Pub Date : 2024-01-01Epub Date: 2024-06-12DOI: 10.1016/bs.apcsb.2024.03.002
Cícero Alves Lopes Júnior, Mikael Kélvin de Albuquerque Mendes, Michely da Silva Sousa, Edivan Carvalho Vieira, Tatianny de Araujo Andrade, Jemmyson Romário de Jesus
Several species during evolution suffered random mutations in response to various environmental factors, which resulted in the formation of venom in phylogenetically distant species. The composition of the venom of most species is poorly known. Snake venom is well characterized while most species have poorly known composition. In contrast, snake venoms are well characterized which proteins and peptides are the main active and most abundant constituents. 42 protein families have been identified, including metalloproteins known as metalloproteinases. These macromolecules are enzymes with zinc in their active site derived from the disintegrin A and metalloproteinase (ADAM) cellular family and are categorized into three classes (PI, PII and PIII) according to their domain organization. The snake venom metalloproteinases (SVMP) are cytotoxic, neurotoxic, myotoxic and/or hematotoxic with a crucial role in the defense and restraint of prey. In this scenario envenoming represents a danger to human health and has been considered a neglected disease worldwide, particularly in tropical and subtropical countries. Nevertheless, recently advances in "omics" technologies have demonstrated interesting biological activities of SVMPs such as antimicrobial, anticancer, against cardiovascular diseases and nervous system disorders. Metalloproteins have the therapeutic potential to be converted into drugs as other components of the venom have undergone this process (e.g., captopril, tirefiban and eptifibatide). So, this chapter is focused on the metalloproteins found in the secretions of venomous species, highlight some aspects such as structure, biological activity, pharmacological therapeutic potential and on.
{"title":"Exploring metalloproteins found in the secretion of venomous species: Biological role and therapeutical applications.","authors":"Cícero Alves Lopes Júnior, Mikael Kélvin de Albuquerque Mendes, Michely da Silva Sousa, Edivan Carvalho Vieira, Tatianny de Araujo Andrade, Jemmyson Romário de Jesus","doi":"10.1016/bs.apcsb.2024.03.002","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.03.002","url":null,"abstract":"<p><p>Several species during evolution suffered random mutations in response to various environmental factors, which resulted in the formation of venom in phylogenetically distant species. The composition of the venom of most species is poorly known. Snake venom is well characterized while most species have poorly known composition. In contrast, snake venoms are well characterized which proteins and peptides are the main active and most abundant constituents. 42 protein families have been identified, including metalloproteins known as metalloproteinases. These macromolecules are enzymes with zinc in their active site derived from the disintegrin A and metalloproteinase (ADAM) cellular family and are categorized into three classes (PI, PII and PIII) according to their domain organization. The snake venom metalloproteinases (SVMP) are cytotoxic, neurotoxic, myotoxic and/or hematotoxic with a crucial role in the defense and restraint of prey. In this scenario envenoming represents a danger to human health and has been considered a neglected disease worldwide, particularly in tropical and subtropical countries. Nevertheless, recently advances in \"omics\" technologies have demonstrated interesting biological activities of SVMPs such as antimicrobial, anticancer, against cardiovascular diseases and nervous system disorders. Metalloproteins have the therapeutic potential to be converted into drugs as other components of the venom have undergone this process (e.g., captopril, tirefiban and eptifibatide). So, this chapter is focused on the metalloproteins found in the secretions of venomous species, highlight some aspects such as structure, biological activity, pharmacological therapeutic potential and on.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"141 ","pages":"539-562"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In Alzheimer's disease, the microtubule-associated protein, Tau misfolds to form aggregates and filaments in the intra- and extracellular region of neuronal cells. Microglial cells are the resident brain macrophage cells involved in constant surveillance and activated by the extracellular deposits. Purinergic receptors are involved in the chemotactic migration of microglial cells towards the site of inflammation. From our recent study, we have observed that the microglial P2Y12 receptor is involved in phagocytosis of full-length Tau species such as monomers, oligomers and aggregates by actin-driven chemotaxis. This study shows the interaction of repeat-domain of Tau (TauRD) with the microglial P2Y12 receptor and the corresponding residues for interaction have been analyzed by various in-silico approaches. In the cellular studies, TauRD was found to interact with microglial P2Y12R and induces its cellular expression confirmed by co-immunoprecipitation and western blot analysis. Furthermore, the P2Y12R-mediated TauRD internalization has demonstrated activation of microglia with an increase in the Iba1 level, and TauRD becomes accumulated at the peri-nuclear region for the degradation.
在阿尔茨海默氏症中,微管相关蛋白 Tau 会在神经细胞的细胞内和细胞外区域错误折叠,形成聚集体和丝状物。小胶质细胞是常驻大脑的巨噬细胞,参与持续监控并被细胞外沉积物激活。嘌呤能受体参与了小胶质细胞向炎症部位的趋化迁移。我们最近的研究观察到,小胶质细胞的 P2Y12 受体通过肌动蛋白驱动的趋化作用参与吞噬全长 Tau 物种,如单体、寡聚体和聚集体。本研究显示了 Tau 的重复域(TauRD)与小胶质细胞 P2Y12 受体之间的相互作用,并通过各种芯片内方法分析了相互作用的相应残基。在细胞研究中,发现 TauRD 与小胶质细胞 P2Y12R 相互作用,并通过共沉淀免疫和 Western 印迹分析证实了 TauRD 可诱导小胶质细胞 P2Y12R 的细胞表达。此外,P2Y12R 介导的 TauRD 内化表明小胶质细胞被激活,Iba1 水平升高,TauRD 在核周区域积聚并降解。
{"title":"G-protein coupled receptors regulates Tauopathy in neurodegeneration.","authors":"Subashchandrabose Chinnathambi, Hariharakrishnan Chidambaram","doi":"10.1016/bs.apcsb.2024.04.001","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.04.001","url":null,"abstract":"<p><p>In Alzheimer's disease, the microtubule-associated protein, Tau misfolds to form aggregates and filaments in the intra- and extracellular region of neuronal cells. Microglial cells are the resident brain macrophage cells involved in constant surveillance and activated by the extracellular deposits. Purinergic receptors are involved in the chemotactic migration of microglial cells towards the site of inflammation. From our recent study, we have observed that the microglial P2Y12 receptor is involved in phagocytosis of full-length Tau species such as monomers, oligomers and aggregates by actin-driven chemotaxis. This study shows the interaction of repeat-domain of Tau (Tau<sup>RD</sup>) with the microglial P2Y12 receptor and the corresponding residues for interaction have been analyzed by various in-silico approaches. In the cellular studies, Tau<sup>RD</sup> was found to interact with microglial P2Y12R and induces its cellular expression confirmed by co-immunoprecipitation and western blot analysis. Furthermore, the P2Y12R-mediated Tau<sup>RD</sup> internalization has demonstrated activation of microglia with an increase in the Iba1 level, and Tau<sup>RD</sup> becomes accumulated at the peri-nuclear region for the degradation.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"141 ","pages":"467-493"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.
{"title":"Molecular insights and promise of oncolytic virus based immunotherapy.","authors":"Mahalaxmi Iyer, Nandita Ravichandran, Panimalar Abirami Karuppusamy, Roselin Gnanarajan, Mukesh Kumar Yadav, Arul Narayanasamy, Balachandar Vellingiri","doi":"10.1016/bs.apcsb.2023.12.007","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2023.12.007","url":null,"abstract":"<p><p>Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"140 ","pages":"419-492"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-04-29DOI: 10.1016/bs.apcsb.2024.02.006
Deeksha Singh, Shivangi Mathur, Rajiv Ranjan
There is an urgent need to combat pathogen infestations in crop plants to ensure food security worldwide. To counter this, plants have developed innate immunity mediated by Pattern Recognition Receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage- associated molecular patterns (DAMPs). PRRs activate Pattern-Triggered Immunity (PTI), a defence mechanism involving intricate cell-surface and intracellular receptors. The diverse ligand-binding ectodomains of PRRs, including leucine-rich repeats (LRRs) and lectin domains, facilitate the recognition of MAMPs and DAMPs. Pathogen resistance is mediated by a variety of PTI responses, including membrane depolarization, ROS production, and the induction of defence genes. An integral part of intracellular immunity is the Nucleotide-binding Oligomerization Domain, Leucine-rich Repeat proteins (NLRs) which recognize and respond to effectors in a potent manner. Enhanced understanding of PRRs, their ligands, and downstream signalling pathways has contributed to the identification of potential targets for genetically modified plants. By transferring PRRs across plant species, it is possible to create broad-spectrum resistance, potentially offering innovative solutions for plant protection and global food security. The purpose of this chapter is to provide an update on PRRs involved in disease resistance, clarify the mechanisms by which PRRs recognize ligands to form active receptor complexes and present various applications of PRRs and PTI in disease resistance management for plants.
{"title":"Pattern recognition receptors as potential therapeutic targets for developing immunological engineered plants.","authors":"Deeksha Singh, Shivangi Mathur, Rajiv Ranjan","doi":"10.1016/bs.apcsb.2024.02.006","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.02.006","url":null,"abstract":"<p><p>There is an urgent need to combat pathogen infestations in crop plants to ensure food security worldwide. To counter this, plants have developed innate immunity mediated by Pattern Recognition Receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage- associated molecular patterns (DAMPs). PRRs activate Pattern-Triggered Immunity (PTI), a defence mechanism involving intricate cell-surface and intracellular receptors. The diverse ligand-binding ectodomains of PRRs, including leucine-rich repeats (LRRs) and lectin domains, facilitate the recognition of MAMPs and DAMPs. Pathogen resistance is mediated by a variety of PTI responses, including membrane depolarization, ROS production, and the induction of defence genes. An integral part of intracellular immunity is the Nucleotide-binding Oligomerization Domain, Leucine-rich Repeat proteins (NLRs) which recognize and respond to effectors in a potent manner. Enhanced understanding of PRRs, their ligands, and downstream signalling pathways has contributed to the identification of potential targets for genetically modified plants. By transferring PRRs across plant species, it is possible to create broad-spectrum resistance, potentially offering innovative solutions for plant protection and global food security. The purpose of this chapter is to provide an update on PRRs involved in disease resistance, clarify the mechanisms by which PRRs recognize ligands to form active receptor complexes and present various applications of PRRs and PTI in disease resistance management for plants.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"140 ","pages":"525-555"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune-metabolic interactions play a pivotal role in both host defense and susceptibility to various diseases. Immunometabolism, an interdisciplinary field, seeks to elucidate how metabolic processes impact the immune system. In the context of viral infections, macrophages are often exploited by viruses for their replication and propagation. These infections trigger significant metabolic reprogramming within macrophages and polarization of distinct M1 and M2 phenotypes. This metabolic reprogramming involves alterations in standard- pathways such as the Krebs cycle, glycolysis, lipid metabolism, the pentose phosphate pathway, and amino acid metabolism. Disruptions in the balance of key intermediates like spermidine, itaconate, and citrate within these pathways contribute to the severity of viral diseases. In this chapter, we describe the manipulation of metabolic pathways by viruses and how they crosstalk between signaling pathways to evade the immune system. This intricate interplay often involves the upregulation or downregulation of specific metabolites, making these molecules potential biomarkers for diseases like HIV, HCV, and SARS-CoV. Techniques such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry, are the evaluative ways to analyze these metabolites. Considering the importance of macrophages in the inflammatory response, addressing their metabolome holds great promise for the creating future therapeutic targets aimed at combating a wide spectrum of viral infections.
{"title":"Decoding macrophage immunometabolism in human viral infection.","authors":"Takhellambam Malemnganba, Aditi Rattan, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2023.12.003","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2023.12.003","url":null,"abstract":"<p><p>Immune-metabolic interactions play a pivotal role in both host defense and susceptibility to various diseases. Immunometabolism, an interdisciplinary field, seeks to elucidate how metabolic processes impact the immune system. In the context of viral infections, macrophages are often exploited by viruses for their replication and propagation. These infections trigger significant metabolic reprogramming within macrophages and polarization of distinct M1 and M2 phenotypes. This metabolic reprogramming involves alterations in standard- pathways such as the Krebs cycle, glycolysis, lipid metabolism, the pentose phosphate pathway, and amino acid metabolism. Disruptions in the balance of key intermediates like spermidine, itaconate, and citrate within these pathways contribute to the severity of viral diseases. In this chapter, we describe the manipulation of metabolic pathways by viruses and how they crosstalk between signaling pathways to evade the immune system. This intricate interplay often involves the upregulation or downregulation of specific metabolites, making these molecules potential biomarkers for diseases like HIV, HCV, and SARS-CoV. Techniques such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry, are the evaluative ways to analyze these metabolites. Considering the importance of macrophages in the inflammatory response, addressing their metabolome holds great promise for the creating future therapeutic targets aimed at combating a wide spectrum of viral infections.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"140 ","pages":"493-523"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Together with the expansion of genome sequencing research, the number of protein sequences whose function is yet unknown is increasing dramatically. The primary goals of functional proteomics, a developing area of study in the realm of proteomic science, are the elucidation of the biological function of unidentified proteins and the molecular description of cellular systems at the molecular level. RNA viruses have emerged as the cause of several human infectious diseases with large morbidity and fatality rates. The introduction of high-throughput sequencing tools and genetic-based screening approaches over the last few decades has enabled researchers to find previously unknown and perplexing elements of RNA virus replication and pathogenesis on a scale never feasible before. Viruses, on the other hand, frequently disrupt cellular proteostasis, macromolecular complex architecture or stoichiometry, and post-translational changes to take over essential host activities. Because of these consequences, structural and global protein and proteoform monitoring is highly necessiated. Mass spectrometry (MS) has the potential to elucidate key details of virus-host interactions and speed up the identification of antiviral targets, giving precise data on the stoichiometry of cellular and viral protein complexes as well as mechanistic insights, has lately emerged as a key part of the RNA virus biology toolbox as a functional proteomics approach. Affinity-based techniques are primarily employed to identify interacting proteins in stable complexes in living organisms. A protein's biological role is strongly suggested by its relationship with other members of a certain protein complex that is involved in a particular process. With a particular emphasis on the most recent advancements in defining host responses and their translational implications to uncover novel tractable antiviral targets, this chapter provides insight on several functional proteomics techniques in RNA virus biology.
{"title":"Application of functional proteomics in understanding RNA virus-mediated infection.","authors":"Mamta Panda, Elora Kalita, Satyendra Singh, Abhishek Rao, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2023.04.004","DOIUrl":"10.1016/bs.apcsb.2023.04.004","url":null,"abstract":"<p><p>Together with the expansion of genome sequencing research, the number of protein sequences whose function is yet unknown is increasing dramatically. The primary goals of functional proteomics, a developing area of study in the realm of proteomic science, are the elucidation of the biological function of unidentified proteins and the molecular description of cellular systems at the molecular level. RNA viruses have emerged as the cause of several human infectious diseases with large morbidity and fatality rates. The introduction of high-throughput sequencing tools and genetic-based screening approaches over the last few decades has enabled researchers to find previously unknown and perplexing elements of RNA virus replication and pathogenesis on a scale never feasible before. Viruses, on the other hand, frequently disrupt cellular proteostasis, macromolecular complex architecture or stoichiometry, and post-translational changes to take over essential host activities. Because of these consequences, structural and global protein and proteoform monitoring is highly necessiated. Mass spectrometry (MS) has the potential to elucidate key details of virus-host interactions and speed up the identification of antiviral targets, giving precise data on the stoichiometry of cellular and viral protein complexes as well as mechanistic insights, has lately emerged as a key part of the RNA virus biology toolbox as a functional proteomics approach. Affinity-based techniques are primarily employed to identify interacting proteins in stable complexes in living organisms. A protein's biological role is strongly suggested by its relationship with other members of a certain protein complex that is involved in a particular process. With a particular emphasis on the most recent advancements in defining host responses and their translational implications to uncover novel tractable antiviral targets, this chapter provides insight on several functional proteomics techniques in RNA virus biology.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"138 ","pages":"301-325"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139465942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-12-01DOI: 10.1016/bs.apcsb.2023.08.001
Morteza Abyadeh, Mehdi Alikhani, Mehdi Mirzaei, Vivek Gupta, Faezeh Shekari, Ghasem Hosseini Salekdeh
Extracellular vesicles (EVs) encompass a diverse range of membranous structures derived from cells, including exosomes and microvesicles. These vesicles are present in biological fluids and play vital roles in various physiological and pathological processes. They facilitate intercellular communication by enabling the exchange of proteins, lipids, and genetic material between cells. Understanding the cellular processes that govern EV biology is essential for unraveling their physiological and pathological functions and their potential clinical applications. Despite significant advancements in EV research in recent years, there is still much to learn about these vesicles. The advent of improved mass spectrometry (MS)-based techniques has allowed for a deeper characterization of EV protein composition, providing valuable insights into their roles in different physiological and pathological conditions. In this chapter, we provide an overview of proteomics studies conducted to identify the protein contents of EVs, which contribute to their therapeutic and pathological features. We also provided evidence on the potential of EV proteome contents as biomarkers for early disease diagnosis, progression, and treatment response, as well as factors that influence their composition. Additionally, we discuss the available databases containing information on EV proteome contents, and finally, we highlight the need for further research to pave the way toward their utilization in clinical settings.
细胞外囊泡(EVs)包括来自细胞的各种膜结构,其中包括外泌体和微囊泡。这些囊泡存在于生物液体中,在各种生理和病理过程中发挥着重要作用。它们可以在细胞间交换蛋白质、脂质和遗传物质,从而促进细胞间的交流。要揭示 EV 的生理和病理功能及其潜在的临床应用,了解支配 EV 生物学的细胞过程至关重要。尽管近年来对 EV 的研究取得了重大进展,但关于这些囊泡仍有许多知识需要了解。基于质谱(MS)技术的改进使人们能够更深入地鉴定 EV 蛋白质的组成,为了解它们在不同生理和病理条件下的作用提供了宝贵的见解。在本章中,我们概述了蛋白质组学研究的情况,这些研究旨在确定EVs中的蛋白质含量,这些蛋白质含量有助于EVs的治疗和病理特征。我们还提供了有关 EV 蛋白质组内容作为早期疾病诊断、进展和治疗反应生物标志物的潜力以及影响其组成的因素的证据。此外,我们还讨论了包含 EV 蛋白质组内容信息的可用数据库,最后,我们强调了进一步研究的必要性,以便为在临床环境中利用它们铺平道路。
{"title":"Proteomics provides insights into the theranostic potential of extracellular vesicles.","authors":"Morteza Abyadeh, Mehdi Alikhani, Mehdi Mirzaei, Vivek Gupta, Faezeh Shekari, Ghasem Hosseini Salekdeh","doi":"10.1016/bs.apcsb.2023.08.001","DOIUrl":"10.1016/bs.apcsb.2023.08.001","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) encompass a diverse range of membranous structures derived from cells, including exosomes and microvesicles. These vesicles are present in biological fluids and play vital roles in various physiological and pathological processes. They facilitate intercellular communication by enabling the exchange of proteins, lipids, and genetic material between cells. Understanding the cellular processes that govern EV biology is essential for unraveling their physiological and pathological functions and their potential clinical applications. Despite significant advancements in EV research in recent years, there is still much to learn about these vesicles. The advent of improved mass spectrometry (MS)-based techniques has allowed for a deeper characterization of EV protein composition, providing valuable insights into their roles in different physiological and pathological conditions. In this chapter, we provide an overview of proteomics studies conducted to identify the protein contents of EVs, which contribute to their therapeutic and pathological features. We also provided evidence on the potential of EV proteome contents as biomarkers for early disease diagnosis, progression, and treatment response, as well as factors that influence their composition. Additionally, we discuss the available databases containing information on EV proteome contents, and finally, we highlight the need for further research to pave the way toward their utilization in clinical settings.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"138 ","pages":"101-133"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-12-01DOI: 10.1016/bs.apcsb.2023.10.001
Boris S Negrutskii, Larysa V Porubleva, Agata Malinowska, Oleksandra V Novosylna, Michal Dadlez, Charlotte R Knudsen
Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins. We used the identified sets of eEF1A1 or eEF1A2 partner proteins to identify cell complexes and/or processes specific to one particular isoform. As a result, we found isoform-specific interactions reflecting the involvement of different eEF1A isoforms in different cellular processes, including actin-related, chromatin-remodeling, ribonuclease H2, adenylyl cyclase, and Cul3-RING ubiquitin ligase complexes as well as initiation of mitochondrial transcription. An essential by-product of our analysis is the elucidation of a number of cellular processes beyond protein biosynthesis, where both isoforms appear to participate such as large ribosomal subunit biogenesis, mRNA splicing, DNA mismatch repair, 26S proteasome activity, P-body and exosomes formation, protein targeting to the membrane. This information suggests that a relatively high content of eEF1A in the cell may be necessary not only to maintain efficient translation, but also to ensure its participation in various cellular processes, where some roles of eEF1A have not yet been described. We believe that the data presented here will be useful for deciphering new auxiliary functions of eEF1A and its isoforms, and provide a new look at the known non-canonical functions of this main component of the human translation-elongation machinery.
{"title":"Understanding functions of eEF1 translation elongation factors beyond translation. A proteomic approach.","authors":"Boris S Negrutskii, Larysa V Porubleva, Agata Malinowska, Oleksandra V Novosylna, Michal Dadlez, Charlotte R Knudsen","doi":"10.1016/bs.apcsb.2023.10.001","DOIUrl":"10.1016/bs.apcsb.2023.10.001","url":null,"abstract":"<p><p>Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins. We used the identified sets of eEF1A1 or eEF1A2 partner proteins to identify cell complexes and/or processes specific to one particular isoform. As a result, we found isoform-specific interactions reflecting the involvement of different eEF1A isoforms in different cellular processes, including actin-related, chromatin-remodeling, ribonuclease H2, adenylyl cyclase, and Cul3-RING ubiquitin ligase complexes as well as initiation of mitochondrial transcription. An essential by-product of our analysis is the elucidation of a number of cellular processes beyond protein biosynthesis, where both isoforms appear to participate such as large ribosomal subunit biogenesis, mRNA splicing, DNA mismatch repair, 26S proteasome activity, P-body and exosomes formation, protein targeting to the membrane. This information suggests that a relatively high content of eEF1A in the cell may be necessary not only to maintain efficient translation, but also to ensure its participation in various cellular processes, where some roles of eEF1A have not yet been described. We believe that the data presented here will be useful for deciphering new auxiliary functions of eEF1A and its isoforms, and provide a new look at the known non-canonical functions of this main component of the human translation-elongation machinery.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"138 ","pages":"67-99"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-14DOI: 10.1016/bs.apcsb.2023.11.014
Ritu Tomer, Sumeet Patiyal, Dilraj Kaur, Shubham Choudhury, Gajendra P S Raghava
An uncommon opportunistic fungal infection known as mucormycosis is caused by a class of molds called mucoromycetes. Currently, antifungal therapy and surgical debridement are the primary treatment options for mucormycosis. Despite the importance of comprehensive knowledge on mucormycosis, there is a lack of well-annotated databases that provide all relevant information. In this study, we have gathered and organized all available information related to mucormycosis that include disease's genome, proteins, diagnostic methods. Furthermore, using the AlphaFold2.0 prediction tool, we have predicted the tertiary structures of potential drug targets. We have categorized the information into three major sections: "genomics/proteomics," "immunotherapy," and "drugs." The genomics/proteomics module contains information on different strains responsible for mucormycosis. The immunotherapy module includes putative sequence-based therapeutics predicted using established tools. Drugs module provides information on available drugs for treating the disease. Additionally, the drugs module also offers prerequisite information for designing computationally aided drugs, such as putative targets and predicted structures. In order to provide comprehensive information over internet, we developed a web-based platform MucormyDB (https://webs.iiitd.edu.in/raghava/mucormydb/).
{"title":"Genome-based solutions for managing mucormycosis.","authors":"Ritu Tomer, Sumeet Patiyal, Dilraj Kaur, Shubham Choudhury, Gajendra P S Raghava","doi":"10.1016/bs.apcsb.2023.11.014","DOIUrl":"10.1016/bs.apcsb.2023.11.014","url":null,"abstract":"<p><p>An uncommon opportunistic fungal infection known as mucormycosis is caused by a class of molds called mucoromycetes. Currently, antifungal therapy and surgical debridement are the primary treatment options for mucormycosis. Despite the importance of comprehensive knowledge on mucormycosis, there is a lack of well-annotated databases that provide all relevant information. In this study, we have gathered and organized all available information related to mucormycosis that include disease's genome, proteins, diagnostic methods. Furthermore, using the AlphaFold2.0 prediction tool, we have predicted the tertiary structures of potential drug targets. We have categorized the information into three major sections: \"genomics/proteomics,\" \"immunotherapy,\" and \"drugs.\" The genomics/proteomics module contains information on different strains responsible for mucormycosis. The immunotherapy module includes putative sequence-based therapeutics predicted using established tools. Drugs module provides information on available drugs for treating the disease. Additionally, the drugs module also offers prerequisite information for designing computationally aided drugs, such as putative targets and predicted structures. In order to provide comprehensive information over internet, we developed a web-based platform MucormyDB (https://webs.iiitd.edu.in/raghava/mucormydb/).</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"139 ","pages":"383-403"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-04-04DOI: 10.1016/bs.apcsb.2024.02.005
N V Kuzmenko, M M Galagudza
Seasonal changes in external conditions (photoperiod, meteorological conditions, diet) cause adaptive changes in both energy and substrate metabolism in the animals of mammalian species. In summer, long days and a rich diet contribute to relative elevation in the levels of thyroid hormones (TH), but warmer weather lowers their levels. In winter, short days and a poor diet inhibit TH synthesis, but low temperatures increase their secretion. In addition, the results of our meta-analyses revealed a significant role of atmospheric pressure in circannual fluctuations of metabolic parameters in humans. The changes in photoperiod are generally viewed as a major factor contributing to seasonal rhythm regulation However, numerous data show that season-dependent metabolic changes in mammals could be also accounted for by meteorological factors and diet.
{"title":"Hormonal basis of seasonal metabolic changes in mammalian species.","authors":"N V Kuzmenko, M M Galagudza","doi":"10.1016/bs.apcsb.2024.02.005","DOIUrl":"10.1016/bs.apcsb.2024.02.005","url":null,"abstract":"<p><p>Seasonal changes in external conditions (photoperiod, meteorological conditions, diet) cause adaptive changes in both energy and substrate metabolism in the animals of mammalian species. In summer, long days and a rich diet contribute to relative elevation in the levels of thyroid hormones (TH), but warmer weather lowers their levels. In winter, short days and a poor diet inhibit TH synthesis, but low temperatures increase their secretion. In addition, the results of our meta-analyses revealed a significant role of atmospheric pressure in circannual fluctuations of metabolic parameters in humans. The changes in photoperiod are generally viewed as a major factor contributing to seasonal rhythm regulation However, numerous data show that season-dependent metabolic changes in mammals could be also accounted for by meteorological factors and diet.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"142 ","pages":"131-161"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}