Pub Date : 2022-09-24DOI: 10.46439/breastcancer.1.009
{"title":"Weaknesses with research models and disparities: how PDX models strengthen both","authors":"","doi":"10.46439/breastcancer.1.009","DOIUrl":"https://doi.org/10.46439/breastcancer.1.009","url":null,"abstract":"","PeriodicalId":73629,"journal":{"name":"Journal of breast cancer research","volume":"124 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89658080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-24DOI: 10.46439/breastcancer.1.008
{"title":"Analysis of treatment and outcomes in patients with locally advanced breast cancer","authors":"","doi":"10.46439/breastcancer.1.008","DOIUrl":"https://doi.org/10.46439/breastcancer.1.008","url":null,"abstract":"","PeriodicalId":73629,"journal":{"name":"Journal of breast cancer research","volume":"1 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78656142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-10DOI: 10.46439/breastcancer.1.007
N. Hay
The PI3K/Akt signaling pathway is frequently hyperactivated in different types of breast cancer. In the past two decades, major efforts have been made to develop inhibitors of this pathway to treat cancer patients. However, the most evolutionarily conserved function of this pathway is in cellular and organismal metabolism, which is hijacked by cancer cells. Thus, adverse metabolic consequences are expected when PI3K or Akt is targeted. These metabolic consequences, particularly hyperinsulinemia, could impede the efficacy of treatment. This review summarizes recent genetic studies in mice that could pave the way to efficient breast cancer and breast cancer metastasis treatment with Akt inhibitors.
{"title":"How to inhibit breast cancer and breast cancer metastasis with Akt inhibitors: Lessons learned from studies in mice","authors":"N. Hay","doi":"10.46439/breastcancer.1.007","DOIUrl":"https://doi.org/10.46439/breastcancer.1.007","url":null,"abstract":"The PI3K/Akt signaling pathway is frequently hyperactivated in different types of breast cancer. In the past two decades, major efforts have been made to develop inhibitors of this pathway to treat cancer patients. However, the most evolutionarily conserved function of this pathway is in cellular and organismal metabolism, which is hijacked by cancer cells. Thus, adverse metabolic consequences are expected when PI3K or Akt is targeted. These metabolic consequences, particularly hyperinsulinemia, could impede the efficacy of treatment. This review summarizes recent genetic studies in mice that could pave the way to efficient breast cancer and breast cancer metastasis treatment with Akt inhibitors.","PeriodicalId":73629,"journal":{"name":"Journal of breast cancer research","volume":"20 1","pages":"30 - 33"},"PeriodicalIF":0.0,"publicationDate":"2022-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90438759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-03DOI: 10.46439/breastcancer.1.006
E. Plow, E. Pluskota, K. Białkowska
Kindlin-1 (K1, FERMT1), Kindlin-2 (K2, FERMT2), and Kindlin-3 (K3, FERMT3) are the three members of the kindlin family of adapter proteins found in mammals. One or more kindlins are found in most cell types, K1 primarily in epithelial cells, K3 in primarily hematopoietic cells and also endothelial cells, and K2 is very broadly distributed. The kindlins consist primarily of a 4.1-erzin-radixin-moiesin (FERM) domain, which is transected by a lipid-binding plextrin-homology (PH) domain. Deficiencies of each kindlin in mice and/ or humans have profound pathogenic consequences. The most well-established function of kindlins depends on their ability to participate in the activat integrin adhesion receptors. This function depends on the binding of each kindlin to the beta subunit of integrins where it cooperates with talin to enhance avidity of interactions with cognate extracellular matrix ligands. Deficiencies of many different integrins are lethal, are critical for normal development of mammary tissue, and excessive expression and/or activation of certain integrins are associated with progression and metastasis of breast cancer. However, via its interaction with many other intracellular proteins, kindlins can influence numerous cellular responses. Changes in expression of each of the three kindlins have been reported in association with breast cancer, with several studies indicating that kindlins are among the most upregulated genes in breast cancer. The association of abnormal functions of K2 with breast cancer is particularly extensive with many reports indicating that it is a major driver of breast cancer via its promotion of cancer cell proliferation, survival, adhesion, migration, invasion, the epithelial-to-mesenchymal transition and its influence on macrophage recruitment and phenotype. These associations suggest that the kindlins and their functions represent an intriguing therapeutic target for exploration of breast cancer therapy.
{"title":"Kindlins as modulators of breast cancer progression","authors":"E. Plow, E. Pluskota, K. Białkowska","doi":"10.46439/breastcancer.1.006","DOIUrl":"https://doi.org/10.46439/breastcancer.1.006","url":null,"abstract":"Kindlin-1 (K1, FERMT1), Kindlin-2 (K2, FERMT2), and Kindlin-3 (K3, FERMT3) are the three members of the kindlin family of adapter proteins found in mammals. One or more kindlins are found in most cell types, K1 primarily in epithelial cells, K3 in primarily hematopoietic cells and also endothelial cells, and K2 is very broadly distributed. The kindlins consist primarily of a 4.1-erzin-radixin-moiesin (FERM) domain, which is transected by a lipid-binding plextrin-homology (PH) domain. Deficiencies of each kindlin in mice and/ or humans have profound pathogenic consequences. The most well-established function of kindlins depends on their ability to participate in the activat integrin adhesion receptors. This function depends on the binding of each kindlin to the beta subunit of integrins where it cooperates with talin to enhance avidity of interactions with cognate extracellular matrix ligands. Deficiencies of many different integrins are lethal, are critical for normal development of mammary tissue, and excessive expression and/or activation of certain integrins are associated with progression and metastasis of breast cancer. However, via its interaction with many other intracellular proteins, kindlins can influence numerous cellular responses. Changes in expression of each of the three kindlins have been reported in association with breast cancer, with several studies indicating that kindlins are among the most upregulated genes in breast cancer. The association of abnormal functions of K2 with breast cancer is particularly extensive with many reports indicating that it is a major driver of breast cancer via its promotion of cancer cell proliferation, survival, adhesion, migration, invasion, the epithelial-to-mesenchymal transition and its influence on macrophage recruitment and phenotype. These associations suggest that the kindlins and their functions represent an intriguing therapeutic target for exploration of breast cancer therapy.","PeriodicalId":73629,"journal":{"name":"Journal of breast cancer research","volume":"85 1","pages":"20 - 29"},"PeriodicalIF":0.0,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78142754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-15DOI: 10.46439/breastcancer.1.002
{"title":"Breast cancer: an up-date review","authors":"","doi":"10.46439/breastcancer.1.002","DOIUrl":"https://doi.org/10.46439/breastcancer.1.002","url":null,"abstract":"","PeriodicalId":73629,"journal":{"name":"Journal of breast cancer research","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87272867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-15DOI: 10.46439/breastcancer.1.003
{"title":"EZH2 and cancer progression: An intricate relation that continues to grow","authors":"","doi":"10.46439/breastcancer.1.003","DOIUrl":"https://doi.org/10.46439/breastcancer.1.003","url":null,"abstract":"","PeriodicalId":73629,"journal":{"name":"Journal of breast cancer research","volume":"31 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72474525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-15DOI: 10.46439/breastcancer.1.004
{"title":"Commentary on: The actual benefit of intraoperative radiation therapy using 50 kV x-rays in early breast cancer: A retrospective study of 676 patients","authors":"","doi":"10.46439/breastcancer.1.004","DOIUrl":"https://doi.org/10.46439/breastcancer.1.004","url":null,"abstract":"","PeriodicalId":73629,"journal":{"name":"Journal of breast cancer research","volume":"323 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78406909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-15DOI: 10.46439/breastcancer.1.005
{"title":"Progress and perspectives of organoid cultures of primary human breast cancer","authors":"","doi":"10.46439/breastcancer.1.005","DOIUrl":"https://doi.org/10.46439/breastcancer.1.005","url":null,"abstract":"","PeriodicalId":73629,"journal":{"name":"Journal of breast cancer research","volume":"2 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79712323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edward F Plow, Elzbieta Pluskota, Katarzyna Bialkowska
Kindlin-1 (K1, FERMT1), Kindlin-2 (K2, FERMT2), and Kindlin-3 (K3, FERMT3) are the three members of the kindlin family of adapter proteins found in mammals. One or more kindlins are found in most cell types, K1 primarily in epithelial cells, K3 in primarily hematopoietic cells and also endothelial cells, and K2 is very broadly distributed. The kindlins consist primarily of a 4.1-erzin-radixin-moiesin (FERM) domain, which is transected by a lipid-binding plextrin-homology (PH) domain. Deficiencies of each kindlin in mice and/ or humans have profound pathogenic consequences. The most well-established function of kindlins depends on their ability to participate in the activat integrin adhesion receptors. This function depends on the binding of each kindlin to the beta subunit of integrins where it cooperates with talin to enhance avidity of interactions with cognate extracellular matrix ligands. Deficiencies of many different integrins are lethal, are critical for normal development of mammary tissue, and excessive expression and/or activation of certain integrins are associated with progression and metastasis of breast cancer. However, via its interaction with many other intracellular proteins, kindlins can influence numerous cellular responses. Changes in expression of each of the three kindlins have been reported in association with breast cancer, with several studies indicating that kindlins are among the most upregulated genes in breast cancer. The association of abnormal functions of K2 with breast cancer is particularly extensive with many reports indicating that it is a major driver of breast cancer via its promotion of cancer cell proliferation, survival, adhesion, migration, invasion, the epithelial-to-mesenchymal transition and its influence on macrophage recruitment and phenotype. These associations suggest that the kindlins and their functions represent an intriguing therapeutic target for exploration of breast cancer therapy.
{"title":"Kindlins as modulators of breast cancer progression.","authors":"Edward F Plow, Elzbieta Pluskota, Katarzyna Bialkowska","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Kindlin-1 (K1, FERMT1), Kindlin-2 (K2, FERMT2), and Kindlin-3 (K3, FERMT3) are the three members of the kindlin family of adapter proteins found in mammals. One or more kindlins are found in most cell types, K1 primarily in epithelial cells, K3 in primarily hematopoietic cells and also endothelial cells, and K2 is very broadly distributed. The kindlins consist primarily of a 4.1-erzin-radixin-moiesin (FERM) domain, which is transected by a lipid-binding plextrin-homology (PH) domain. Deficiencies of each kindlin in mice and/ or humans have profound pathogenic consequences. The most well-established function of kindlins depends on their ability to participate in the activat integrin adhesion receptors. This function depends on the binding of each kindlin to the beta subunit of integrins where it cooperates with talin to enhance avidity of interactions with cognate extracellular matrix ligands. Deficiencies of many different integrins are lethal, are critical for normal development of mammary tissue, and excessive expression and/or activation of certain integrins are associated with progression and metastasis of breast cancer. However, via its interaction with many other intracellular proteins, kindlins can influence numerous cellular responses. Changes in expression of each of the three kindlins have been reported in association with breast cancer, with several studies indicating that kindlins are among the most upregulated genes in breast cancer. The association of abnormal functions of K2 with breast cancer is particularly extensive with many reports indicating that it is a major driver of breast cancer via its promotion of cancer cell proliferation, survival, adhesion, migration, invasion, the epithelial-to-mesenchymal transition and its influence on macrophage recruitment and phenotype. These associations suggest that the kindlins and their functions represent an intriguing therapeutic target for exploration of breast cancer therapy.</p>","PeriodicalId":73629,"journal":{"name":"Journal of breast cancer research","volume":"1 2","pages":"20-29"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9816361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.46439/breastcancer.1.001
Cunye Yan, Min Ren, Benzhong Wang, Chenyu Sun
Here, we report a 26-year-old Chinese woman diagnosed with breast cancer. The patient expressed her concern for possible impact on fertility, as well as the cosmetic outcomes of the surgery. Therefore, the patient was consulted for preserving fertility function by cryopreservation after ovariectomy, with sentinel lymph node biopsy and breast reconstruction surgery simultaneously. With the development of health care and the growth of economy, as well as the general awareness of full-round health, the need for reproductive preservation of young female breast cancer patients in developing countries is also increasing. Thus we recommend actively providing patent education for the reproductive protection operation on a regular basis, to reduce the cases of patients who suffer from a decline in fertility.
{"title":"Fertility-sparing surgery for a young breast cancer patient — A case report and literature review","authors":"Cunye Yan, Min Ren, Benzhong Wang, Chenyu Sun","doi":"10.46439/breastcancer.1.001","DOIUrl":"https://doi.org/10.46439/breastcancer.1.001","url":null,"abstract":"Here, we report a 26-year-old Chinese woman diagnosed with breast cancer. The patient expressed her concern for possible impact on fertility, as well as the cosmetic outcomes of the surgery. Therefore, the patient was consulted for preserving fertility function by cryopreservation after ovariectomy, with sentinel lymph node biopsy and breast reconstruction surgery simultaneously. With the development of health care and the growth of economy, as well as the general awareness of full-round health, the need for reproductive preservation of young female breast cancer patients in developing countries is also increasing. Thus we recommend actively providing patent education for the reproductive protection operation on a regular basis, to reduce the cases of patients who suffer from a decline in fertility.","PeriodicalId":73629,"journal":{"name":"Journal of breast cancer research","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80749094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}