Plaque psoriasis is a chronic inflammatory skin disease that affects a substantial proportion of the world population. This disorder is characterized by scaly, thick skin, intense ongoing itch, and itch from light touch (such as clothing contacting skin, called "alloknesis"). Imiquimod is a topical treatment for basal cell carcinomas and warts that has been used to create a mouse model of plaque psoriasis. Imiquimod-treated male, but not female, wildtype B6 mice showed significant increases in spontaneous scratching, while both sexes exhibited increased alloknesis, indicative of chronic itch. TRPV1 and TRPA1 knockout (KO) mice all exhibited numeric increases in spontaneous scratching which were significant for TRPV1KO mice and TRPA1KO males. Female TRPV1KO and TRPA1KO mice exhibited imiquimod-induced increases in alloknesis scores that did not significantly differ from wildtypes, while alloknesis scores in imiquimod-treated male TRPV1KO and TRPA1KO mice were significantly lower compared with wildtypes, suggesting that these ion channels are necessary for the development of alloknesis in males but not females in this model. Curiously, none of the groups exhibited any significant overall change in chloroquine-evoked scratching following imiquimod treatment, indicating that hyperknesis does not develop in this mouse model. Overall, the data indicate that there are sex differences in this mouse model of psoriasis, and that TRPV1 and TRPA1 ion channels have a small role in promoting the development of itch sensitization. This contrasts with the far greater role these channels play in the manifestation of skin changes in psoriatic dermatitis.
In this study, we sought to elucidate the molecular mechanism underlying human Mas-related G protein-coupled receptor X1 (MrgprX1) mediated itch sensation. We found that activation of MrgprX1 by BAM8-22 triggered robust action potential discharges in dorsal root ganglion (DRG) neurons. This neuronal excitability is not mediated by Transient receptor potential (TRP) cation channels, M-type potassium channels, or chloride channels. Instead, activation of MrgprX1 lowers the activation threshold of TTX-resistant sodium channels and induces inward sodium currents. These MrgprX1-elicited action potential discharges can be blocked by Pertussis toxin (PTX) and a Gβγ inhibitor - Gallein. Behavioral results showed that Nav1.9 knockout but not Trpa1 knockout significantly reduced BAM8-22 evoked scratching behavior. Collectively, these data suggest that activation of MrgprX1 triggers itch sensation by increasing the activity of TTX-resistant voltage-gated sodium channels.