首页 > 最新文献

Journal of medical artificial intelligence最新文献

英文 中文
Bridging artificial intelligence in medicine with generative pre-trained transformer (GPT) technology 将医学中的人工智能与生成预训练变换器(GPT)技术连接起来
Pub Date : 2023-08-01 DOI: 10.21037/jmai-23-36
Ethan Waisberg, Joshua Ong, S. Kamran, M. Masalkhi, Nasif Zaman, Prithul Sarker, Andrew Lee, A. Tavakkoli
{"title":"Bridging artificial intelligence in medicine with generative pre-trained transformer (GPT) technology","authors":"Ethan Waisberg, Joshua Ong, S. Kamran, M. Masalkhi, Nasif Zaman, Prithul Sarker, Andrew Lee, A. Tavakkoli","doi":"10.21037/jmai-23-36","DOIUrl":"https://doi.org/10.21037/jmai-23-36","url":null,"abstract":"","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43759349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparison of predicted survival curves and personalized prognosis among cox regression and machine learning approaches in glioblastoma 胶质母细胞瘤cox回归和机器学习方法预测生存曲线和个性化预后的比较
Pub Date : 2023-07-01 DOI: 10.21037/jmai-22-98
Thara Tunthanathip, T. Oearsakul
{"title":"Comparison of predicted survival curves and personalized prognosis among cox regression and machine learning approaches in glioblastoma","authors":"Thara Tunthanathip, T. Oearsakul","doi":"10.21037/jmai-22-98","DOIUrl":"https://doi.org/10.21037/jmai-22-98","url":null,"abstract":"","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48535377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ensuring that glaucoma clinical decision support meets the needs of providers and patients 确保青光眼临床决策支持满足提供者和患者的需求
Pub Date : 2023-07-01 DOI: 10.21037/jmai-23-33
B. Baugh, B. Tullis, A. Asare, M. Zouache, Brian C. Stagg
{"title":"Ensuring that glaucoma clinical decision support meets the needs of providers and patients","authors":"B. Baugh, B. Tullis, A. Asare, M. Zouache, Brian C. Stagg","doi":"10.21037/jmai-23-33","DOIUrl":"https://doi.org/10.21037/jmai-23-33","url":null,"abstract":"","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46562041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Actions are needed to develop artificial intelligence for glaucoma diagnosis and treatment 需要采取行动开发青光眼诊断和治疗的人工智能
Pub Date : 2023-07-01 DOI: 10.21037/jmai-23-37
T. Yoo
{"title":"Actions are needed to develop artificial intelligence for glaucoma diagnosis and treatment","authors":"T. Yoo","doi":"10.21037/jmai-23-37","DOIUrl":"https://doi.org/10.21037/jmai-23-37","url":null,"abstract":"","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68339337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the potential of qualitative research for the implementation of artificial intelligence-enabled healthcare 释放定性研究的潜力,实现支持人工智能的医疗保健
Pub Date : 2023-06-01 DOI: 10.21037/jmai-23-28
H. D. J. Hogg, M. Sendak, A. Denniston, P. Keane, G. Maniatopoulos
{"title":"Unlocking the potential of qualitative research for the implementation of artificial intelligence-enabled healthcare","authors":"H. D. J. Hogg, M. Sendak, A. Denniston, P. Keane, G. Maniatopoulos","doi":"10.21037/jmai-23-28","DOIUrl":"https://doi.org/10.21037/jmai-23-28","url":null,"abstract":"","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43637064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Writing the paper “Unveiling artificial intelligence: an insight into ethics and applications in anesthesia” implementing the large language model ChatGPT: a qualitative study 撰写论文《揭开人工智能的面纱:对麻醉伦理与应用的洞察》,实施大型语言模型ChatGPT:定性研究
Pub Date : 2023-06-01 DOI: 10.21037/jmai-23-13
M. Cascella, J. Montomoli, Valentina Bellini, A. Ottaiano, M. Santorsola, Francesco Perri, Francesco Sabbatino, Alessandro Vittori, E. Bignami
{"title":"Writing the paper “Unveiling artificial intelligence: an insight into ethics and applications in anesthesia” implementing the large language model ChatGPT: a qualitative study","authors":"M. Cascella, J. Montomoli, Valentina Bellini, A. Ottaiano, M. Santorsola, Francesco Perri, Francesco Sabbatino, Alessandro Vittori, E. Bignami","doi":"10.21037/jmai-23-13","DOIUrl":"https://doi.org/10.21037/jmai-23-13","url":null,"abstract":"","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45353894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximating femoral neck bone mineral density from hand, knee, and pelvis X-rays using deep learning 使用深度学习从手,膝盖和骨盆x射线近似股骨颈骨矿物质密度
Pub Date : 2023-06-01 DOI: 10.21037/jmai-23-10
K. Golestan, Catriona A. Syme, A. Bilbily, S. Zuberi, M. Volkovs, T. Poutanen, Mark D Cicero
{"title":"Approximating femoral neck bone mineral density from hand, knee, and pelvis X-rays using deep learning","authors":"K. Golestan, Catriona A. Syme, A. Bilbily, S. Zuberi, M. Volkovs, T. Poutanen, Mark D Cicero","doi":"10.21037/jmai-23-10","DOIUrl":"https://doi.org/10.21037/jmai-23-10","url":null,"abstract":"","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46284741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Narrative review of open source, proprietary, and experimental artificial intelligence algorithms in radiology 放射学中开源、专有和实验人工智能算法的叙述性综述
Pub Date : 2023-05-01 DOI: 10.21037/jmai-22-89
Alex R Ghorishi, Feyikemi Ogunfuwa, Tarek M. Ghaddar, Maya N. Kandah, Blake W. Smith, Quan Ta, Amaris Alayon, Per K. Amundson
{"title":"Narrative review of open source, proprietary, and experimental artificial intelligence algorithms in radiology","authors":"Alex R Ghorishi, Feyikemi Ogunfuwa, Tarek M. Ghaddar, Maya N. Kandah, Blake W. Smith, Quan Ta, Amaris Alayon, Per K. Amundson","doi":"10.21037/jmai-22-89","DOIUrl":"https://doi.org/10.21037/jmai-22-89","url":null,"abstract":"","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44544823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning models for automated interpretation of 12-lead electrocardiographic signals: a narrative review of techniques, challenges, achievements and clinical relevance 用于12导联心电图信号自动解释的机器学习模型:技术、挑战、成就和临床相关性的叙述性回顾
Pub Date : 2023-05-01 DOI: 10.21037/jmai-22-94
Panteleimon Pantelidis, M. Bampa, E. Oikonomou, P. Papapetrou
{"title":"Machine learning models for automated interpretation of 12-lead electrocardiographic signals: a narrative review of techniques, challenges, achievements and clinical relevance","authors":"Panteleimon Pantelidis, M. Bampa, E. Oikonomou, P. Papapetrou","doi":"10.21037/jmai-22-94","DOIUrl":"https://doi.org/10.21037/jmai-22-94","url":null,"abstract":"","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43532853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient labelling for efficient deep learning: the benefit of a multiple-image-ranking method to generate high volume training data applied to ventricular slice level classification in cardiac MRI. 高效深度学习的高效标记:将多图像排序法应用于心脏磁共振成像的心室切片水平分类,生成大量训练数据的好处。
Pub Date : 2023-04-01 DOI: 10.21037/jmai-22-55
Sameer Zaman, Kavitha Vimalesvaran, James P Howard, Digby Chappell, Marta Varela, Nicholas S Peters, Darrel P Francis, Anil A Bharath, Nick W F Linton, Graham D Cole

Background: Getting the most value from expert clinicians' limited labelling time is a major challenge for artificial intelligence (AI) development in clinical imaging. We present a novel method for ground-truth labelling of cardiac magnetic resonance imaging (CMR) image data by leveraging multiple clinician experts ranking multiple images on a single ordinal axis, rather than manual labelling of one image at a time. We apply this strategy to train a deep learning (DL) model to classify the anatomical position of CMR images. This allows the automated removal of slices that do not contain the left ventricular (LV) myocardium.

Methods: Anonymised LV short-axis slices from 300 random scans (3,552 individual images) were extracted. Each image's anatomical position relative to the LV was labelled using two different strategies performed for 5 hours each: (I) 'one-image-at-a-time': each image labelled according to its position: 'too basal', 'LV', or 'too apical' individually by one of three experts; and (II) 'multiple-image-ranking': three independent experts ordered slices according to their relative position from 'most-basal' to 'most apical' in batches of eight until each image had been viewed at least 3 times. Two convolutional neural networks were trained for a three-way classification task (each model using data from one labelling strategy). The models' performance was evaluated by accuracy, F1-score, and area under the receiver operating characteristics curve (ROC AUC).

Results: After excluding images with artefact, 3,323 images were labelled by both strategies. The model trained using labels from the 'multiple-image-ranking strategy' performed better than the model using the 'one-image-at-a-time' labelling strategy (accuracy 86% vs. 72%, P=0.02; F1-score 0.86 vs. 0.75; ROC AUC 0.95 vs. 0.86). For expert clinicians performing this task manually the intra-observer variability was low (Cohen's κ=0.90), but the inter-observer variability was higher (Cohen's κ=0.77).

Conclusions: We present proof of concept that, given the same clinician labelling effort, comparing multiple images side-by-side using a 'multiple-image-ranking' strategy achieves ground truth labels for DL more accurately than by classifying images individually. We demonstrate a potential clinical application: the automatic removal of unrequired CMR images. This leads to increased efficiency by focussing human and machine attention on images which are needed to answer clinical questions.

背景:如何从临床专家有限的标注时间中获取最大价值,是临床成像领域人工智能(AI)发展面临的一大挑战。我们提出了一种对心脏磁共振成像(CMR)图像数据进行地面实况标注的新方法,即利用多名临床专家在单个序轴上对多幅图像进行排序,而不是每次对一幅图像进行人工标注。我们采用这种策略训练深度学习(DL)模型,对 CMR 图像的解剖位置进行分类。这样就能自动去除不包含左心室(LV)心肌的切片:方法:从 300 张随机扫描图像(3,552 张独立图像)中提取匿名左心室短轴切片。每张图像相对于左心室的解剖位置采用两种不同的策略进行标注,每种策略持续5小时:(I) "一次标注一张图像":三位专家中的一位根据每张图像的位置分别标注 "太基底"、"左心室 "或 "太心尖";(II) "多张图像排序":三位独立专家根据切片的相对位置从 "最基底 "到 "最心尖 "进行排序,每8张切片为一批,直到每张图像被查看至少3次。对两个卷积神经网络进行了三向分类任务训练(每个模型使用一种标记策略的数据)。通过准确率、F1-分数和接收者操作特征曲线下面积(ROC AUC)对模型的性能进行评估:结果:在排除了有伪影的图像后,有 3323 张图像被两种策略标记。使用 "多张图像排序策略 "标签训练的模型比使用 "一次一张图像 "标签策略训练的模型表现更好(准确率为 86% 对 72%,P=0.02;F1 分数为 0.86 对 0.75;ROC AUC 为 0.95 对 0.86)。对于手动执行这项任务的临床专家而言,观察者内部的变异性较低(Cohen's κ=0.90),但观察者之间的变异性较高(Cohen's κ=0.77):我们提出的概念证明,在临床医生进行相同标记的情况下,使用 "多张图像排序 "策略并排比较多张图像,比单独对图像进行分类更能准确地获得 DL 的基本真实标签。我们展示了一种潜在的临床应用:自动移除不需要的 CMR 图像。这可以将人和机器的注意力集中在回答临床问题所需的图像上,从而提高效率。
{"title":"Efficient labelling for efficient deep learning: the benefit of a multiple-image-ranking method to generate high volume training data applied to ventricular slice level classification in cardiac MRI.","authors":"Sameer Zaman, Kavitha Vimalesvaran, James P Howard, Digby Chappell, Marta Varela, Nicholas S Peters, Darrel P Francis, Anil A Bharath, Nick W F Linton, Graham D Cole","doi":"10.21037/jmai-22-55","DOIUrl":"10.21037/jmai-22-55","url":null,"abstract":"<p><strong>Background: </strong>Getting the most value from expert clinicians' limited labelling time is a major challenge for artificial intelligence (AI) development in clinical imaging. We present a novel method for ground-truth labelling of cardiac magnetic resonance imaging (CMR) image data by leveraging multiple clinician experts ranking multiple images on a single ordinal axis, rather than manual labelling of one image at a time. We apply this strategy to train a deep learning (DL) model to classify the anatomical position of CMR images. This allows the automated removal of slices that do not contain the left ventricular (LV) myocardium.</p><p><strong>Methods: </strong>Anonymised LV short-axis slices from 300 random scans (3,552 individual images) were extracted. Each image's anatomical position relative to the LV was labelled using two different strategies performed for 5 hours each: (I) 'one-image-at-a-time': each image labelled according to its position: 'too basal', 'LV', or 'too apical' individually by one of three experts; and (II) 'multiple-image-ranking': three independent experts ordered slices according to their relative position from 'most-basal' to 'most apical' in batches of eight until each image had been viewed at least 3 times. Two convolutional neural networks were trained for a three-way classification task (each model using data from one labelling strategy). The models' performance was evaluated by accuracy, F1-score, and area under the receiver operating characteristics curve (ROC AUC).</p><p><strong>Results: </strong>After excluding images with artefact, 3,323 images were labelled by both strategies. The model trained using labels from the 'multiple-image-ranking strategy' performed better than the model using the 'one-image-at-a-time' labelling strategy (accuracy 86% <i>vs.</i> 72%, P=0.02; F1-score 0.86 <i>vs.</i> 0.75; ROC AUC 0.95 <i>vs.</i> 0.86). For expert clinicians performing this task manually the intra-observer variability was low (Cohen's κ=0.90), but the inter-observer variability was higher (Cohen's κ=0.77).</p><p><strong>Conclusions: </strong>We present proof of concept that, given the same clinician labelling effort, comparing multiple images side-by-side using a 'multiple-image-ranking' strategy achieves ground truth labels for DL more accurately than by classifying images individually. We demonstrate a potential clinical application: the automatic removal of unrequired CMR images. This leads to increased efficiency by focussing human and machine attention on images which are needed to answer clinical questions.</p>","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":"6 ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614685/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9710776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of medical artificial intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1