首页 > 最新文献

Physics of Wave Phenomena最新文献

英文 中文
Statistical Properties of 3-D Waves Simulated with 2-D Phase-Resolving Model 二维相位分辨模型模拟三维波的统计特性
IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-05-02 DOI: 10.3103/S1541308X23020048
D. Chalikov

Further evidences of effectiveness of а two-dimensional approach to modeling of three-dimensional deep-water potential waves are given. The 2-D model is based on the same two surface conditions as 3-D, but instead of а 3-D Laplace equation (used routinely for calculation of surface vertical velocity) the surface projection of Laplace equation is suggested for use. This equation is not closed, since it contains both the vertical velocity and its vertical derivative. The closing scheme is based on consideration of vertical structure of a nonlinear component of the velocity potential. It was shown before that the surface vertical velocity and its derivative are linearly connected with a coefficient depending on some integral parameters of the problem. The applicability of the 2-D model for reproducing statistical properties of wave field was demonstrated before for relatively simple integral characteristics and spectra. The paper is devoted to comparison of more complicated statistical results generated by full 3-D model and current 2-D model. A good agreement between the high order moments for elevation and surface vertical velocity and some other characteristics proves the applicability of the model for reproducing of statistical structure of a multimode wave field with satisfactory accuracy. The main advantage of 2-D model is that it runs 30–80 times faster than a 3-D model with similar setting.

进一步证明了二维方法在三维深水势波模拟中的有效性。二维模型基于与三维相同的两个表面条件,但建议使用拉普拉斯方程的表面投影而不是三维拉普拉斯方程(通常用于计算表面垂直速度)。这个方程不是封闭的,因为它同时包含了垂直速度和垂直导数。关闭方案是基于考虑垂直结构的非线性分量的速度势。前面已经证明,表面垂直速度及其导数与依赖于问题的某些积分参数的系数线性相关。对于相对简单的积分特征和谱,二维模型在再现波场统计特性方面的适用性已经得到证明。本文对全三维模型和现有的二维模型产生的更复杂的统计结果进行了比较。高程高阶矩和地表垂直速度高阶矩与其他特征吻合较好,证明该模型适用于多模波场的统计结构再现,精度令人满意。2-D模型的主要优点是它的运行速度比类似设置的3-D模型快30-80倍。
{"title":"Statistical Properties of 3-D Waves Simulated with 2-D Phase-Resolving Model","authors":"D. Chalikov","doi":"10.3103/S1541308X23020048","DOIUrl":"10.3103/S1541308X23020048","url":null,"abstract":"<p>Further evidences of effectiveness of а two-dimensional approach to modeling of three-dimensional deep-water potential waves are given. The 2-D model is based on the same two surface conditions as 3-D, but instead of а 3-D Laplace equation (used routinely for calculation of surface vertical velocity) the surface projection of Laplace equation is suggested for use. This equation is not closed, since it contains both the vertical velocity and its vertical derivative. The closing scheme is based on consideration of vertical structure of a nonlinear component of the velocity potential. It was shown before that the surface vertical velocity and its derivative are linearly connected with a coefficient depending on some integral parameters of the problem. The applicability of the 2-D model for reproducing statistical properties of wave field was demonstrated before for relatively simple integral characteristics and spectra. The paper is devoted to comparison of more complicated statistical results generated by full 3-D model and current 2-D model. A good agreement between the high order moments for elevation and surface vertical velocity and some other characteristics proves the applicability of the model for reproducing of statistical structure of a multimode wave field with satisfactory accuracy. The main advantage of 2-D model is that it runs 30–80 times faster than a 3-D model with similar setting.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 2","pages":"114 - 122"},"PeriodicalIF":1.4,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4098422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic Properties of Magnetic Semiconductor Compounds TlFeS2 and TlFeSе2 磁性半导体化合物TlFeS2和tlfesandre2的电子性质
IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-05-02 DOI: 10.3103/S1541308X2302005X
Z. A. Jahangirli, R. G. Veliyev, Z. I. Badalova, R. G. Seyidov, E. H. Alizade, T. G. Mammadov, N. A. Abdullayev

The electronic properties of magnetic semiconductors TlFeS2 and TlFeSе2 have been investigated experimentally by spectral ellipsometry and theoretically ab initio using the density functional theory (DFT). The imaginary and real parts of the dielectric function and the dispersion of the refractive indices, extinction coefficients, and absorption coefficients are found from ellipsometric measurements in the energy range of 0.7−6.5 eV. The direct band gap is estimated. The band structure, the origin of energy states, the optical functions, and the partial densities of states (PDOS) projected on atoms are determined from ab initio calculations. The calculation results are compared with the spectral ellipsometry data obtained in this study.

采用椭圆偏振光谱法和密度泛函理论从头计算方法研究了磁性半导体TlFeS2和tlfesnovel2的电子特性。在0.7 ~ 6.5 eV的能量范围内,通过椭偏测量得到了介电函数的虚部和实部以及折射率、消光系数和吸收系数的色散。估计了直接带隙。通过从头计算确定了带结构、能态起源、光学函数和投射到原子上的部分态密度(PDOS)。计算结果与本研究获得的光谱椭偏数据进行了比较。
{"title":"Electronic Properties of Magnetic Semiconductor Compounds TlFeS2 and TlFeSе2","authors":"Z. A. Jahangirli,&nbsp;R. G. Veliyev,&nbsp;Z. I. Badalova,&nbsp;R. G. Seyidov,&nbsp;E. H. Alizade,&nbsp;T. G. Mammadov,&nbsp;N. A. Abdullayev","doi":"10.3103/S1541308X2302005X","DOIUrl":"10.3103/S1541308X2302005X","url":null,"abstract":"<p>The electronic properties of magnetic semiconductors TlFeS<sub>2</sub> and TlFeSе<sub>2</sub> have been investigated experimentally by spectral ellipsometry and theoretically ab initio using the density functional theory (DFT). The imaginary and real parts of the dielectric function and the dispersion of the refractive indices, extinction coefficients, and absorption coefficients are found from ellipsometric measurements in the energy range of 0.7−6.5 eV. The direct band gap is estimated. The band structure, the origin of energy states, the optical functions, and the partial densities of states (PDOS) projected on atoms are determined from ab initio calculations. The calculation results are compared with the spectral ellipsometry data obtained in this study.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 2","pages":"84 - 91"},"PeriodicalIF":1.4,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4440024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positronium Annihilation in Freshly Defrosted Thawed Water 刚解冻的解冻水中正电子湮灭
IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-05-02 DOI: 10.3103/S1541308X23020115
L. I. Zemskaya, O. V. Ilyukhina, M. V. Karpov, S. V. Stepanov

Variation in the parameters of the positron annihilation lifetime spectra in pure water presubjected to freeze–thaw processes is studied. It is shown that in freshly defrosted water (at 1–2°С), the ortho-positronium lifetime and formation probability tend to the corresponding values in ice (near its melting point), and after about 10 h they reach the values corresponding to ordinary water at the same temperature. It indicates that no complete (at molecular level) defragmentation of the ice lattice occurs immediately after ice melting, and rigid ice-like clusters, in which positronium formation is also possible remain in the liquid phase for several hours.

研究了冻融过程中纯水中正电子湮灭寿命谱参数的变化。结果表明,在刚解冻的水中(1-2°С),正电子寿命和形成概率趋向于冰中(接近其熔点)的相应值,约10 h后达到相同温度下普通水的相应值。这表明,在冰融化后,没有完全(在分子水平上)的冰格碎片立即发生,并且刚性的冰状团簇(其中也可能形成正电子)在液相中保留数小时。
{"title":"Positronium Annihilation in Freshly Defrosted Thawed Water","authors":"L. I. Zemskaya,&nbsp;O. V. Ilyukhina,&nbsp;M. V. Karpov,&nbsp;S. V. Stepanov","doi":"10.3103/S1541308X23020115","DOIUrl":"10.3103/S1541308X23020115","url":null,"abstract":"<p>Variation in the parameters of the positron annihilation lifetime spectra in pure water presubjected to freeze–thaw processes is studied. It is shown that in freshly defrosted water (at 1–2°С), the ortho-positronium lifetime and formation probability tend to the corresponding values in ice (near its melting point), and after about 10 h they reach the values corresponding to ordinary water at the same temperature. It indicates that no complete (at molecular level) defragmentation of the ice lattice occurs immediately after ice melting, and rigid ice-like clusters, in which positronium formation is also possible remain in the liquid phase for several hours.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 2","pages":"105 - 109"},"PeriodicalIF":1.4,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4098419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser Synthesis of Gold Nanochains from Hydrochloroauric Acid Aqueous Solutions 激光合成氢氯金酸水溶液中的金纳米链
IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-03-27 DOI: 10.3103/S1541308X23010016
K. K. Ashikkalieva, V. V. Kononenko, N. R. Arutyunyan, E. V. Akhlyustina, E. V. Zavedeev, A. L. Vasiliev, A. L. Golovin, V. I. Konov

The dynamics of the reduction of hydrochloroauric acid (HAuCl4) aqueous solutions and the formation and disintegration of gold nanoparticles under high-intensity irradiation by Ti׃Al2O3 laser pulses (τ = 130 fs, f = 1 kHz, N = 6 × 104–3 × 106 pulses, average radiation power of 0.8 W) has been investigated by optical absorption spectroscopy. This high-intensity irradiation is found to cause formation (both during irradiation and after it), along with single gold nanoparticles several ten nanometers in diameter, elongated (chain) submicron structures, consisting of individual nanoelements of different shape. Specific features of the mechanisms of formation and evolution of nanostructures, caused by the multiphoton ionization of a liquid, its heating, and modification of nanostructures as a result of intense impact of an ultrashort laser pulse, as well as liquid heating by radiation with a high average power, are discussed.

利用光学吸收光谱法研究了Ti׃Al2O3激光脉冲(τ = 130 fs, f = 1 kHz, N = 6 × 104-3 × 106脉冲,平均辐射功率为0.8 W)高强度照射下氢氯金酸(HAuCl4)水溶液的还原动力学和金纳米粒子的形成与解体。这种高强度的辐射被发现会导致形成(在辐射期间和之后),伴随着单个金纳米颗粒直径几十纳米,细长(链)亚微米结构,由不同形状的单个纳米元素组成。本文讨论了液体的多光子电离、加热、超短激光脉冲的强烈冲击以及高平均功率辐射对液体加热所引起的纳米结构的修饰等纳米结构形成和演化机制的具体特征。
{"title":"Laser Synthesis of Gold Nanochains from Hydrochloroauric Acid Aqueous Solutions","authors":"K. K. Ashikkalieva,&nbsp;V. V. Kononenko,&nbsp;N. R. Arutyunyan,&nbsp;E. V. Akhlyustina,&nbsp;E. V. Zavedeev,&nbsp;A. L. Vasiliev,&nbsp;A. L. Golovin,&nbsp;V. I. Konov","doi":"10.3103/S1541308X23010016","DOIUrl":"10.3103/S1541308X23010016","url":null,"abstract":"<p>The dynamics of the reduction of hydrochloroauric acid (HAuCl<sub>4</sub>) aqueous solutions and the formation and disintegration of gold nanoparticles under high-intensity irradiation by Ti׃Al<sub>2</sub>O<sub>3</sub> laser pulses (τ = 130 fs, <i>f</i> = 1 kHz, <i>N</i> = 6 × 10<sup>4</sup>–3 × 10<sup>6</sup> pulses, average radiation power of 0.8 W) has been investigated by optical absorption spectroscopy. This high-intensity irradiation is found to cause formation (both during irradiation and after it), along with single gold nanoparticles several ten nanometers in diameter, elongated (chain) submicron structures, consisting of individual nanoelements of different shape. Specific features of the mechanisms of formation and evolution of nanostructures, caused by the multiphoton ionization of a liquid, its heating, and modification of nanostructures as a result of intense impact of an ultrashort laser pulse, as well as liquid heating by radiation with a high average power, are discussed.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 1","pages":"44 - 50"},"PeriodicalIF":1.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5054222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic Opals in Laser-Induced Breakdown Spectroscopy Problems 激光诱导击穿光谱中的合成蛋白石问题
IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-03-27 DOI: 10.3103/S1541308X23010077
A. V. Skrabatun, S. F. Umanskaya, M. A. Shevchenko, A. A. Matrokhin, A. N. Maresev, N. V. Tcherniega

Laser-induced breakdown spectroscopy (LIBS) is first used to identify small impurity amounts in a three-dimensional ordered submicron dielectric structure exemplified by a synthetic opal matrix (SOM). A possibility of detecting metal-containing substances infiltrated in a SOM is demonstrated. The effect of the photonic bandgap and the excitation wavelength on the LIBS spectrum is shown.

激光诱导击穿光谱(LIBS)首次用于鉴定三维有序亚微米介电结构中的少量杂质,例如合成蛋白石基质(SOM)。证明了检测渗透在SOM中的含金属物质的可能性。给出了光子带隙和激发波长对LIBS光谱的影响。
{"title":"Synthetic Opals in Laser-Induced Breakdown Spectroscopy Problems","authors":"A. V. Skrabatun,&nbsp;S. F. Umanskaya,&nbsp;M. A. Shevchenko,&nbsp;A. A. Matrokhin,&nbsp;A. N. Maresev,&nbsp;N. V. Tcherniega","doi":"10.3103/S1541308X23010077","DOIUrl":"10.3103/S1541308X23010077","url":null,"abstract":"<p>Laser-induced breakdown spectroscopy (LIBS) is first used to identify small impurity amounts in a three-dimensional ordered submicron dielectric structure exemplified by a synthetic opal matrix (SOM). A possibility of detecting metal-containing substances infiltrated in a SOM is demonstrated. The effect of the photonic bandgap and the excitation wavelength on the LIBS spectrum is shown.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 1","pages":"51 - 58"},"PeriodicalIF":1.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5052683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Simulation Method for Prediction of HIFU Induced Lesions in Human Tissue: FDTD-LBM 预测HIFU诱导人体组织病变的数值模拟方法:FDTD-LBM
IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-03-27 DOI: 10.3103/S1541308X2301003X
S.-J. Kim, J.-Y. Hwang, Y.-J. Kim, K.-N. Pae

High-intensity focused ultrasound (HIFU) is a therapy method to treat the tumors in prostate, liver, kidney, pancreas, bone, breast, and uterine fibroids. In the HIFU therapy process, the ultrasound generated in an ultrasonic transducer concentrates on a focal zone. At the zone, the temperature rises locally up to 56°C to provoke the necrosis of human tissue. Therefore, to control the therapy process, it is essential to perceive the main principle of heat generation in human tissue. We study FDTD-LBM (finite difference time domain—lattice Boltzmann method) as a method of predicting the temperature distribution in human tissue during HIFU therapy. The nonlinear Westervelt wave equation is employed for computing the pressure distribution in human tissue during ultrasound propagation, while the Pennes bio-heat transfer equation is used for calculating the temperature distribution in the tissue. Finite difference time domain (FDTD) is applied to solving the nonlinear Westervelt wave equation, and the lattice Boltzmann method can solve the Pennes bio-heat transfer equation. Simulation results have shown that the numerical simulation method proposed has improved the accuracy in analyzing the temperature field in human tissue.

高强度聚焦超声(HIFU)是治疗前列腺、肝、肾、胰腺、骨、乳腺、子宫肌瘤等肿瘤的一种治疗方法。在HIFU治疗过程中,超声换能器产生的超声集中在一个焦点区域。在该区域,局部温度上升至56°C,引起人体组织坏死。因此,要控制治疗过程,必须了解人体组织产热的主要原理。我们研究了FDTD-LBM(有限差分时域晶格玻尔兹曼方法)作为预测HIFU治疗期间人体组织温度分布的方法。采用非线性Westervelt波动方程计算超声传播过程中人体组织内的压力分布,采用Pennes生物传热方程计算组织内的温度分布。时域有限差分法(FDTD)可用于求解非线性Westervelt波动方程,晶格玻尔兹曼法可用于求解Pennes生物传热方程。仿真结果表明,所提出的数值模拟方法提高了人体组织温度场分析的精度。
{"title":"Numerical Simulation Method for Prediction of HIFU Induced Lesions in Human Tissue: FDTD-LBM","authors":"S.-J. Kim,&nbsp;J.-Y. Hwang,&nbsp;Y.-J. Kim,&nbsp;K.-N. Pae","doi":"10.3103/S1541308X2301003X","DOIUrl":"10.3103/S1541308X2301003X","url":null,"abstract":"<p>High-intensity focused ultrasound (HIFU) is a therapy method to treat the tumors in prostate, liver, kidney, pancreas, bone, breast, and uterine fibroids. In the HIFU therapy process, the ultrasound generated in an ultrasonic transducer concentrates on a focal zone. At the zone, the temperature rises locally up to 56°C to provoke the necrosis of human tissue. Therefore, to control the therapy process, it is essential to perceive the main principle of heat generation in human tissue. We study FDTD-LBM (finite difference time domain—lattice Boltzmann method) as a method of predicting the temperature distribution in human tissue during HIFU therapy. The nonlinear Westervelt wave equation is employed for computing the pressure distribution in human tissue during ultrasound propagation, while the Pennes bio-heat transfer equation is used for calculating the temperature distribution in the tissue. Finite difference time domain (FDTD) is applied to solving the nonlinear Westervelt wave equation, and the lattice Boltzmann method can solve the Pennes bio-heat transfer equation. Simulation results have shown that the numerical simulation method proposed has improved the accuracy in analyzing the temperature field in human tissue.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 1","pages":"30 - 35"},"PeriodicalIF":1.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5054233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Simulation of Acoustical Field of Ballistic Shock Therapy Device by the Lattice Boltzmann Method 用晶格玻尔兹曼方法模拟弹道冲击治疗装置的声场
IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-03-27 DOI: 10.3103/S1541308X23010053
K.-N. Pae, Y.-J. Kim, W.-J. Kim, S.-J. Kim

The pressure field distribution of a ballistic shock wave (BSW) therapy device is a crucial factor for clarifying its treatment mechanism. We developed a lattice Boltzmann model (LBM) to describe the propagation of BSW. Based on the assumption that the propagation of BSW causes weak compressible flow, our simulaton was performed by coupling Tait equation of state. For a two-dimensional LBM, we used the density initial condition for initial turbulent region near the applicator. We first compared our simulation results with previous experimental measurements. Then we predicted the temporal and spatial distribution of pressure field. The pressure field of ballistic shock wave has a primary compressive region followed by a primary expansive region with the other disturbances. A secondary pressure pulse consists of a positive phase followed by a negative phase. Our results agree well with previous experimental data and provide additional data on the pressure field of BSW. Our model encourages further investigation to clear the biological mechanism of BSW therapy and to design more effective device.

弹道冲击波治疗装置的压力场分布是阐明其治疗机制的关键因素。我们建立了一个晶格玻尔兹曼模型(LBM)来描述BSW的传播。基于BSW传播引起弱可压缩流动的假设,采用耦合Tait状态方程进行了数值模拟。对于二维LBM,我们使用密度初始条件来表示施加器附近的初始湍流区域。我们首先将模拟结果与之前的实验测量结果进行了比较。然后对压力场的时空分布进行了预测。弹道冲击波的压力场有一个主要的压缩区,然后是一个主要的膨胀区,并伴有其他干扰。二次压力脉冲由一个正相和一个负相组成。本文的研究结果与以往的实验数据吻合较好,为BSW的压力场提供了新的数据。我们的模型有助于进一步研究BSW治疗的生物学机制,并设计更有效的装置。
{"title":"Simulation of Acoustical Field of Ballistic Shock Therapy Device by the Lattice Boltzmann Method","authors":"K.-N. Pae,&nbsp;Y.-J. Kim,&nbsp;W.-J. Kim,&nbsp;S.-J. Kim","doi":"10.3103/S1541308X23010053","DOIUrl":"10.3103/S1541308X23010053","url":null,"abstract":"<p>The pressure field distribution of a ballistic shock wave (BSW) therapy device is a crucial factor for clarifying its treatment mechanism. We developed a lattice Boltzmann model (LBM) to describe the propagation of BSW. Based on the assumption that the propagation of BSW causes weak compressible flow, our simulaton was performed by coupling Tait equation of state. For a two-dimensional LBM, we used the density initial condition for initial turbulent region near the applicator. We first compared our simulation results with previous experimental measurements. Then we predicted the temporal and spatial distribution of pressure field. The pressure field of ballistic shock wave has a primary compressive region followed by a primary expansive region with the other disturbances. A secondary pressure pulse consists of a positive phase followed by a negative phase. Our results agree well with previous experimental data and provide additional data on the pressure field of BSW. Our model encourages further investigation to clear the biological mechanism of BSW therapy and to design more effective device.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 1","pages":"36 - 43"},"PeriodicalIF":1.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5054208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Particle Concentration Measurements during Fast Recording of Absorption Spectra 吸收光谱快速记录中粒子浓度的测量
IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-03-27 DOI: 10.3103/S1541308X23010089
A. I. Volkova, V. V. Lagunov, V. N. Ochkin

Abstract

The applicability of the light absorption method for measuring particle concentrations during fast recording of absorption spectra in different ranges of frequency tuning rates and in different measurement schemes has been considered. If the molecular resonance time is shorter than the decay times of induced particle polarization in the open space of the medium, scanning of the transmission radiation frequency is accompanied by well-known transient coherent effects, the stationary spectrum is distorted, and oscillations arise. In this case the conventional total absorption methods can hardly be applied directly. A method based on reconstructing the stationary spectrum from the wing of the experimentally observed absorption line is proposed. When carrying out highly sensitive measurements of absorption in the medium inside of a high-Q external optical cavity, absorption line distortions arise as well, but at much lower frequency tuning rates. The observed spectra exhibit asymmetry, oscillations are not observed, and the violation mechanism is related in this case to the limitation of the probe-light coherence length (in comparison with the effective optical path length) and finite photon lifetime in the cavity. It is shown that direct application of the classical relations linking the total absorption with the particle concentration yields adequate results in this situation. The role of instrumental distortions in integral measurements is discussed.

摘要:研究了光吸收法在不同频率调谐速率范围和不同测量方案下快速记录吸收光谱时测量粒子浓度的适用性。如果分子共振时间短于介质开放空间中诱导粒子极化的衰减时间,则透射辐射频率的扫描伴随着众所周知的瞬态相干效应,静止谱被扭曲,并产生振荡。在这种情况下,常规的全吸收方法很难直接应用。提出了一种基于实验观测吸收线翼重构固定光谱的方法。当对高q外光腔内介质的吸收进行高灵敏度测量时,也会出现吸收线畸变,但频率调谐率要低得多。观察到的光谱表现出不对称性,没有观察到振荡,并且在这种情况下,破坏机制与探测光相干长度(与有效光程长度相比)的限制和腔内有限的光子寿命有关。结果表明,在这种情况下,直接应用总吸收与粒子浓度之间的经典关系可以得到适当的结果。讨论了仪器畸变在积分测量中的作用。
{"title":"Particle Concentration Measurements during Fast Recording of Absorption Spectra","authors":"A. I. Volkova,&nbsp;V. V. Lagunov,&nbsp;V. N. Ochkin","doi":"10.3103/S1541308X23010089","DOIUrl":"10.3103/S1541308X23010089","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>The applicability of the light absorption method for measuring particle concentrations during fast recording of absorption spectra in different ranges of frequency tuning rates and in different measurement schemes has been considered. If the molecular resonance time is shorter than the decay times of induced particle polarization in the open space of the medium, scanning of the transmission radiation frequency is accompanied by well-known transient coherent effects, the stationary spectrum is distorted, and oscillations arise. In this case the conventional total absorption methods can hardly be applied directly. A method based on reconstructing the stationary spectrum from the wing of the experimentally observed absorption line is proposed. When carrying out highly sensitive measurements of absorption in the medium inside of a high-<i>Q</i> external optical cavity, absorption line distortions arise as well, but at much lower frequency tuning rates. The observed spectra exhibit asymmetry, oscillations are not observed, and the violation mechanism is related in this case to the limitation of the probe-light coherence length (in comparison with the effective optical path length) and finite photon lifetime in the cavity. It is shown that direct application of the classical relations linking the total absorption with the particle concentration yields adequate results in this situation. The role of instrumental distortions in integral measurements is discussed.</p></div></div>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 1","pages":"1 - 14"},"PeriodicalIF":1.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5488544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Holographic Processing of Electrocardiograms 心电图全息处理
IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-03-27 DOI: 10.3103/S1541308X23010065
N. P. Stadnaya, S. P. Lukinskikh, S. A. Pereselkov, A. S. Pereselkov, V. M. Kuz’kin

Holographic processing of electrocardiograms is proposed on the basis of the windowed Fourier transform of the electrocardiosignal that converts it from the time representation to the frequency–time representation, to the modulus squared of which the two-dimensional frequency–time Fourier transform is applied. At the integrated transformation output the spectral density of the signal is localized in the form of focal spots containing information on the temporal distribution of spectral densities of separate waves in the electrocardiogram. Experimental results of holographic processing of electrocardiograms are presented, which are obtained for patients with a normal heart and with congestive heart failure.

在对心电信号进行加窗傅里叶变换的基础上,提出了心电图全息处理方法,该方法将心电信号从时间表示转换为频率-时间表示,再转换为模的平方,并对其进行二维频率-时间傅里叶变换。在积分变换输出处,信号的频谱密度以焦点的形式定位,其中包含心电图中各波频谱密度的时间分布信息。本文介绍了正常心脏和充血性心力衰竭患者心电图全息处理的实验结果。
{"title":"Holographic Processing of Electrocardiograms","authors":"N. P. Stadnaya,&nbsp;S. P. Lukinskikh,&nbsp;S. A. Pereselkov,&nbsp;A. S. Pereselkov,&nbsp;V. M. Kuz’kin","doi":"10.3103/S1541308X23010065","DOIUrl":"10.3103/S1541308X23010065","url":null,"abstract":"<p>Holographic processing of electrocardiograms is proposed on the basis of the windowed Fourier transform of the electrocardiosignal that converts it from the time representation to the frequency–time representation, to the modulus squared of which the two-dimensional frequency–time Fourier transform is applied. At the integrated transformation output the spectral density of the signal is localized in the form of focal spots containing information on the temporal distribution of spectral densities of separate waves in the electrocardiogram. Experimental results of holographic processing of electrocardiograms are presented, which are obtained for patients with a normal heart and with congestive heart failure.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 1","pages":"21 - 29"},"PeriodicalIF":1.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5049411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Stimulated Low-Frequency Light Scattering in a Nanodispersed Liquid Medium 纳米分散液体介质中的动态受激低频光散射
IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-03-27 DOI: 10.3103/S1541308X23010028
A. F. Bunkin, M. A. Davydov, V. G. Mikhalevich, V. N. Streltsov, A. N. Fedorov, S. M. Pershin

For the first time, stimulated dynamic scattering of a light wave in a liquid nanodispersed medium is observed, which is caused by phase modulation of the dipole moment of the suspension nanoparticles subjected to acoustically induced vibrations in the electromagnetic field. Experiments have been carried out in an aqueous suspension of amorphous silicon dioxide SiO2 nanospheres ≈100 and ≈350 nm in diameter under stimulated scattering excited by the second-harmonic radiation of the pulsed single-mode Nd3+:YAG laser. In addition to the first Stokes component of the stimulated Brillouin scattering with the frequency shift Ω typical of a solvent, a scattering line with the frequency shift ≈2Ω is observed in full agreement with the theory developed in the work.

首次观察到光波在液体纳米分散介质中的受激动态散射,这种受激动态散射是由悬浮纳米粒子在电磁场声激振动下偶极矩的相位调制引起的。在脉冲单模Nd3+:YAG激光二次谐波辐射激发的受激散射下,在直径≈100 nm和≈350 nm的非晶态二氧化硅SiO2纳米球水溶液中进行了实验。除了具有溶剂典型频移Ω的受激布里因散射的第一个Stokes分量外,还观察到具有频移≈2Ω的散射线,这与工作中发展的理论完全一致。
{"title":"Dynamic Stimulated Low-Frequency Light Scattering in a Nanodispersed Liquid Medium","authors":"A. F. Bunkin,&nbsp;M. A. Davydov,&nbsp;V. G. Mikhalevich,&nbsp;V. N. Streltsov,&nbsp;A. N. Fedorov,&nbsp;S. M. Pershin","doi":"10.3103/S1541308X23010028","DOIUrl":"10.3103/S1541308X23010028","url":null,"abstract":"<p>For the first time, stimulated dynamic scattering of a light wave in a liquid nanodispersed medium is observed, which is caused by phase modulation of the dipole moment of the suspension nanoparticles subjected to acoustically induced vibrations in the electromagnetic field. Experiments have been carried out in an aqueous suspension of amorphous silicon dioxide SiO<sub>2</sub> nanospheres ≈100 and ≈350 nm in diameter under stimulated scattering excited by the second-harmonic radiation of the pulsed single-mode Nd<sup>3+</sup>:YAG laser. In addition to the first Stokes component of the stimulated Brillouin scattering with the frequency shift Ω typical of a solvent, a scattering line with the frequency shift ≈2Ω is observed in full agreement with the theory developed in the work.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 1","pages":"15 - 20"},"PeriodicalIF":1.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5049414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physics of Wave Phenomena
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1