rotordynamic simulations with cylindrical aerodynamic bearings in a single development environment.
{"title":"Modelling and Simulation of Aerodynamic Cylindrical Bearings Using ANSYS Hydrodynamic Bearing Element Types","authors":"Katrin Baumann, Hermann Freund","doi":"10.3390/vehicles5030061","DOIUrl":"https://doi.org/10.3390/vehicles5030061","url":null,"abstract":"Modern power engine concepts and environmental restrictions demand oil-free lubrication of rotors, for example, by gas bearings. However, the stiffness and damping properties ruling the rotor’s dynamics are poorly documented for aerodynamic bearings and simple calculation methods are lacking. Based on the similarity between aerodynamic and hydrodynamic journal bearings, it is investigated to what extent the hydrodynamic bearing element types of the commercial FE program ANSYS are also suitable for air bearings. Within these elements, the compressibility of the gas is neglected. After verification of the ANSYS hydrodynamic element types with literature data for cylindrical hydrodynamic bearings, the stiffness and damping coefficients of a cylindrical aerodynamic bearing are calculated by using the ANSYS hydrodynamic element types. In the examined speed range, the results agree well with literature data that consider gas compressibility. Therefore, the FE elements designed for hydrodynamical journal bearings may also be used for simulating cylindrical aerodynamic bearings. The presented calculation approach provides a compact and easy-to-use method for rotordynamic simulations with cylindrical aerodynamic bearings in a single development environment.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75192326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Innovative solutions are now being researched to manage the ever-increasing amount of data required to optimize the performance of internal combustion engines. Machine learning approaches have shown to be a valuable tool for signal prediction due to their real-time and cost-effective deployment. Among them, the architecture consisting of long short-term memory (LSTM) and one-dimensional convolutional neural networks (1DCNNs) has emerged as a highly promising and effective option to replace physical sensors. This architecture combines the capacity of LSTM to detect patterns and relationships in smaller segments of a signal with the ability of 1DCNNs to detect patterns and relationships in larger segments of a signal. The purpose of this work is to assess the feasibility of substituting a physical device dedicated to calculating the torque supplied by a spark-ignition engine. The suggested architecture was trained and tested using signals from the field during a test campaign conducted under transient operating conditions. The results reveal that LSTM + 1DCNN is particularly well suited for signal prediction with considerable variability. It constantly outperforms other architectures used for comparison, with average error percentages of less than 2%, proving the architecture’s ability to replace physical sensors.
{"title":"Hybrid LSTM + 1DCNN Approach to Forecasting Torque Internal Combustion Engines","authors":"Federico Ricci, Luca Petrucci, Francesco Mariani","doi":"10.3390/vehicles5030060","DOIUrl":"https://doi.org/10.3390/vehicles5030060","url":null,"abstract":"Innovative solutions are now being researched to manage the ever-increasing amount of data required to optimize the performance of internal combustion engines. Machine learning approaches have shown to be a valuable tool for signal prediction due to their real-time and cost-effective deployment. Among them, the architecture consisting of long short-term memory (LSTM) and one-dimensional convolutional neural networks (1DCNNs) has emerged as a highly promising and effective option to replace physical sensors. This architecture combines the capacity of LSTM to detect patterns and relationships in smaller segments of a signal with the ability of 1DCNNs to detect patterns and relationships in larger segments of a signal. The purpose of this work is to assess the feasibility of substituting a physical device dedicated to calculating the torque supplied by a spark-ignition engine. The suggested architecture was trained and tested using signals from the field during a test campaign conducted under transient operating conditions. The results reveal that LSTM + 1DCNN is particularly well suited for signal prediction with considerable variability. It constantly outperforms other architectures used for comparison, with average error percentages of less than 2%, proving the architecture’s ability to replace physical sensors.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81991043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ermioni Qafzezi, Kevin Bylykbashi, Shunya Higashi, Phudit Ampririt, Keita Matsuo, L. Barolli
Vehicular Ad Hoc Networks (VANETs) have gained significant attention due to their potential to enhance road safety, traffic efficiency, and passenger comfort through vehicle-to-vehicle and vehicle-to-infrastructure communication. However, VANETs face resource management challenges due to the dynamic and resource constrained nature of vehicular environments. Integrating cloud-fog-edge computing and Software-Defined Networking (SDN) with VANETs can harness the computational capabilities and resources available at different tiers to efficiently process and manage vehicular data. In this work, we used this paradigm and proposed an intelligent approach based on Fuzzy Logic (FL) to evaluate the processing and storage capability of vehicles for helping other vehicles in need of additional resources. The effectiveness of the proposed system is evaluated through extensive simulations and a testbed. Performance analysis between the simulation results and the testbed offers a comprehensive understanding of the proposed system and its performance and feasibility.
{"title":"A Fuzzy-Based Approach for the Assessment of the Edge Layer Processing Capability in SDN-VANETs: A Comparation Study of Testbed and Simulation System Results","authors":"Ermioni Qafzezi, Kevin Bylykbashi, Shunya Higashi, Phudit Ampririt, Keita Matsuo, L. Barolli","doi":"10.3390/vehicles5030059","DOIUrl":"https://doi.org/10.3390/vehicles5030059","url":null,"abstract":"Vehicular Ad Hoc Networks (VANETs) have gained significant attention due to their potential to enhance road safety, traffic efficiency, and passenger comfort through vehicle-to-vehicle and vehicle-to-infrastructure communication. However, VANETs face resource management challenges due to the dynamic and resource constrained nature of vehicular environments. Integrating cloud-fog-edge computing and Software-Defined Networking (SDN) with VANETs can harness the computational capabilities and resources available at different tiers to efficiently process and manage vehicular data. In this work, we used this paradigm and proposed an intelligent approach based on Fuzzy Logic (FL) to evaluate the processing and storage capability of vehicles for helping other vehicles in need of additional resources. The effectiveness of the proposed system is evaluated through extensive simulations and a testbed. Performance analysis between the simulation results and the testbed offers a comprehensive understanding of the proposed system and its performance and feasibility.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76874733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using Unmanned Aerial Vehicles (UAVs), commonly referred to as “drones”, as a supplementary mode for last-mile deliveries has been a research focus for some years now. Motivation lies in the reduced dependency on Conventional Vehicles (CVs) and fossil fuels and in serving remote areas and underprivileged populations. We are building a flexible, modular framework for integrated CV-UAV parcel delivery operations planning that is responsive to infrastructure and demand and offers an open and practical tool for future adaptations. The entire model and solution methodology are practical tools for decision making and strategic planning, with novelties such as the variable Launch Site types for Launch and Recovery Operations (LAROs), the tailored Assignment and Routing Optimization nested GA, the consideration of airspace restrictions of any shape and size, the inclusion of GIS tools in the process, the modularity of the platform, and most importantly, the inclusion of all the above in a single, comprehensive, and holistic approach. Because of the need for safe UAV deployment sites and the high presence of restricted airspace zones in urban environments, the intended field of application is assumed to be the delivery of small packages in rural and under-connected areas, the execution of inter-city deliveries, and the expansion of a city’s original service range. A single CV is equipped onboard with UAVs, while special locations, such as Remote Depots (RDs) with UAVs and Virtual Hubs (VHs) for UAV deployment facilitation, are introduced. The framework considers the presence of Restricted Zones (RZs) for UAV flights. Part of the methodology is implemented in a GIS environment, taking advantage of modern tools for spatial analysis and optimal path planning. We have designed a tailored nested GA method for solving the occurring mode assignment and vehicle routing optimization problems and have implemented our workflow on a devised case study with benchmark characteristics. Our model responds well to unfavorable network types and demand locations, while the presence of RZs notably affects the expected solution and should be considered in the decision-making process.
{"title":"Planning Integrated Unmanned Aerial Vehicle and Conventional Vehicle Delivery Operations under Restricted Airspace: A Mixed Nested Genetic Algorithm and Geographic Information System-Assisted Optimization Approach","authors":"Konstantinos Kouretas, Konstantinos Kepaptsoglou","doi":"10.3390/vehicles5030058","DOIUrl":"https://doi.org/10.3390/vehicles5030058","url":null,"abstract":"Using Unmanned Aerial Vehicles (UAVs), commonly referred to as “drones”, as a supplementary mode for last-mile deliveries has been a research focus for some years now. Motivation lies in the reduced dependency on Conventional Vehicles (CVs) and fossil fuels and in serving remote areas and underprivileged populations. We are building a flexible, modular framework for integrated CV-UAV parcel delivery operations planning that is responsive to infrastructure and demand and offers an open and practical tool for future adaptations. The entire model and solution methodology are practical tools for decision making and strategic planning, with novelties such as the variable Launch Site types for Launch and Recovery Operations (LAROs), the tailored Assignment and Routing Optimization nested GA, the consideration of airspace restrictions of any shape and size, the inclusion of GIS tools in the process, the modularity of the platform, and most importantly, the inclusion of all the above in a single, comprehensive, and holistic approach. Because of the need for safe UAV deployment sites and the high presence of restricted airspace zones in urban environments, the intended field of application is assumed to be the delivery of small packages in rural and under-connected areas, the execution of inter-city deliveries, and the expansion of a city’s original service range. A single CV is equipped onboard with UAVs, while special locations, such as Remote Depots (RDs) with UAVs and Virtual Hubs (VHs) for UAV deployment facilitation, are introduced. The framework considers the presence of Restricted Zones (RZs) for UAV flights. Part of the methodology is implemented in a GIS environment, taking advantage of modern tools for spatial analysis and optimal path planning. We have designed a tailored nested GA method for solving the occurring mode assignment and vehicle routing optimization problems and have implemented our workflow on a devised case study with benchmark characteristics. Our model responds well to unfavorable network types and demand locations, while the presence of RZs notably affects the expected solution and should be considered in the decision-making process.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82902839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Nam, Jieun Park, Chaeyeon Sagong, Yujin Lee, Hyung-Jong Kim
Computer vehicle simulators are used to model real-world situations to overcome time and cost limitations. The vehicle simulators provide virtual scenarios for real-world driving. Although the existing simulators precisely observe movement on the basis of good-quality graphics, they focus on a few driving vehicles instead of accident simulation. In addition, it is difficult to represent vehicle collisions. We propose a vehicle crash simulator with simulation and animation components. The proposed simulator synthesizes and simulates models of vehicles and environments. The simulator animates corresponding to the simulation through the execution results. The simulation results validate that the proposed simulator provides collision and non-collision results according to the speed of two vehicles at an intersection.
{"title":"A Vehicle Crash Simulator Using Digital Twin Technology for Synthesizing Simulation and Graphical Models","authors":"S. Nam, Jieun Park, Chaeyeon Sagong, Yujin Lee, Hyung-Jong Kim","doi":"10.3390/vehicles5030057","DOIUrl":"https://doi.org/10.3390/vehicles5030057","url":null,"abstract":"Computer vehicle simulators are used to model real-world situations to overcome time and cost limitations. The vehicle simulators provide virtual scenarios for real-world driving. Although the existing simulators precisely observe movement on the basis of good-quality graphics, they focus on a few driving vehicles instead of accident simulation. In addition, it is difficult to represent vehicle collisions. We propose a vehicle crash simulator with simulation and animation components. The proposed simulator synthesizes and simulates models of vehicles and environments. The simulator animates corresponding to the simulation through the execution results. The simulation results validate that the proposed simulator provides collision and non-collision results according to the speed of two vehicles at an intersection.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"98 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89127819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ride comfort provided by a vehicle to the driver and the passengers is an important feature, directly correlated to the technical characteristics of the suspension system of the vehicle. In the literature, several lumped-parameter models simulating the vehicle and the driver are proposed for the computational evaluation of ride comfort. In order to quantify ride comfort, other than the values of acceleration, metrics such as seat effective amplitude transmissibility (SEAT) and seat-to-head transmissibility (STHT) are utilized. In this paper, a quarter car model is coupled with a six-degree-of-freedom lumped-parameter model, consisting of the driver’s seat and the driver. A sensitivity analysis is performed on the values of the lumped parameters of the seated human body with regard to ride comfort in order to evaluate the effect of their accuracy relative to the ride comfort evaluation. The results of the sensitivity analysis revealed that the values of the mass, the stiffness and the damping parameters of the seated human model influence the ride-comfort metrics to a different extent. Furthermore, it was depicted that ride-comfort metrics were affected in different manners depending on the characteristics of the excitation of the vehicle, yet less than 10% Finally, the importance of the consideration of single-disturbance excitations in such sensitivity studies emerged.
{"title":"Sensitivity Analysis of a Driver’s Lumped Parameter Model in the Evaluation of Ride Comfort","authors":"D. Koulocheris, C. Vossou","doi":"10.3390/vehicles5030056","DOIUrl":"https://doi.org/10.3390/vehicles5030056","url":null,"abstract":"The ride comfort provided by a vehicle to the driver and the passengers is an important feature, directly correlated to the technical characteristics of the suspension system of the vehicle. In the literature, several lumped-parameter models simulating the vehicle and the driver are proposed for the computational evaluation of ride comfort. In order to quantify ride comfort, other than the values of acceleration, metrics such as seat effective amplitude transmissibility (SEAT) and seat-to-head transmissibility (STHT) are utilized. In this paper, a quarter car model is coupled with a six-degree-of-freedom lumped-parameter model, consisting of the driver’s seat and the driver. A sensitivity analysis is performed on the values of the lumped parameters of the seated human body with regard to ride comfort in order to evaluate the effect of their accuracy relative to the ride comfort evaluation. The results of the sensitivity analysis revealed that the values of the mass, the stiffness and the damping parameters of the seated human model influence the ride-comfort metrics to a different extent. Furthermore, it was depicted that ride-comfort metrics were affected in different manners depending on the characteristics of the excitation of the vehicle, yet less than 10% Finally, the importance of the consideration of single-disturbance excitations in such sensitivity studies emerged.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"90 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83908125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autonomous ground vehicles (AGVs) operating in complex environments face the challenge of accurately following desired paths while accounting for uncertainties, external disturbances, and initial conditions, necessitating robust and adaptive control strategies. This paper addresses the critical path-tracking task in AGVs through a novel control framework for multilevel speed AGVs, considering both structured and unstructured uncertainties. The control system introduced in this study utilizes a nonlinear adaptive approach by integrating integral backstepping with terminal sliding mode control (IBTSMC). By incorporating integral action, IBTSMC continuously adjusts the control input to minimize tracking errors, improving tracking performance. The hybridization of the terminal sliding mode method enables finite time convergence, robustness, and a chatter-free response with reduced sensitivity to initial conditions. Furthermore, adaptive control compensators are developed to ensure robustness against unknown but bounded external disturbances. The Lyapunov stability theorem is employed to guarantee the global asymptotic stability of the closed-loop system and the convergence of tracking errors to the origin within finite time. To validate the effectiveness of the proposed control scheme, high-fidelity cosimulations are conducted using CarSim and MATLAB. Comparative analysis is performed with other methods reported in the literature. The results confirm that the proposed controller demonstrates competitive effectiveness in path-tracking tasks and exhibits strong efficiency under various road conditions, parametric uncertainties, and unknown disturbances.
{"title":"Adaptive Robust Terminal Sliding Mode Control with Integral Backstepping Synthesized Method for Autonomous Ground Vehicle Control","authors":"H. Taghavifar, A. Mohammadzadeh","doi":"10.3390/vehicles5030055","DOIUrl":"https://doi.org/10.3390/vehicles5030055","url":null,"abstract":"Autonomous ground vehicles (AGVs) operating in complex environments face the challenge of accurately following desired paths while accounting for uncertainties, external disturbances, and initial conditions, necessitating robust and adaptive control strategies. This paper addresses the critical path-tracking task in AGVs through a novel control framework for multilevel speed AGVs, considering both structured and unstructured uncertainties. The control system introduced in this study utilizes a nonlinear adaptive approach by integrating integral backstepping with terminal sliding mode control (IBTSMC). By incorporating integral action, IBTSMC continuously adjusts the control input to minimize tracking errors, improving tracking performance. The hybridization of the terminal sliding mode method enables finite time convergence, robustness, and a chatter-free response with reduced sensitivity to initial conditions. Furthermore, adaptive control compensators are developed to ensure robustness against unknown but bounded external disturbances. The Lyapunov stability theorem is employed to guarantee the global asymptotic stability of the closed-loop system and the convergence of tracking errors to the origin within finite time. To validate the effectiveness of the proposed control scheme, high-fidelity cosimulations are conducted using CarSim and MATLAB. Comparative analysis is performed with other methods reported in the literature. The results confirm that the proposed controller demonstrates competitive effectiveness in path-tracking tasks and exhibits strong efficiency under various road conditions, parametric uncertainties, and unknown disturbances.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86487950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Bowlin, Mohammad S. Khan, Biju Bajracharya, B. Appasani, N. Bizon
Current research with Vehicular Ad-hoc Networks (VANETs) has focused on adapting an efficient consensus mechanism and reducing the blockchain size while maintaining security. Care must be taken when implementing blockchains within VANET applications to leverage the chains’ strengths while mitigating their weaknesses. These chains can serve as distributed ledgers that provide storage for more than financial transactions. The security provided by longer blockchains constitutes a nearly immutable, decentralized data structure that can store any data relevant to the applications. However, these chains must be adapted to the ad-hoc, resource-constrained environments found in VANETs. In the absence of abundant resources and reliable network connections, chain operation and maintenance must address the challenges presented by highly mobile nodes in novel ways, including situations such as emergency messaging that require real-time responses. Researchers have included different mechanisms to realize lightweight blockchains, such as adding reputation to existing consensus mechanisms, condensing the consensus committees, using geographical information, and monitoring a nodes behavior in attempts to adapt blockchains to these domains. This paper analyzes the challenges and gives solutions for these different mechanisms to realize lightweight blockchains for VANETs.
{"title":"Challenges and Solutions for Vehicular Ad-Hoc Networks Based on Lightweight Blockchains","authors":"E. Bowlin, Mohammad S. Khan, Biju Bajracharya, B. Appasani, N. Bizon","doi":"10.3390/vehicles5030054","DOIUrl":"https://doi.org/10.3390/vehicles5030054","url":null,"abstract":"Current research with Vehicular Ad-hoc Networks (VANETs) has focused on adapting an efficient consensus mechanism and reducing the blockchain size while maintaining security. Care must be taken when implementing blockchains within VANET applications to leverage the chains’ strengths while mitigating their weaknesses. These chains can serve as distributed ledgers that provide storage for more than financial transactions. The security provided by longer blockchains constitutes a nearly immutable, decentralized data structure that can store any data relevant to the applications. However, these chains must be adapted to the ad-hoc, resource-constrained environments found in VANETs. In the absence of abundant resources and reliable network connections, chain operation and maintenance must address the challenges presented by highly mobile nodes in novel ways, including situations such as emergency messaging that require real-time responses. Researchers have included different mechanisms to realize lightweight blockchains, such as adding reputation to existing consensus mechanisms, condensing the consensus committees, using geographical information, and monitoring a nodes behavior in attempts to adapt blockchains to these domains. This paper analyzes the challenges and gives solutions for these different mechanisms to realize lightweight blockchains for VANETs.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"577 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82160263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorien Revueltas, O. Santos‐Sánchez, S. Salazar, R. Lozano
The lack of general algorithms for the control of nonlinear systems is a generalized problem, especially when attempting to stabilize systems such as ground vehicles, which have uncertainties and are usually linearized under the assumption of small angles. To solve this problem, in this work, the implementation of a suboptimal discrete control is developed to stabilize an autonomous automobile. We assume the system is affine for the optimization procedure of finite horizon that allows us to find a solution while avoiding solving the Ricatti-type equation, commonly encountered in this kind of algorithm. This procedure is applied to the dynamical model of the lateral displacement and orientation errors of the vehicle that was discretized through the method of Euler. These nonlinear models discretized to compute a bounded control. The control is tested in different simulated scenarios to show the efficiency of the system for solving typical tasks for the path planning of an autonomous vehicle.
{"title":"Optimizing Nonlinear Lateral Control for an Autonomous Vehicle","authors":"Lorien Revueltas, O. Santos‐Sánchez, S. Salazar, R. Lozano","doi":"10.3390/vehicles5030053","DOIUrl":"https://doi.org/10.3390/vehicles5030053","url":null,"abstract":"The lack of general algorithms for the control of nonlinear systems is a generalized problem, especially when attempting to stabilize systems such as ground vehicles, which have uncertainties and are usually linearized under the assumption of small angles. To solve this problem, in this work, the implementation of a suboptimal discrete control is developed to stabilize an autonomous automobile. We assume the system is affine for the optimization procedure of finite horizon that allows us to find a solution while avoiding solving the Ricatti-type equation, commonly encountered in this kind of algorithm. This procedure is applied to the dynamical model of the lateral displacement and orientation errors of the vehicle that was discretized through the method of Euler. These nonlinear models discretized to compute a bounded control. The control is tested in different simulated scenarios to show the efficiency of the system for solving typical tasks for the path planning of an autonomous vehicle.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"96 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86291473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
On behalf of MÁV Hungarian State Railways Ltd., the authors carried out a research and development (R&D) project on behalf of the Budapest University of Technology and Economics, Department of Highway and Railway Engineering, on the subject of “Research and investigation of the causes of gauge narrowing by finite-element modeling in running track and turnout, and under operational and laboratory conditions”. The main objective of the research was to investigate the causes of localized defects of gauge narrowing in railway tracks based on machine and manual track measurements, laboratory measurements, and theoretical considerations. The measures proposed as a consequence of identifying the causes could significantly contribute to reducing the number and extent of local defects in the future. Furthermore, the research aims to develop new theories in less scientifically mature areas and provide procedures and instructions that professional engineers and practitioners can easily apply. The main areas of research, which are not exhaustive, are as follows: (i) the evaluation of the measurement results provided by track geometry measuring and recording cars; (ii) on-site investigations in the railway track in terms of gauge and rail profile measurements; and, based on these, (iii) the selection of concrete sleepers, which were removed from the track and subjected to more detailed geometrical investigations in the laboratory, together with the components of the rail reinforcement; (iv) the track–vehicle connection, tight running in straight and curved track sections under track confinement; (v) modeling of the stability and deflection of the rail when the rail fastenings lose part of their supporting function; and (vi) finite element modeling of the concrete sleepers under operating conditions such as slow deformation of the concrete, temperature variation effects, and lateral support on the ballast. In the already-narrowed track section, the tight vehicle running is not the cause of the track gauge narrowing but a consequence, so it is not investigated in this paper.
{"title":"Investigation of the Causes of Railway Track Gauge Narrowing","authors":"P. Bocz, Nándor Liegner, Ákos Vinkó, S. Fischer","doi":"10.3390/vehicles5030052","DOIUrl":"https://doi.org/10.3390/vehicles5030052","url":null,"abstract":"On behalf of MÁV Hungarian State Railways Ltd., the authors carried out a research and development (R&D) project on behalf of the Budapest University of Technology and Economics, Department of Highway and Railway Engineering, on the subject of “Research and investigation of the causes of gauge narrowing by finite-element modeling in running track and turnout, and under operational and laboratory conditions”. The main objective of the research was to investigate the causes of localized defects of gauge narrowing in railway tracks based on machine and manual track measurements, laboratory measurements, and theoretical considerations. The measures proposed as a consequence of identifying the causes could significantly contribute to reducing the number and extent of local defects in the future. Furthermore, the research aims to develop new theories in less scientifically mature areas and provide procedures and instructions that professional engineers and practitioners can easily apply. The main areas of research, which are not exhaustive, are as follows: (i) the evaluation of the measurement results provided by track geometry measuring and recording cars; (ii) on-site investigations in the railway track in terms of gauge and rail profile measurements; and, based on these, (iii) the selection of concrete sleepers, which were removed from the track and subjected to more detailed geometrical investigations in the laboratory, together with the components of the rail reinforcement; (iv) the track–vehicle connection, tight running in straight and curved track sections under track confinement; (v) modeling of the stability and deflection of the rail when the rail fastenings lose part of their supporting function; and (vi) finite element modeling of the concrete sleepers under operating conditions such as slow deformation of the concrete, temperature variation effects, and lateral support on the ballast. In the already-narrowed track section, the tight vehicle running is not the cause of the track gauge narrowing but a consequence, so it is not investigated in this paper.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86109797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}