首页 > 最新文献

Journal of bioinformatics and systems biology : Open access最新文献

英文 中文
Abstract 260: Application of integrated analysis of whole genome sequencing and RNA sequencing to personalized therapy decision making in pediatric and young adult cancer 摘要260:全基因组测序和RNA测序综合分析在儿童和青少年癌症个性化治疗决策中的应用
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-260
Yaoqing Shen, M. Bonakdar, L. Williamson, E. Pleasance, K. Mungall, Richard A. Moore, A. Mungall, S. Yip, Anna F. Lee, C. Dunham, J. Laskin, M. Marra, Steven J. M. Jones, S. Rassekh, R. Deyell
{"title":"Abstract 260: Application of integrated analysis of whole genome sequencing and RNA sequencing to personalized therapy decision making in pediatric and young adult cancer","authors":"Yaoqing Shen, M. Bonakdar, L. Williamson, E. Pleasance, K. Mungall, Richard A. Moore, A. Mungall, S. Yip, Anna F. Lee, C. Dunham, J. Laskin, M. Marra, Steven J. M. Jones, S. Rassekh, R. Deyell","doi":"10.1158/1538-7445.AM2021-260","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-260","url":null,"abstract":"","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85825829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 178: Desmosome mutations in melanoma promote cellular proliferation and disease progression 摘要:黑色素瘤中的桥粒体突变促进细胞增殖和疾病进展
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-178
Maayan Baron, T. Ideker
Desmosomes are transmembrane protein complexes that contribute to cell-cell adhesion in the epithelia and other tissues under mechanical stress. Aberrant desmosome expression is often associated with developmental diseases leading to impaired tissue integrity. Recently, similar findings have been reported in cancer; Mutations in desmosomes genes have been observed in various cancer types including skin cancer, head and neck and lung cancer, however mostly epigenetic alterations have been used to associate desmosomes as suppressors of tumor metastasis. Here, we report that desmosomes are frequently mutated in seven cancer types. In melanoma, we find that over 70% of tumors have non-synonymous mutations in desmosomes, and that the desmosome mutational burden is associated with a strong decrease in mRNA expression levels in primary tumor samples (R = -0.23). Differential gene expression analysis and functional characterizations between mutant and wild-type tumors implicates the mutated cells in promoting cell proliferation at early stages of tumorigenesis. These results emerge uniquely from a systems-level analysis integrating multiple proteins in complexes and multiple cell types in heterogeneous tumors. Citation Format: Maayan Baron, Trey Ideker. Desmosome mutations in melanoma promote cellular proliferation and disease progression [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 178.
桥粒是一种跨膜蛋白复合物,在机械应力作用下促进上皮细胞和其他组织的细胞粘附。桥粒的异常表达通常与导致组织完整性受损的发育性疾病有关。最近,在癌症方面也报道了类似的发现;桥粒基因突变已在各种类型的癌症中被观察到,包括皮肤癌、头颈癌和肺癌,然而,大多数表观遗传改变已被用于将桥粒作为肿瘤转移的抑制因子。在这里,我们报道桥粒在7种癌症类型中经常发生突变。在黑色素瘤中,我们发现超过70%的肿瘤在桥粒中存在非同义突变,并且桥粒突变负担与原发肿瘤样本中mRNA表达水平的强烈下降有关(R = -0.23)。突变型和野生型肿瘤之间的差异基因表达分析和功能特征暗示突变细胞在肿瘤发生早期促进细胞增殖。这些结果独特地来自系统级分析,整合了异质肿瘤中的多种蛋白质复合物和多种细胞类型。引用格式:Maayan Baron, Trey Ideker。黑色素瘤的桥粒体突变促进细胞增殖和疾病进展[摘要]。见:美国癌症研究协会2021年年会论文集;2021年4月10日至15日和5月17日至21日。费城(PA): AACR;癌症杂志,2021;81(13 -增刊):摘要nr 178。
{"title":"Abstract 178: Desmosome mutations in melanoma promote cellular proliferation and disease progression","authors":"Maayan Baron, T. Ideker","doi":"10.1158/1538-7445.AM2021-178","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-178","url":null,"abstract":"Desmosomes are transmembrane protein complexes that contribute to cell-cell adhesion in the epithelia and other tissues under mechanical stress. Aberrant desmosome expression is often associated with developmental diseases leading to impaired tissue integrity. Recently, similar findings have been reported in cancer; Mutations in desmosomes genes have been observed in various cancer types including skin cancer, head and neck and lung cancer, however mostly epigenetic alterations have been used to associate desmosomes as suppressors of tumor metastasis. Here, we report that desmosomes are frequently mutated in seven cancer types. In melanoma, we find that over 70% of tumors have non-synonymous mutations in desmosomes, and that the desmosome mutational burden is associated with a strong decrease in mRNA expression levels in primary tumor samples (R = -0.23). Differential gene expression analysis and functional characterizations between mutant and wild-type tumors implicates the mutated cells in promoting cell proliferation at early stages of tumorigenesis. These results emerge uniquely from a systems-level analysis integrating multiple proteins in complexes and multiple cell types in heterogeneous tumors. Citation Format: Maayan Baron, Trey Ideker. Desmosome mutations in melanoma promote cellular proliferation and disease progression [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 178.","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86373588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 203: SCLC-CellMiner: An extensive cell line genomic and pharmacology resource identifies a subgroup of small cell lung cancers sensitive to targeted therapies and immunotherapies scclc - cellminer:一个广泛的细胞系基因组和药理学资源鉴定了一个对靶向治疗和免疫治疗敏感的小细胞肺癌亚群
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-203
C. Tlemsani, L. Pongor, Fathi Elloumi, L. Girard, K. Huffman, N. Roper, S. Varma, Augustin Luna, V. Rajapakse, P. Boudou-Rouquette, R. Sebastian, K. Kohn, J. Krushkal, M. Aladjem, B. Teicher, P. Meltzer, W. Reinhold, J. Minna, Anish Thomas, Y. Pommier
The typical low life expectancy and limited therapeutic options for patients with small cell lung cancer (SCLC) caused the National Cancer Institute (NCI) to categorize SCLC as “recalcitrant” cancer. SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB) integrates drug sensitivity and genomic data from 118 patient-derived SCLC cell lines, providing a unique genomic and pharmacological resource. Transcriptomic profiling validates the SCLC consensus nomenclature based on expression of 4 master transcription factors NEUROD1, ASCL1, POU2F3 and YAP1 (NAPY classification) and demonstrate differential transcriptional networks driven by these lineage specific transcription factors. Our analyses reveal transcription networks linking SCLC subtypes with MYC and its paralogs MYCL and MYCN and inactivation of the NOTCH pathway in the neuroendocrine SCLC (N, A & P subgroups). By contrast, YAP1-driven SCLC (SCLC-Y) express the NOTCH pathway and co-express both YAP/TAZ and its negative regulator genes driving the Hippo pathway. SCLC-Y cell lines show the greatest resistance to the standard of care drugs (etoposide, cisplatin and topotecan) while PI3K-AKT-mTOR inhibitors show a higher activity in this subgroup. To explore the immune pathways and the potential value of the transciption factors based classification for selecting SCLC patients likely to respond to immune checkpoint inhibitors, we explored a transcriptome signature based on 18 established native immune response and antigen-presenting genes (APM score). The SCLC-Y cell lines are the only subset expressing innate immune response genes. SCLC-CellMiner is a powerfull tool demonstrating the value of cancer cell line genomic and pharmacological databases. Our analyses suggest the potential genomic molecular classifications to select patients for targeted therapies and immunotherapy, such as patients in the SCLC-Y subgroup who may be most responsive to immune checkpoints modulators. Citation Format: Camille Tlemsani, Lorinc Pongor, Fathi Elloumi, Luc Girard, Kenneth Huffman, Nitin Roper, Sudhir Varma, Augustin Luna, Vinodh Rajapakse, Pascaline Boudou-Rouquette, Robin Sebastian, Kurt Kohn, Julia Krushkal, Mirit Aladjem, Beverly Teicher, Paul Meltzer, William Reinhold, John Minna, Anish Thomas, Yves Pommier. SCLC-CellMiner: An extensive cell line genomic and pharmacology resource identifies a subgroup of small cell lung cancers sensitive to targeted therapies and immunotherapies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 203.
小细胞肺癌(SCLC)患者典型的低预期寿命和有限的治疗选择导致美国国家癌症研究所(NCI)将SCLC归类为“顽固性”癌症。SCLC- cellminer (https://discover.nci.nih.gov/SclcCellMinerCDB)整合了118个患者来源的SCLC细胞系的药物敏感性和基因组数据,提供了独特的基因组和药理学资源。转录组学分析验证了基于4个主要转录因子NEUROD1、ASCL1、POU2F3和YAP1表达的SCLC共识命名法(NAPY分类),并展示了由这些谱系特异性转录因子驱动的差异转录网络。我们的分析揭示了连接SCLC亚型与MYC及其类似物MYCL和MYCN的转录网络,以及神经内分泌SCLC (N, A和P亚组)中NOTCH通路的失活。相比之下,yap1驱动的SCLC (SCLC- y)表达NOTCH通路,并共同表达YAP/TAZ及其驱动Hippo通路的负调控基因。SCLC-Y细胞系对标准护理药物(依泊苷、顺铂和拓扑替康)表现出最大的耐药性,而PI3K-AKT-mTOR抑制剂在该亚组中表现出更高的活性。为了探索免疫途径和基于转录因子的分类在选择可能对免疫检查点抑制剂有反应的SCLC患者中的潜在价值,我们探索了基于18个已建立的天然免疫反应和抗原呈递基因(APM评分)的转录组特征。SCLC-Y细胞系是唯一表达先天免疫应答基因的亚群。SCLC-CellMiner是一个强大的工具,展示了癌细胞系基因组和药理学数据库的价值。我们的分析表明,潜在的基因组分子分类可以选择靶向治疗和免疫治疗的患者,例如SCLC-Y亚组患者,他们可能对免疫检查点调节剂最敏感。引文格式:Camille Tlemsani, Lorinc Pongor, Fathi Elloumi, Luc Girard, Kenneth Huffman, Nitin Roper, Sudhir Varma, Augustin Luna, Vinodh Rajapakse, Pascaline boudoul - rouquette, Robin Sebastian, Kurt Kohn, Julia Krushkal, Mirit Aladjem, Beverly Teicher, Paul Meltzer, William Reinhold, John Minna, Anish Thomas, Yves Pommier。SCLC-CellMiner:广泛的细胞系基因组学和药理学资源鉴定了对靶向治疗和免疫治疗敏感的小细胞肺癌亚群[摘要]。见:美国癌症研究协会2021年年会论文集;2021年4月10日至15日和5月17日至21日。费城(PA): AACR;癌症杂志,2021;81(13 -增刊):摘要第203期。
{"title":"Abstract 203: SCLC-CellMiner: An extensive cell line genomic and pharmacology resource identifies a subgroup of small cell lung cancers sensitive to targeted therapies and immunotherapies","authors":"C. Tlemsani, L. Pongor, Fathi Elloumi, L. Girard, K. Huffman, N. Roper, S. Varma, Augustin Luna, V. Rajapakse, P. Boudou-Rouquette, R. Sebastian, K. Kohn, J. Krushkal, M. Aladjem, B. Teicher, P. Meltzer, W. Reinhold, J. Minna, Anish Thomas, Y. Pommier","doi":"10.1158/1538-7445.AM2021-203","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-203","url":null,"abstract":"The typical low life expectancy and limited therapeutic options for patients with small cell lung cancer (SCLC) caused the National Cancer Institute (NCI) to categorize SCLC as “recalcitrant” cancer. SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB) integrates drug sensitivity and genomic data from 118 patient-derived SCLC cell lines, providing a unique genomic and pharmacological resource. Transcriptomic profiling validates the SCLC consensus nomenclature based on expression of 4 master transcription factors NEUROD1, ASCL1, POU2F3 and YAP1 (NAPY classification) and demonstrate differential transcriptional networks driven by these lineage specific transcription factors. Our analyses reveal transcription networks linking SCLC subtypes with MYC and its paralogs MYCL and MYCN and inactivation of the NOTCH pathway in the neuroendocrine SCLC (N, A & P subgroups). By contrast, YAP1-driven SCLC (SCLC-Y) express the NOTCH pathway and co-express both YAP/TAZ and its negative regulator genes driving the Hippo pathway. SCLC-Y cell lines show the greatest resistance to the standard of care drugs (etoposide, cisplatin and topotecan) while PI3K-AKT-mTOR inhibitors show a higher activity in this subgroup. To explore the immune pathways and the potential value of the transciption factors based classification for selecting SCLC patients likely to respond to immune checkpoint inhibitors, we explored a transcriptome signature based on 18 established native immune response and antigen-presenting genes (APM score). The SCLC-Y cell lines are the only subset expressing innate immune response genes. SCLC-CellMiner is a powerfull tool demonstrating the value of cancer cell line genomic and pharmacological databases. Our analyses suggest the potential genomic molecular classifications to select patients for targeted therapies and immunotherapy, such as patients in the SCLC-Y subgroup who may be most responsive to immune checkpoints modulators. Citation Format: Camille Tlemsani, Lorinc Pongor, Fathi Elloumi, Luc Girard, Kenneth Huffman, Nitin Roper, Sudhir Varma, Augustin Luna, Vinodh Rajapakse, Pascaline Boudou-Rouquette, Robin Sebastian, Kurt Kohn, Julia Krushkal, Mirit Aladjem, Beverly Teicher, Paul Meltzer, William Reinhold, John Minna, Anish Thomas, Yves Pommier. SCLC-CellMiner: An extensive cell line genomic and pharmacology resource identifies a subgroup of small cell lung cancers sensitive to targeted therapies and immunotherapies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 203.","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"96 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89101699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 192: MutAnt: Mutation annotation machine learning algorithm for pathogenicity evaluation of single nonsynonymous nucleotide substitutions in cancer cells 摘要192:突变:突变注释机器学习算法用于评估癌细胞中单个非同义核苷酸替换的致病性
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-192
Aleksandr Sarachakov, V. Svekolkin, Zoia Antysheva, Jessica H. Brown, A. Bagaev, N. Fowler
{"title":"Abstract 192: MutAnt: Mutation annotation machine learning algorithm for pathogenicity evaluation of single nonsynonymous nucleotide substitutions in cancer cells","authors":"Aleksandr Sarachakov, V. Svekolkin, Zoia Antysheva, Jessica H. Brown, A. Bagaev, N. Fowler","doi":"10.1158/1538-7445.AM2021-192","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-192","url":null,"abstract":"","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80083665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 173: Efficient representations of tumor diversity with paired DNA-RNA aberrations 173:肿瘤多样性与配对DNA-RNA畸变的有效表征
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-173
Qian Ke, Wikum Dinalankara, L. Younes, D. Geman, L. Marchionni
{"title":"Abstract 173: Efficient representations of tumor diversity with paired DNA-RNA aberrations","authors":"Qian Ke, Wikum Dinalankara, L. Younes, D. Geman, L. Marchionni","doi":"10.1158/1538-7445.AM2021-173","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-173","url":null,"abstract":"","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79764673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 4: Temporal and spatial topography of cell proliferation in cancer 摘要:肿瘤细胞增殖的时空分布特征
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-4
Giorgio Gaglia, S. Kabraji, Danae Argyropoulou, Yang Dai, J. Bergholz, S. Coy, Jia-Ren Lin, E. Winer, D. Dillon, Jean J. Zhao, P. Sorger, S. Santagata
{"title":"Abstract 4: Temporal and spatial topography of cell proliferation in cancer","authors":"Giorgio Gaglia, S. Kabraji, Danae Argyropoulou, Yang Dai, J. Bergholz, S. Coy, Jia-Ren Lin, E. Winer, D. Dillon, Jean J. Zhao, P. Sorger, S. Santagata","doi":"10.1158/1538-7445.AM2021-4","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-4","url":null,"abstract":"","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86266835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Abstract 234: Risk of sepsis among patients with prostate cancer: A network-based modeling approach 摘要234:前列腺癌患者脓毒症风险:基于网络的建模方法
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-234
A. Jazayeri, Niusha Jafari, Christopher C. Yang, N. Nikita, G. Yao
{"title":"Abstract 234: Risk of sepsis among patients with prostate cancer: A network-based modeling approach","authors":"A. Jazayeri, Niusha Jafari, Christopher C. Yang, N. Nikita, G. Yao","doi":"10.1158/1538-7445.AM2021-234","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-234","url":null,"abstract":"","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77319839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 252: Navigating networks of oncology biomarkers mined from the scientific literature: A new open research tool 252:从科学文献中挖掘的肿瘤生物标志物导航网络:一种新的开放研究工具
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-252
Kim Wager, Dheepa Chari, S. Ho, Tomas J Rees, R. J. Schijvenaars
{"title":"Abstract 252: Navigating networks of oncology biomarkers mined from the scientific literature: A new open research tool","authors":"Kim Wager, Dheepa Chari, S. Ho, Tomas J Rees, R. J. Schijvenaars","doi":"10.1158/1538-7445.AM2021-252","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-252","url":null,"abstract":"","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84238585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 262: Statistical Bliss: A novel framework for statistical assessment of drug synergy 摘要262:统计学的幸福:药物协同作用统计评估的新框架
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-262
Richard E. Grewelle, Kalin L. Wilson, D. Brantley-Sieders
{"title":"Abstract 262: Statistical Bliss: A novel framework for statistical assessment of drug synergy","authors":"Richard E. Grewelle, Kalin L. Wilson, D. Brantley-Sieders","doi":"10.1158/1538-7445.AM2021-262","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-262","url":null,"abstract":"","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88457008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 243: Identification of novel epitopes of NY-ESO-1 for solid malignancies by Kiromic proprietary search engine Diamond 243:通过Kiromic专有搜索引擎Diamond鉴定NY-ESO-1实体恶性肿瘤的新表位
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-243
L. Piccotti, L. Mirandola, M. Chiriva-Internati
Adoptive cell therapy has been proven a powerful approach for the cure of cancer and other diseases. In particular, the selection of appropriate immunogenic targets has been key to positive outcomes in clinical settings. The availability of RNA-Seq analysis, the accessibility to large data repositories such as TCGA and GTEx, and the creation of new bioinformatic tools have accelerated the process of neoantigen discovery. However, most of the current algorithms are encumbered by the intrinsic complexity of predicting antigen immunogenicity. Diamond™ is a novel artificial intelligence and cognitive machine and deep learning platform to predict peptide processing, HLA binding, and T cell activation. To validate the predictive value of DIAMOND algorithms, the meta-analyses of expression data of cancer-testis antigen New York Esophageal Squamous Cell Carcinoma 1 (NY-ESO-1) and predictions for the immunogenic peptides were compared to experimental data in the literature. In agreement with published clinical observations, DIAMOND metanalysis showed NY-ESO-1 genic overexpression in skin cutaneous melanoma, lung adenocarcinoma, and sarcoma. Moreover, DIAMOND predicted an MHC binding affinity of 0.289 with Supertype A2 for a new NY-ESO-1 peptide, which has been successfully targeted in clinical trials for patients with HLA-A*02:01, as well as it mirrored published data in its prediction of peptide affinity binding in NY-ESO-1–specific MHC II–restricted T cell receptors. Taken together these data support DIAMOND as a reliable platform for the discovery of new immunogenic targets for cancer therapy. Citation Format: Lucia Piccotti, Leonardo Mirandola, Maurizio Chiriva-Internati. Identification of novel epitopes of NY-ESO-1 for solid malignancies by Kiromic proprietary search engine Diamond [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 243.
过继细胞疗法已被证明是治疗癌症和其他疾病的有力方法。特别是,选择适当的免疫原性靶点是临床环境中取得积极结果的关键。RNA-Seq分析的可用性、TCGA和GTEx等大型数据库的可访问性以及新的生物信息学工具的创建加速了新抗原发现的过程。然而,目前大多数算法都受到预测抗原免疫原性的固有复杂性的阻碍。Diamond™是一种新型的人工智能、认知机器和深度学习平台,用于预测肽加工、HLA结合和T细胞活化。为了验证DIAMOND算法的预测价值,我们将癌症-睾丸抗原纽约食管鳞状细胞癌1 (NY-ESO-1)的表达数据和免疫原性肽的预测数据与文献中的实验数据进行了比较。与已发表的临床观察一致,DIAMOND meta分析显示NY-ESO-1基因在皮肤黑色素瘤、肺腺癌和肉瘤中过表达。此外,DIAMOND预测了一种新的NY-ESO-1肽与Supertype A2的MHC结合亲和力为0.289,该肽已在HLA-A*02:01患者的临床试验中成功靶向,并且在预测NY-ESO-1特异性MHC ii限制性T细胞受体的肽亲和力结合方面反映了已发表的数据。综上所述,这些数据支持DIAMOND作为发现新的癌症治疗免疫原性靶点的可靠平台。引文格式:Lucia Piccotti, Leonardo Mirandola, Maurizio Chiriva-Internati。通过Kiromic专有搜索引擎Diamond鉴定NY-ESO-1实体恶性肿瘤的新表位[摘要]。见:美国癌症研究协会2021年年会论文集;2021年4月10日至15日和5月17日至21日。费城(PA): AACR;癌症杂志,2021;81(13 -增刊):摘要nr 243。
{"title":"Abstract 243: Identification of novel epitopes of NY-ESO-1 for solid malignancies by Kiromic proprietary search engine Diamond","authors":"L. Piccotti, L. Mirandola, M. Chiriva-Internati","doi":"10.1158/1538-7445.AM2021-243","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-243","url":null,"abstract":"Adoptive cell therapy has been proven a powerful approach for the cure of cancer and other diseases. In particular, the selection of appropriate immunogenic targets has been key to positive outcomes in clinical settings. The availability of RNA-Seq analysis, the accessibility to large data repositories such as TCGA and GTEx, and the creation of new bioinformatic tools have accelerated the process of neoantigen discovery. However, most of the current algorithms are encumbered by the intrinsic complexity of predicting antigen immunogenicity. Diamond™ is a novel artificial intelligence and cognitive machine and deep learning platform to predict peptide processing, HLA binding, and T cell activation. To validate the predictive value of DIAMOND algorithms, the meta-analyses of expression data of cancer-testis antigen New York Esophageal Squamous Cell Carcinoma 1 (NY-ESO-1) and predictions for the immunogenic peptides were compared to experimental data in the literature. In agreement with published clinical observations, DIAMOND metanalysis showed NY-ESO-1 genic overexpression in skin cutaneous melanoma, lung adenocarcinoma, and sarcoma. Moreover, DIAMOND predicted an MHC binding affinity of 0.289 with Supertype A2 for a new NY-ESO-1 peptide, which has been successfully targeted in clinical trials for patients with HLA-A*02:01, as well as it mirrored published data in its prediction of peptide affinity binding in NY-ESO-1–specific MHC II–restricted T cell receptors. Taken together these data support DIAMOND as a reliable platform for the discovery of new immunogenic targets for cancer therapy. Citation Format: Lucia Piccotti, Leonardo Mirandola, Maurizio Chiriva-Internati. Identification of novel epitopes of NY-ESO-1 for solid malignancies by Kiromic proprietary search engine Diamond [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 243.","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"174 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88031642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of bioinformatics and systems biology : Open access
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1