Spatial probit generalized linear mixed models (spGLMM) with a linear fixed effect and a spatial random effect, endowed with a Gaussian Process prior, are widely used for analysis of binary spatial data. However, the canonical Bayesian implementation of this hierarchical mixed model can involve protracted Markov Chain Monte Carlo sampling. Alternate approaches have been proposed that circumvent this by directly representing the marginal likelihood from spGLMM in terms of multivariate normal cummulative distribution functions (cdf). We present a direct and fast rendition of this latter approach for predictions from a spatial probit linear mixed model. We show that the covariance matrix of the cdf characterizing the marginal cdf of binary spatial data from spGLMM is amenable to approximation using Nearest Neighbor Gaussian Processes (NNGP). This facilitates a scalable prediction algorithm for spGLMM using NNGP that only involves sparse or small matrix computations and can be deployed in an embarrassingly parallel manner. We demonstrate the accuracy and scalability of the algorithm via numerous simulation experiments and an analysis of species presence-absence data.
A standard competing risks set-up requires both time to event and cause of failure to be fully observable for all subjects. However, in application, the cause of failure may not always be observable, thus impeding the risk assessment. In some extreme cases, none of the causes of failure is observable. In the case of a recurrent episode of Plasmodium vivax malaria following treatment, the patient may have suffered a relapse from a previous infection or acquired a new infection from a mosquito bite. In this case, the time to relapse cannot be modeled when a competing risk, a new infection, is present. The efficacy of a treatment for preventing relapse from a previous infection may be underestimated when the true cause of infection cannot be classified. In this paper, we developed a novel method for classifying the latent cause of failure under a competing risks set-up, which uses not only time to event information but also transition likelihoods between covariates at the baseline and at the time of event occurrence. Our classifier shows superior performance under various scenarios in simulation experiments. The method was applied to Plasmodium vivax infection data to classify recurrent infections of malaria.

