首页 > 最新文献

Journal of molecular and cellular cardiology plus最新文献

英文 中文
Diet reversal improves hyperglycaemia-related coronary dysfunction and attenuates subsequent myocardial ischemia/reperfusion injury.
Pub Date : 2024-11-01 DOI: 10.1016/j.jmccpl.2024.100100
Juma El-Awaisi , Simon Cleary , Dean Kavanagh , David Hodson , Neena Kalia
{"title":"Diet reversal improves hyperglycaemia-related coronary dysfunction and attenuates subsequent myocardial ischemia/reperfusion injury.","authors":"Juma El-Awaisi , Simon Cleary , Dean Kavanagh , David Hodson , Neena Kalia","doi":"10.1016/j.jmccpl.2024.100100","DOIUrl":"10.1016/j.jmccpl.2024.100100","url":null,"abstract":"","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"10 ","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142747101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased Atrial Fibrillation burden in Heart Failure is associated with increased vulnerability to atrial alternans
Pub Date : 2024-11-01 DOI: 10.1016/j.jmccpl.2024.100105
George Madders , Alice Whitley, Mohammed Obeidat, Menglu Li, Agnieszka Swiderskwa, Charlotte Smith, David Eisner, Andrew Trafford, Katharine Dibb
{"title":"Increased Atrial Fibrillation burden in Heart Failure is associated with increased vulnerability to atrial alternans","authors":"George Madders , Alice Whitley, Mohammed Obeidat, Menglu Li, Agnieszka Swiderskwa, Charlotte Smith, David Eisner, Andrew Trafford, Katharine Dibb","doi":"10.1016/j.jmccpl.2024.100105","DOIUrl":"10.1016/j.jmccpl.2024.100105","url":null,"abstract":"","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"10 ","pages":"Article 100105"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142743427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of peroxisomes in compensatory metabolic adaptation in Barth syndrome Cardiomyopathy
Pub Date : 2024-11-01 DOI: 10.1016/j.jmccpl.2024.100113
Elsie Vidah Kajese , Malte Hachmann , Christoph Maack , Srikanth Karnati , Jan Dudek
{"title":"Role of peroxisomes in compensatory metabolic adaptation in Barth syndrome Cardiomyopathy","authors":"Elsie Vidah Kajese , Malte Hachmann , Christoph Maack , Srikanth Karnati , Jan Dudek","doi":"10.1016/j.jmccpl.2024.100113","DOIUrl":"10.1016/j.jmccpl.2024.100113","url":null,"abstract":"","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"10 ","pages":"Article 100113"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The SGLT2 inhibitor empagliflozin directly increases ketone utilisation in ischaemic hearts independent of substrate supply
Pub Date : 2024-11-01 DOI: 10.1016/j.jmccpl.2024.100117
Dylan Chase , Thomas R. Eykyn , Michael J. Shattock , Yu Jin Chung
{"title":"The SGLT2 inhibitor empagliflozin directly increases ketone utilisation in ischaemic hearts independent of substrate supply","authors":"Dylan Chase , Thomas R. Eykyn , Michael J. Shattock , Yu Jin Chung","doi":"10.1016/j.jmccpl.2024.100117","DOIUrl":"10.1016/j.jmccpl.2024.100117","url":null,"abstract":"","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"10 ","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATRIAL FIBRILLATION INDUCIBILITY IS HIGHER IN STRENUOUS EXERCISE DUE TO AN INCREASE IN FIBROSIS AND LOCAL INFLAMMATION IN A TRAINED ANIMAL MODEL
Pub Date : 2024-11-01 DOI: 10.1016/j.jmccpl.2024.100096
Anna Alcarraz , Aline Meza-Ramos , Cira Rubies , Maria Sanz- De La Garza , Lluis Mont , Montserrat Batlle , Eduard Guasch
{"title":"ATRIAL FIBRILLATION INDUCIBILITY IS HIGHER IN STRENUOUS EXERCISE DUE TO AN INCREASE IN FIBROSIS AND LOCAL INFLAMMATION IN A TRAINED ANIMAL MODEL","authors":"Anna Alcarraz , Aline Meza-Ramos , Cira Rubies , Maria Sanz- De La Garza , Lluis Mont , Montserrat Batlle , Eduard Guasch","doi":"10.1016/j.jmccpl.2024.100096","DOIUrl":"10.1016/j.jmccpl.2024.100096","url":null,"abstract":"","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"10 ","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142747695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitazene opioids and the heart: Identification of a cardiac ion channel target for illicit nitazene opioids 硝氮烯类阿片与心脏:识别非法硝氮烯类阿片的心脏离子通道靶点
Pub Date : 2024-10-22 DOI: 10.1016/j.jmccpl.2024.100118
Jules C. Hancox , Yibo Wang , Caroline S. Copeland , Henggui Zhang , Stephen C. Harmer , Graeme Henderson
The growing use of nitazene synthetic opioids heralds a new phase of the opioid crisis. However, limited information exists on the toxic effects of these drugs, aside from a propensity for respiratory depression. With restricted research availability of nitazenes, we used machine-learning-based tools to evaluate five nitazene compounds' interaction potential with the hERG potassium channel, a key drug antitarget in the heart. All nitazenes were predicted to inhibit hERG with low μM IC50 values. These findings indicate a potential for proarrhythmic hERG block by nitazene opioids, warranting detailed cardiac safety evaluations of these drugs.
硝氮合成阿片类药物的使用日益增多,预示着阿片类药物危机进入了一个新阶段。然而,除了呼吸抑制倾向外,有关这些药物毒性作用的信息十分有限。由于对硝氮类药物的研究有限,我们使用基于机器学习的工具评估了五种硝氮类化合物与 hERG 钾通道的相互作用潜力。据预测,所有硝氮类化合物都能以较低的μM IC50值抑制hERG。这些研究结果表明,硝氮烯类阿片类药物可能会阻断hERG,从而导致心律失常,因此需要对这些药物进行详细的心脏安全性评估。
{"title":"Nitazene opioids and the heart: Identification of a cardiac ion channel target for illicit nitazene opioids","authors":"Jules C. Hancox ,&nbsp;Yibo Wang ,&nbsp;Caroline S. Copeland ,&nbsp;Henggui Zhang ,&nbsp;Stephen C. Harmer ,&nbsp;Graeme Henderson","doi":"10.1016/j.jmccpl.2024.100118","DOIUrl":"10.1016/j.jmccpl.2024.100118","url":null,"abstract":"<div><div>The growing use of nitazene synthetic opioids heralds a new phase of the opioid crisis. However, limited information exists on the toxic effects of these drugs, aside from a propensity for respiratory depression. With restricted research availability of nitazenes, we used machine-learning-based tools to evaluate five nitazene compounds' interaction potential with the hERG potassium channel, a key drug antitarget in the heart. All nitazenes were predicted to inhibit hERG with low μM IC<sub>50</sub> values. These findings indicate a potential for proarrhythmic hERG block by nitazene opioids, warranting detailed cardiac safety evaluations of these drugs.</div></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"10 ","pages":"Article 100118"},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptome analysis of the aortic coarctation area 主动脉闭塞区转录组分析
Pub Date : 2024-09-17 DOI: 10.1016/j.jmccpl.2024.100094
Rada Ellegård , Torsten Malm , Constance G. Weismann , Eva Fernlund , Swedish National Biobank for Congenital Heart Disease (SNAB-CHD) consortium, Anneli Nordén Björnlert , Hanna Klang Årstrand , Katarina Ellnebo-Svedlund , Cecilia Gunnarsson

Background

Coarctation of the aorta (CoA) is a relatively common congenital heart defect. The underlying causes are not known, but a combination of genetic factors and abnormalities linked to embryonic development is suspected. There are only a few studies of the underlying molecular mechanisms in CoA. The aim of the current study was to expand our understanding of the pathogenesis of CoA by characterizing the transcriptome of the coarctation area.

Methods

Tissue samples from 21 pediatric patients operated for CoA were dissected into separate biopsies consisting of the localized coarctation itself, proximal/distal tissue and ductus. RNA was sequenced to evaluate gene expression in the different biopsies.

Results

We observed an activation of acute phase response in samples from the localized coarctation compared to samples from distal or proximal tissue. However, we observed even bigger differences for patient age and sex than compared to biopsy location. A cluster of genes located at 1q21, including the S100 gene family, displayed contrasting expression depending on patient sex, and appeared to affect the balance between inflammatory and interferon pathways. Biopsies from patients <3 months old were characterized by a significantly higher fibrotic activity compared to samples from older patients. The ductus tissue was characterized by an upregulation of factors associated with proliferation.

Conclusions

The ongoing processes in the coarctation area are influenced by the age and sex of the patient, and possibly by differences in etiology between different patients. The impact of patient attributes must be taken into consideration when performing future studies.
背景主动脉瘤(CoA)是一种比较常见的先天性心脏缺陷。其根本原因尚不清楚,但怀疑与遗传因素和胚胎发育异常有关。目前只有少数几项关于 CoA 潜在分子机制的研究。本研究的目的是通过分析冠状动脉畸形区域转录组的特征,扩大我们对 CoA 发病机制的了解。方法:将 21 例因 CoA 而接受手术的儿科患者的组织样本分成不同的活检组织,包括局部冠状动脉畸形本身、近端/远端组织和导管。我们观察到,与来自远端或近端组织的样本相比,来自局部冠状动脉的样本中的急性期反应被激活。然而,与活检位置相比,我们发现患者年龄和性别的差异更大。位于 1q21 的一组基因(包括 S100 基因家族)的表达因患者性别而异,似乎影响了炎症和干扰素途径之间的平衡。与年龄较大的患者样本相比,3 个月大的患者活检样本的纤维化活性明显更高。导管组织的特点是与增殖相关的因子上调。在今后的研究中必须考虑到患者属性的影响。
{"title":"Transcriptome analysis of the aortic coarctation area","authors":"Rada Ellegård ,&nbsp;Torsten Malm ,&nbsp;Constance G. Weismann ,&nbsp;Eva Fernlund ,&nbsp;Swedish National Biobank for Congenital Heart Disease (SNAB-CHD) consortium,&nbsp;Anneli Nordén Björnlert ,&nbsp;Hanna Klang Årstrand ,&nbsp;Katarina Ellnebo-Svedlund ,&nbsp;Cecilia Gunnarsson","doi":"10.1016/j.jmccpl.2024.100094","DOIUrl":"10.1016/j.jmccpl.2024.100094","url":null,"abstract":"<div><h3>Background</h3><div>Coarctation of the aorta (CoA) is a relatively common congenital heart defect. The underlying causes are not known, but a combination of genetic factors and abnormalities linked to embryonic development is suspected. There are only a few studies of the underlying molecular mechanisms in CoA. The aim of the current study was to expand our understanding of the pathogenesis of CoA by characterizing the transcriptome of the coarctation area.</div></div><div><h3>Methods</h3><div>Tissue samples from 21 pediatric patients operated for CoA were dissected into separate biopsies consisting of the localized coarctation itself, proximal/distal tissue and ductus. RNA was sequenced to evaluate gene expression in the different biopsies.</div></div><div><h3>Results</h3><div>We observed an activation of acute phase response in samples from the localized coarctation compared to samples from distal or proximal tissue. However, we observed even bigger differences for patient age and sex than compared to biopsy location. A cluster of genes located at 1q21, including the S100 gene family, displayed contrasting expression depending on patient sex, and appeared to affect the balance between inflammatory and interferon pathways. Biopsies from patients &lt;3 months old were characterized by a significantly higher fibrotic activity compared to samples from older patients. The ductus tissue was characterized by an upregulation of factors associated with proliferation.</div></div><div><h3>Conclusions</h3><div>The ongoing processes in the coarctation area are influenced by the age and sex of the patient, and possibly by differences in etiology between different patients. The impact of patient attributes must be taken into consideration when performing future studies.</div></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"10 ","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976124000345/pdfft?md5=c075465d71ff736e6bcc8d95cc7ac49d&pid=1-s2.0-S2772976124000345-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional ablation of MCU exacerbated cardiac pathology in a genetic arrhythmic model of CPVT 在 CPVT 的遗传性心律失常模型中,MCU 的条件性消融会加重心脏病理变化
Pub Date : 2024-09-10 DOI: 10.1016/j.jmccpl.2024.100093
Arpita Deb , Brian D. Tow , Jie Hao , Branden L. Nguyen , Valeria Gomez , James A. Stewart Jr , Ashley J. Smuder , Bjorn C. Knollmann , Ying Wang , Bin Liu

Background

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a genetic arrhythmic syndrome caused by mutations in the calcium (Ca2+) release channel ryanodine receptor (RyR2) and its accessory proteins. These mutations make the channel leaky, resulting in Ca2+-dependent arrhythmias. Besides arrhythmias, CPVT hearts typically lack structural cardiac remodeling, a characteristic often observed in other cardiac conditions (heart failure, prediabetes) also marked by RyR2 leak. Recent studies suggest that mitochondria are able to accommodate more Ca2+ influx to inhibit arrhythmias in CPVT. Thus, we hypothesize that CPVT mitochondria can absorb diastolic Ca2+ to protect the heart from cardiac remodeling.

Methods and results

The Mitochondrial Ca2+ uniporter (MCU), the main mitochondrial Ca2+ uptake protein, was conditionally knocked out in a CPVT model of calsequestrin 2 (CASQ2) KO. In vivo cardiac function was impaired in the CASQ2−/−-MCUCKO model as assessed by echocardiography. Cardiac dilation and cellular hypertrophy were also observed in the CASQ2−/−-MCUCKO hearts. Live-cell imaging identified altered Ca2+ handling and increased oxidative stress in CASQ2−/−-MCUCKO myocytes. The activation status of Ca2+-dependent remodeling pathways (CaMKII, Calcineurin) was not altered in the CASQ2−/−-MCUCKO model. RNAseq identified changes in the transcriptome of the CASQ2−/−-MCUCKO hearts, distinct from the classic cardiac remodeling program of fetal gene re-expression.

Conclusions

We present genetic evidence that mitochondria play a protective role in CPVT. MCU-dependent Ca2+ uptake is crucial for preventing pathological cardiac remodeling in CPVT.

背景儿茶酚胺能多形性室性心动过速(CPVT)是一种遗传性心律失常综合征,由钙(Ca2+)释放通道雷诺丁受体(RyR2)及其附属蛋白的突变引起。这些突变使通道发生泄漏,导致 Ca2+ 依赖性心律失常。除心律失常外,CPVT 患者的心脏通常缺乏心脏结构重塑,而这一特征在其他心脏疾病(心力衰竭、糖尿病前期)中也常被观察到。最近的研究表明,线粒体能够容纳更多的 Ca2+ 流入,从而抑制 CPVT 中的心律失常。因此,我们假设 CPVT 线粒体能吸收舒张期 Ca2+,以保护心脏免受心脏重塑的影响。方法和结果在钙骤降素 2(CASQ2)KO 的 CPVT 模型中,线粒体主要 Ca2+ 摄取蛋白--线粒体 Ca2+ uniporter(MCU)被有条件地敲除。通过超声心动图评估,CASQ2-/-MCUCKO模型的体内心脏功能受损。在CASQ2-/-MCUCKO心脏中还观察到心脏扩张和细胞肥大。活细胞成像发现,CASQ2-/--MCUCKO心肌细胞的Ca2+处理发生了改变,氧化应激增加。在CASQ2-/-MCUCKO模型中,Ca2+依赖性重塑通路(CaMKII、钙神经蛋白)的激活状态没有改变。RNAseq发现了CASQ2-/-MCUCKO心脏转录组的变化,这些变化不同于胎儿基因再表达的经典心脏重塑程序。依赖 MCU 的 Ca2+ 摄取对防止 CPVT 病理心脏重塑至关重要。
{"title":"Conditional ablation of MCU exacerbated cardiac pathology in a genetic arrhythmic model of CPVT","authors":"Arpita Deb ,&nbsp;Brian D. Tow ,&nbsp;Jie Hao ,&nbsp;Branden L. Nguyen ,&nbsp;Valeria Gomez ,&nbsp;James A. Stewart Jr ,&nbsp;Ashley J. Smuder ,&nbsp;Bjorn C. Knollmann ,&nbsp;Ying Wang ,&nbsp;Bin Liu","doi":"10.1016/j.jmccpl.2024.100093","DOIUrl":"10.1016/j.jmccpl.2024.100093","url":null,"abstract":"<div><h3>Background</h3><p>Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a genetic arrhythmic syndrome caused by mutations in the calcium (Ca<sup>2+</sup>) release channel ryanodine receptor (RyR2) and its accessory proteins. These mutations make the channel leaky, resulting in Ca<sup>2+</sup>-dependent arrhythmias. Besides arrhythmias, CPVT hearts typically lack structural cardiac remodeling, a characteristic often observed in other cardiac conditions (heart failure, prediabetes) also marked by RyR2 leak. Recent studies suggest that mitochondria are able to accommodate more Ca<sup>2+</sup> influx to inhibit arrhythmias in CPVT. Thus, we hypothesize that CPVT mitochondria can absorb diastolic Ca<sup>2+</sup> to protect the heart from cardiac remodeling.</p></div><div><h3>Methods and results</h3><p>The Mitochondrial Ca<sup>2+</sup> uniporter (MCU), the main mitochondrial Ca<sup>2+</sup> uptake protein, was conditionally knocked out in a CPVT model of calsequestrin 2 (CASQ2) KO. In vivo cardiac function was impaired in the CASQ2<sup>−/−</sup>-MCU<sup>CKO</sup> model as assessed by echocardiography. Cardiac dilation and cellular hypertrophy were also observed in the CASQ2<sup>−/−</sup>-MCU<sup>CKO</sup> hearts. Live-cell imaging identified altered Ca<sup>2+</sup> handling and increased oxidative stress in CASQ2<sup>−/−</sup>-MCU<sup>CKO</sup> myocytes. The activation status of Ca<sup>2+</sup>-dependent remodeling pathways (CaMKII, Calcineurin) was not altered in the CASQ2<sup>−/−</sup>-MCU<sup>CKO</sup> model. RNAseq identified changes in the transcriptome of the CASQ2<sup>−/−</sup>-MCU<sup>CKO</sup> hearts, distinct from the classic cardiac remodeling program of fetal gene re-expression.</p></div><div><h3>Conclusions</h3><p>We present genetic evidence that mitochondria play a protective role in CPVT. MCU-dependent Ca<sup>2+</sup> uptake is crucial for preventing pathological cardiac remodeling in CPVT.</p></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"10 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976124000333/pdfft?md5=8ef6c8a61076f2dcb4155d45ed6349eb&pid=1-s2.0-S2772976124000333-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P-, E-, and H-cadherins differ in their relationships with coronary stenosis, cardiovascular outcomes, and unplanned recurrent revascularization P-、E-和H-粘连蛋白与冠状动脉狭窄、心血管预后和计划外复发性血管再通的关系不同
Pub Date : 2024-09-01 DOI: 10.1016/j.jmccpl.2024.100091
Nadezhda G. Gumanova , Dmitry K. Vasilyev , Natalya L. Bogdanova , Yaroslav I. Havrichenko , Oxana M. Drapkina

Background and aims

Cadherins are adhesion proteins, and their dysregulation may result in the development of atherosclerosis, plaque rupture, or lesions of the vascular wall. The aim of the present study was to detect the associations of cadherins-P, −E, and H, with atherosclerosis and pathological cardiovascular conditions.

Methods and results

The present study with 3-year follow up evaluated atherosclerosis and fasting levels of P-, E-, and H-cadherins in the serum samples of 214 patients in a hospital setting. Coronary lesions were assessed by coronary angiography as Gensini score. Serum proteomic profiling was performed using antibody microarrays. The contents of P-, E-, and H-cadherins in the serum were measured using indirect ELISA. High levels of P- and E-cadherins and low levels of H-cadherin were associated with severity of atherosclerosis. High levels of P- and E-cadherins were associated with higher incidence of nonfatal cardiovascular outcomes. E-cadherin was associated with higher incidence of recurrent revascularization during 3 year follow-up. The results of Spearman rank correlation analysis revealed various associations of the three cadherins with lipid, endothelial, and metabolic biomarkers.

Conclusions

The data indicated that classical and atypical cadherins were associated with atherosclerosis progression. Elevated levels of P-cadherin were associated with coronary atherosclerosis. The data indicated that various lipid, endothelial, and metabolic biomarkers may influence the levels of cadherins. Thus, P-, E-, and H-cadherins may be promising markers for the assessment of cardiovascular risk.

背景和目的:粘连蛋白是一种粘附蛋白,其失调可能导致动脉粥样硬化、斑块破裂或血管壁病变。本研究旨在检测粘连蛋白-P、-E 和 H 与动脉粥样硬化和病理心血管状况的关系。方法和结果本研究对医院环境中 214 名患者的血清样本进行了为期 3 年的随访,评估了动脉粥样硬化和空腹时粘连蛋白-P、-E 和 H 的水平。冠状动脉病变通过冠状动脉造影术以 Gensini 评分进行评估。使用抗体微阵列进行了血清蛋白质组分析。采用间接酶联免疫吸附法测定血清中 P-、E-和 H-粘连蛋白的含量。高水平的P-和E-粘连蛋白以及低水平的H-粘连蛋白与动脉粥样硬化的严重程度有关。高水平的P-和E-粘连蛋白与较高的非致命性心血管疾病发病率有关。E-cadherin与3年随访期间较高的复发性血管再通发生率有关。斯皮尔曼秩相关分析结果显示,三种粘附蛋白与血脂、内皮和代谢生物标志物存在不同的相关性。P-cadherin水平升高与冠状动脉粥样硬化有关。数据表明,各种脂质、内皮和代谢生物标志物可能会影响粘连蛋白的水平。因此,P-、E-和H-粘连蛋白可能是评估心血管风险的有前途的标志物。
{"title":"P-, E-, and H-cadherins differ in their relationships with coronary stenosis, cardiovascular outcomes, and unplanned recurrent revascularization","authors":"Nadezhda G. Gumanova ,&nbsp;Dmitry K. Vasilyev ,&nbsp;Natalya L. Bogdanova ,&nbsp;Yaroslav I. Havrichenko ,&nbsp;Oxana M. Drapkina","doi":"10.1016/j.jmccpl.2024.100091","DOIUrl":"10.1016/j.jmccpl.2024.100091","url":null,"abstract":"<div><h3>Background and aims</h3><p>Cadherins are adhesion proteins, and their dysregulation may result in the development of atherosclerosis, plaque rupture, or lesions of the vascular wall. The aim of the present study was to detect the associations of cadherins-P, −E, and <img>H, with atherosclerosis and pathological cardiovascular conditions.</p></div><div><h3>Methods and results</h3><p>The present study with 3-year follow up evaluated atherosclerosis and fasting levels of P-, E-, and H-cadherins in the serum samples of 214 patients in a hospital setting. Coronary lesions were assessed by coronary angiography as Gensini score. Serum proteomic profiling was performed using antibody microarrays. The contents of P-, E-, and H-cadherins in the serum were measured using indirect ELISA. High levels of P- and E-cadherins and low levels of H-cadherin were associated with severity of atherosclerosis. High levels of P- and E-cadherins were associated with higher incidence of nonfatal cardiovascular outcomes. E-cadherin was associated with higher incidence of recurrent revascularization during 3 year follow-up. The results of Spearman rank correlation analysis revealed various associations of the three cadherins with lipid, endothelial, and metabolic biomarkers.</p></div><div><h3>Conclusions</h3><p>The data indicated that classical and atypical cadherins were associated with atherosclerosis progression. Elevated levels of P-cadherin were associated with coronary atherosclerosis. The data indicated that various lipid, endothelial, and metabolic biomarkers may influence the levels of cadherins. Thus, P-, E-, and H-cadherins may be promising markers for the assessment of cardiovascular risk.</p></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"9 ","pages":"Article 100091"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277297612400031X/pdfft?md5=c09976a177a807ea7c2d8cb942485491&pid=1-s2.0-S277297612400031X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in cardiac mitochondrial respiration and reactive oxygen species production may predispose Scn1a−/+ mice to cardiac arrhythmias and Sudden Unexpected Death in Epilepsy 心脏线粒体呼吸和活性氧生成的性别差异可能使 Scn1a-/+ 小鼠易患心律失常和癫痫性意外猝死
Pub Date : 2024-08-22 DOI: 10.1016/j.jmccpl.2024.100090
Jessa L. Aldridge, Emily Davis Alexander, Allison A. Franklin, Elizabeth Harrington, Farah Al-Ghzawi, Chad R. Frasier

Dravet Syndrome (DS) is a pediatric-onset epilepsy with an elevated risk of Sudden Unexpected Death in Epilepsy (SUDEP). Most individuals with DS possess mutations in the voltage-gated sodium channel gene Scn1a, expressed in both the brain and heart. Previously, mutations in Scn1a have been linked to arrhythmia. We used a Scn1a−/+ DS mouse model to investigate changes to cardiac mitochondrial function that may underlie arrhythmias and SUDEP. We detected significant alterations in mitochondrial bioenergetics that were sex-specific. Mitochondria from male Scn1a−/+ hearts had deficits in maximal (p = 0.02) and Complex II-linked respiration (p = 0.03). Male Scn1a−/+ mice were also more susceptible to cardiac arrhythmias under increased workload. When isolated cardiomyocytes were subjected to diamide, cardiomyocytes from male Scn1a−/+ hearts were less resistant to thiol oxidation. They had decreased survivability compared to Scn1a+/+ (p = 0.02) despite no whole-heart differences. Lastly, there were no changes in mitochondrial ROS production between DS and wild-type mitochondria at basal conditions, but Scn1a−/+ mitochondria accumulated more ROS during hypoxia/reperfusion. This study determines novel sex-linked differences in mitochondrial and antioxidant function in Scn1a-linked DS. Importantly, we found that male Scn1a−/+ mice are more susceptible to cardiac arrhythmias than female Scn1a−/+ mice. When developing new therapeutics to address SUDEP risk in DS, sex should be considered.

德雷维特综合征(Dravet Syndrome,DS)是一种儿科发病型癫痫,发生癫痫意外猝死(SUDEP)的风险较高。大多数 DS 患者的电压门控钠通道基因 Scn1a 发生突变,该基因在大脑和心脏中均有表达。以前,Scn1a 基因突变与心律失常有关。我们使用 Scn1a-/+ DS 小鼠模型来研究可能导致心律失常和 SUDEP 的心脏线粒体功能变化。我们检测到线粒体生物能发生了明显的改变,这种改变具有性别特异性。雄性 Scn1a-/+ 心脏的线粒体在最大呼吸(p = 0.02)和与复合体 II 相联系的呼吸(p = 0.03)方面存在缺陷。雄性 Scn1a-/+ 小鼠在工作负荷增加的情况下也更容易发生心律失常。当离体心肌细胞受到二酰胺作用时,雄性 Scn1a-/+ 小鼠心脏的心肌细胞对硫醇氧化的抵抗力较弱。与 Scn1a+/+ 相比,它们的存活率降低(p = 0.02),尽管整个心脏没有差异。最后,在基础条件下,DS 和野生型线粒体产生的 ROS 没有变化,但在缺氧/再灌注过程中,Scn1a-/+ 线粒体积累了更多的 ROS。这项研究确定了Scn1a连锁DS线粒体和抗氧化功能的新型性别差异。重要的是,我们发现雄性 Scn1a-/+ 小鼠比雌性 Scn1a-/+ 小鼠更容易发生心律失常。在开发新的治疗方法以应对DS的SUDEP风险时,应考虑性别因素。
{"title":"Sex differences in cardiac mitochondrial respiration and reactive oxygen species production may predispose Scn1a−/+ mice to cardiac arrhythmias and Sudden Unexpected Death in Epilepsy","authors":"Jessa L. Aldridge,&nbsp;Emily Davis Alexander,&nbsp;Allison A. Franklin,&nbsp;Elizabeth Harrington,&nbsp;Farah Al-Ghzawi,&nbsp;Chad R. Frasier","doi":"10.1016/j.jmccpl.2024.100090","DOIUrl":"10.1016/j.jmccpl.2024.100090","url":null,"abstract":"<div><p>Dravet Syndrome (DS) is a pediatric-onset epilepsy with an elevated risk of Sudden Unexpected Death in Epilepsy (SUDEP). Most individuals with DS possess mutations in the voltage-gated sodium channel gene <em>Scn1a</em>, expressed in both the brain and heart. Previously, mutations in <em>Scn1a</em> have been linked to arrhythmia. We used a <em>Scn1a</em><sup><em>−/+</em></sup> DS mouse model to investigate changes to cardiac mitochondrial function that may underlie arrhythmias and SUDEP. We detected significant alterations in mitochondrial bioenergetics that were sex-specific. Mitochondria from male <em>Scn1a</em><sup>−/+</sup> hearts had deficits in maximal (<em>p</em> = 0.02) and Complex II-linked respiration (<em>p</em> = 0.03). Male <em>Scn1a</em><sup><em>−/+</em></sup> mice were also more susceptible to cardiac arrhythmias under increased workload. When isolated cardiomyocytes were subjected to diamide, cardiomyocytes from male <em>Scn1a</em><sup><em>−/+</em></sup> hearts were less resistant to thiol oxidation. They had decreased survivability compared to <em>Scn1a</em><sup><em>+/+</em></sup> (<em>p</em> = 0.02) despite no whole-heart differences. Lastly, there were no changes in mitochondrial ROS production between DS and wild-type mitochondria at basal conditions, but <em>Scn1a</em><sup><em>−/+</em></sup> mitochondria accumulated more ROS during hypoxia/reperfusion. This study determines novel sex-linked differences in mitochondrial and antioxidant function in <em>Scn1a</em>-linked DS. Importantly, we found that male <em>Scn1a</em><sup><em>−/+</em></sup> mice are more susceptible to cardiac arrhythmias than female <em>Scn1a</em><sup><em>−/+</em></sup> mice. When developing new therapeutics to address SUDEP risk in DS, sex should be considered.</p></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"9 ","pages":"Article 100090"},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976124000308/pdfft?md5=2da615d16145cdfd13dc6d32f23a5506&pid=1-s2.0-S2772976124000308-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of molecular and cellular cardiology plus
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1