A significant paradigm shift has been observed in the past decade in the area of theranostics owing to the development of various isotropic and anisotropic metal nanostructures, simultaneous with improved imaging modalities. Platinum-based nanostructures are advancing in a plethora of clinical applications as theranostics tools owing to their unique behavior concerning their size, shape, and surface chemistry at the nanoscale regime. Platinum nanostructures are optically active and provide significant potential to the field of theranostics by simplifying diagnosis and therapeutics, thus providing key solutions through nano-enabled technologies. The review emphasizes the potential of platinum nanostructures that have immense potential in vitro and in vivo scenarios as nanocarriers. Still, their potential in terms of photothermal active agents has not been well explored or reported. Nanotheranostics has emerged as a platform where various noble metal nanoparticles are effectively efficient as photothermal agents in bringing precision to therapy and diagnostics. Platinum, as an antioxidant and a stable nanocarrier, will enable them to act as photosensitizers when conjugated to affinity molecules and plays a key role in efficient treatment and diagnosis. The review envisions bringing together the possibilities of the safe-by-design synthesis of platinum nanostructures and their potential role in both in vitro and in vivo applications. A roadmap describing the challenges, pitfalls, and possibilities of influencing platinum nanostructures to overcome the existing biological/targeting barriers is elaborated. This review provides a literature survey on platinum nanostructures in theranostics, providing novel strategies in bio-imaging, diagnostics, and nanomedicine.
{"title":"Smart Platinum Nanostructures: A Journey from Synthesis to Advanced Theranostic Applications","authors":"Akash Kumar, Nabojit Das, R. Rayavarapu","doi":"10.3390/jnt4030017","DOIUrl":"https://doi.org/10.3390/jnt4030017","url":null,"abstract":"A significant paradigm shift has been observed in the past decade in the area of theranostics owing to the development of various isotropic and anisotropic metal nanostructures, simultaneous with improved imaging modalities. Platinum-based nanostructures are advancing in a plethora of clinical applications as theranostics tools owing to their unique behavior concerning their size, shape, and surface chemistry at the nanoscale regime. Platinum nanostructures are optically active and provide significant potential to the field of theranostics by simplifying diagnosis and therapeutics, thus providing key solutions through nano-enabled technologies. The review emphasizes the potential of platinum nanostructures that have immense potential in vitro and in vivo scenarios as nanocarriers. Still, their potential in terms of photothermal active agents has not been well explored or reported. Nanotheranostics has emerged as a platform where various noble metal nanoparticles are effectively efficient as photothermal agents in bringing precision to therapy and diagnostics. Platinum, as an antioxidant and a stable nanocarrier, will enable them to act as photosensitizers when conjugated to affinity molecules and plays a key role in efficient treatment and diagnosis. The review envisions bringing together the possibilities of the safe-by-design synthesis of platinum nanostructures and their potential role in both in vitro and in vivo applications. A roadmap describing the challenges, pitfalls, and possibilities of influencing platinum nanostructures to overcome the existing biological/targeting barriers is elaborated. This review provides a literature survey on platinum nanostructures in theranostics, providing novel strategies in bio-imaging, diagnostics, and nanomedicine.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44376319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. H. Pentz, Vincenzo J. Pizzuti, Matthew E. Halbert, Tritan J. Plute, P. Lockman, S. Sprowls
Glioblastoma is the most common primary, malignant brain tumor that remains uniformly lethal in nearly all cases as a result of extreme cellular heterogeneity, treatment resistance, and recurrence. A major hurdle in therapeutic delivery to brain tumors is the blood–brain barrier (BBB), which is the tightly regulated vascular barrier between the brain parenchyma and systemic circulation that prevents distribution of otherwise beneficial chemotherapeutics to central nervous system tumors. To overcome the obstacle of drug delivery beyond the BBB, nanoparticle formulations have come to the forefront, having demonstrated success in preclinical observations, but have not translated well into the clinical setting. In summary, this review article discusses brain tumors and challenges for drug delivery caused by the BBB, explores the benefits of nanoparticle formulations for brain tumor delivery, describes the characteristics these formulations possess that make them attractive therapeutic strategies, and provides preclinical examples that implement nanoparticles within glioma treatment regimens. Additionally, we explore the pitfalls associated with clinical translation and conclude with remarks geared toward overcoming these issues.
{"title":"An Overview of Nanotherapeutic Drug Delivery Options for the Management of Glioblastoma","authors":"W. H. Pentz, Vincenzo J. Pizzuti, Matthew E. Halbert, Tritan J. Plute, P. Lockman, S. Sprowls","doi":"10.3390/jnt4030015","DOIUrl":"https://doi.org/10.3390/jnt4030015","url":null,"abstract":"Glioblastoma is the most common primary, malignant brain tumor that remains uniformly lethal in nearly all cases as a result of extreme cellular heterogeneity, treatment resistance, and recurrence. A major hurdle in therapeutic delivery to brain tumors is the blood–brain barrier (BBB), which is the tightly regulated vascular barrier between the brain parenchyma and systemic circulation that prevents distribution of otherwise beneficial chemotherapeutics to central nervous system tumors. To overcome the obstacle of drug delivery beyond the BBB, nanoparticle formulations have come to the forefront, having demonstrated success in preclinical observations, but have not translated well into the clinical setting. In summary, this review article discusses brain tumors and challenges for drug delivery caused by the BBB, explores the benefits of nanoparticle formulations for brain tumor delivery, describes the characteristics these formulations possess that make them attractive therapeutic strategies, and provides preclinical examples that implement nanoparticles within glioma treatment regimens. Additionally, we explore the pitfalls associated with clinical translation and conclude with remarks geared toward overcoming these issues.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44129897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The introduction of cancer therapeutics and nanotechnology has resulted in a paradigm shift from conventional therapy to precision medicine. Nanotechnology, an interdisciplinary field with a focus on biomedical applications, holds immense promise in bringing about novel approaches for cancer detection, diagnosis, and therapy. The past decade has witnessed significant research and material applications related to nanoparticles (NPs). NPs differ from small-molecule drugs as they possess unique physicochemical characteristics, such as a large surface-to-volume ratio, enabling them to penetrate live cells efficiently. Traditional cancer therapies, such as chemotherapy, radiation therapy, targeted therapy, and immunotherapy, have limitations, such as cytotoxicity, lack of specificity, and multiple drug resistance, which pose significant challenges for effective cancer treatment. However, nanomaterials have unique properties that enable new therapeutic modalities beyond conventional drug delivery in the fight against cancer. Moreover, nanoparticles (1–100 nm) have numerous benefits, such as biocompatibility, reduced toxicity, excellent stability, enhanced permeability and retention effect, and precise targeting, making them ideal for cancer treatment. The purpose of this article is to provide consolidated information on various bio-inspired nanoparticles that aid in cancer theranostics.
{"title":"Recent Advancement of Bio-Inspired Nanoparticles in Cancer Theragnostic","authors":"D. Tripathi, Kasturee Hajra, D. Maity","doi":"10.3390/jnt4030014","DOIUrl":"https://doi.org/10.3390/jnt4030014","url":null,"abstract":"The introduction of cancer therapeutics and nanotechnology has resulted in a paradigm shift from conventional therapy to precision medicine. Nanotechnology, an interdisciplinary field with a focus on biomedical applications, holds immense promise in bringing about novel approaches for cancer detection, diagnosis, and therapy. The past decade has witnessed significant research and material applications related to nanoparticles (NPs). NPs differ from small-molecule drugs as they possess unique physicochemical characteristics, such as a large surface-to-volume ratio, enabling them to penetrate live cells efficiently. Traditional cancer therapies, such as chemotherapy, radiation therapy, targeted therapy, and immunotherapy, have limitations, such as cytotoxicity, lack of specificity, and multiple drug resistance, which pose significant challenges for effective cancer treatment. However, nanomaterials have unique properties that enable new therapeutic modalities beyond conventional drug delivery in the fight against cancer. Moreover, nanoparticles (1–100 nm) have numerous benefits, such as biocompatibility, reduced toxicity, excellent stability, enhanced permeability and retention effect, and precise targeting, making them ideal for cancer treatment. The purpose of this article is to provide consolidated information on various bio-inspired nanoparticles that aid in cancer theranostics.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42827468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanomaterial-based tissue engineering strategies are precisely designed and tweaked to contest specific patient needs and their end applications. Though theragnostic is a radical term very eminent in cancer prognosis, of late, theragnostic approaches have been explored in the fields of tissue remodulation and reparation. The engineering of theragnostic nanomaterials has opened up avenues for disease diagnosis, imaging, and therapeutic treatments. The instantaneous monitoring of therapeutic strategy is expected to co-deliver imaging and pharmaceutical agents at the same time, and nanoscale carrier moieties are convenient and efficient platforms in theragnostic applications, especially in soft and hard tissue regeneration. Furthermore, imaging modalities have extensively contributed to the signal-to-noise ratio. Simultaneously, there is an accumulation of high concentrations of therapeutic mediators at the defect site. Given the confines of contemporary bone diagnostic systems, the clinical rationale demands nano/biomaterials that can localize to bone-diseased sites to enhance the precision and prognostic value for osteoporosis, non-healing fractures, and/or infections, etc. Furthermore, bone theragnostics may have an even greater clinical impact and multimodal imaging procedures can overcome the restrictions of individual modalities. The present review introduces representative theragnostic polymeric nanomaterials and their advantages and disadvantages in practical use as well as their unique properties.
{"title":"Polymeric Theragnostic Nanoplatforms for Bone Tissue Engineering","authors":"Kaushita Banerjee, H. Madhyastha","doi":"10.3390/jnt4030013","DOIUrl":"https://doi.org/10.3390/jnt4030013","url":null,"abstract":"Nanomaterial-based tissue engineering strategies are precisely designed and tweaked to contest specific patient needs and their end applications. Though theragnostic is a radical term very eminent in cancer prognosis, of late, theragnostic approaches have been explored in the fields of tissue remodulation and reparation. The engineering of theragnostic nanomaterials has opened up avenues for disease diagnosis, imaging, and therapeutic treatments. The instantaneous monitoring of therapeutic strategy is expected to co-deliver imaging and pharmaceutical agents at the same time, and nanoscale carrier moieties are convenient and efficient platforms in theragnostic applications, especially in soft and hard tissue regeneration. Furthermore, imaging modalities have extensively contributed to the signal-to-noise ratio. Simultaneously, there is an accumulation of high concentrations of therapeutic mediators at the defect site. Given the confines of contemporary bone diagnostic systems, the clinical rationale demands nano/biomaterials that can localize to bone-diseased sites to enhance the precision and prognostic value for osteoporosis, non-healing fractures, and/or infections, etc. Furthermore, bone theragnostics may have an even greater clinical impact and multimodal imaging procedures can overcome the restrictions of individual modalities. The present review introduces representative theragnostic polymeric nanomaterials and their advantages and disadvantages in practical use as well as their unique properties.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44720592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaikh Sheeran Naser, Basab Ghosh, Faizan Zarreen Simnani, Dibyangshee Singh, Anmol Choudhury, A. Nandi, Adrija Sinha, E. Jha, P. Panda, M. Suar, Suresh K. Verma
Zinc oxide nanomaterials have been the cynosure of this decade because of their immense potential in different biomedical applications. It includes their usage in the prognosis and treatment of different infectious and cellular diseases, owing to their peculiar physiochemical properties such as variable shape, size, and surface charge etc. Increasing demand and usage of the ZnO nanomaterials raise concerns about their cellular and molecular toxicity and their biocompatibility with human cells. This review comprehensively details their physiochemical properties for usage in biomedical applications. Furthermore, the toxicological concerns of ZnO nanomaterials with different types of cellular systems have been reviewed. Moreover, the biomedical and biocompatible efficacy of ZnO nanomaterials for cancer specific pathways has been discussed. This review offers insights into the current scenario of ZnO nanomaterials usage and signifies their potential future extension usage on different types of biomedical and environmental applications.
{"title":"Emerging Trends in the Application of Green Synthesized Biocompatible ZnO Nanoparticles for Translational Paradigm in Cancer Therapy","authors":"Shaikh Sheeran Naser, Basab Ghosh, Faizan Zarreen Simnani, Dibyangshee Singh, Anmol Choudhury, A. Nandi, Adrija Sinha, E. Jha, P. Panda, M. Suar, Suresh K. Verma","doi":"10.3390/jnt4030012","DOIUrl":"https://doi.org/10.3390/jnt4030012","url":null,"abstract":"Zinc oxide nanomaterials have been the cynosure of this decade because of their immense potential in different biomedical applications. It includes their usage in the prognosis and treatment of different infectious and cellular diseases, owing to their peculiar physiochemical properties such as variable shape, size, and surface charge etc. Increasing demand and usage of the ZnO nanomaterials raise concerns about their cellular and molecular toxicity and their biocompatibility with human cells. This review comprehensively details their physiochemical properties for usage in biomedical applications. Furthermore, the toxicological concerns of ZnO nanomaterials with different types of cellular systems have been reviewed. Moreover, the biomedical and biocompatible efficacy of ZnO nanomaterials for cancer specific pathways has been discussed. This review offers insights into the current scenario of ZnO nanomaterials usage and signifies their potential future extension usage on different types of biomedical and environmental applications.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48256709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aerosols exhaled from the lungs have distinctive patterns that can be linked to the abnormalities of the lungs. Yet, due to their intricate nature, it is highly challenging to analyze and distinguish these aerosol patterns. Small airway diseases pose an even greater challenge, as the disturbance signals tend to be weak. The objective of this study was to evaluate the performance of four convolutional neural network (CNN) models (AlexNet, ResNet-50, MobileNet, and EfficientNet) in detecting and staging airway abnormalities in small airways using exhaled aerosol images. Specifically, the model’s capacity to classify images inside and outside the original design space was assessed. In doing so, multi-level testing on images with decreasing similarities was conducted for each model. A total of 2745 images were generated using physiology-based simulations from normal and obstructed lungs of varying stages. Multiple-round training on datasets with increasing images (and new features) was also conducted to evaluate the benefits of continuous learning. Results show reasonably high classification accuracy on inbox images for models but significantly lower accuracy on outbox images (i.e., outside design space). ResNet-50 was the most robust among the four models for both diagnostic (2-class: normal vs. disease) and staging (3-class) purposes, as well as on both inbox and outbox test datasets. Variation in flow rate was observed to play a more important role in classification decisions than particle size and throat variation. Continuous learning/training with appropriate images could substantially enhance classification accuracy, even with a small number (~100) of new images. This study shows that CNN transfer-learning models could detect small airway remodeling (<1 mm) amidst a variety of variants and that ResNet-50 can be a promising model for the future development of obstructive lung diagnostic systems.
{"title":"Convolutional Neural Network Classification of Exhaled Aerosol Images for Diagnosis of Obstructive Respiratory Diseases","authors":"M. Talaat, Jensen Xi, Kaiyuan Tan, X. Si, J. Xi","doi":"10.3390/jnt4030011","DOIUrl":"https://doi.org/10.3390/jnt4030011","url":null,"abstract":"Aerosols exhaled from the lungs have distinctive patterns that can be linked to the abnormalities of the lungs. Yet, due to their intricate nature, it is highly challenging to analyze and distinguish these aerosol patterns. Small airway diseases pose an even greater challenge, as the disturbance signals tend to be weak. The objective of this study was to evaluate the performance of four convolutional neural network (CNN) models (AlexNet, ResNet-50, MobileNet, and EfficientNet) in detecting and staging airway abnormalities in small airways using exhaled aerosol images. Specifically, the model’s capacity to classify images inside and outside the original design space was assessed. In doing so, multi-level testing on images with decreasing similarities was conducted for each model. A total of 2745 images were generated using physiology-based simulations from normal and obstructed lungs of varying stages. Multiple-round training on datasets with increasing images (and new features) was also conducted to evaluate the benefits of continuous learning. Results show reasonably high classification accuracy on inbox images for models but significantly lower accuracy on outbox images (i.e., outside design space). ResNet-50 was the most robust among the four models for both diagnostic (2-class: normal vs. disease) and staging (3-class) purposes, as well as on both inbox and outbox test datasets. Variation in flow rate was observed to play a more important role in classification decisions than particle size and throat variation. Continuous learning/training with appropriate images could substantially enhance classification accuracy, even with a small number (~100) of new images. This study shows that CNN transfer-learning models could detect small airway remodeling (<1 mm) amidst a variety of variants and that ResNet-50 can be a promising model for the future development of obstructive lung diagnostic systems.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44459178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sourour Idoudi, Roua Ismail, Ousama Rachid, A. Elhissi, A. Alkilany
Gold nanoparticles (AuNP) have received a growing attention due to their fascinating physiochemical properties and promising range of biomedical applications including sensing, diagnosis and cancer photothermal ablation. AuNP enjoy brilliant optical properties and ability to convert light into local heat and function as a “nanoheaters” to fight cancer. However, AuNP are poor drug delivery systems as they do not have reservoirs or matrices to achieve an acceptable drug loading efficiency. On the other end, liposome-based nanocarriers do not exhibit such optical properties but are excellent platform for drug loading and they have been proven clinically with a true presence in the market since the FDA approved Doxil® in 1995. Combining the brilliant optical and photothermal properties of AuNP with the excellent drug loading capability of liposome should yield nanocomposites that enjoy the features of both modalities and enable the development of novel and smart drug delivery systems. Therefore, this review discusses the up-to date research on the AuNP-liposome nanocomposites and the current available approaches and protocols for their preparation and characterization. Finally, the biomedical applications of AuNP-liposome nanocomposites and proposed future directions in this field are discussed.
{"title":"The Golden Liposomes: Preparation and Biomedical Applications of Gold-Liposome Nanocomposites","authors":"Sourour Idoudi, Roua Ismail, Ousama Rachid, A. Elhissi, A. Alkilany","doi":"10.3390/jnt4030010","DOIUrl":"https://doi.org/10.3390/jnt4030010","url":null,"abstract":"Gold nanoparticles (AuNP) have received a growing attention due to their fascinating physiochemical properties and promising range of biomedical applications including sensing, diagnosis and cancer photothermal ablation. AuNP enjoy brilliant optical properties and ability to convert light into local heat and function as a “nanoheaters” to fight cancer. However, AuNP are poor drug delivery systems as they do not have reservoirs or matrices to achieve an acceptable drug loading efficiency. On the other end, liposome-based nanocarriers do not exhibit such optical properties but are excellent platform for drug loading and they have been proven clinically with a true presence in the market since the FDA approved Doxil® in 1995. Combining the brilliant optical and photothermal properties of AuNP with the excellent drug loading capability of liposome should yield nanocomposites that enjoy the features of both modalities and enable the development of novel and smart drug delivery systems. Therefore, this review discusses the up-to date research on the AuNP-liposome nanocomposites and the current available approaches and protocols for their preparation and characterization. Finally, the biomedical applications of AuNP-liposome nanocomposites and proposed future directions in this field are discussed.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44576790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Hoang, P. Tajalli, Mina Omidiyan, Maria D. Marquez, Orawan Khantamat, W. Tuntiwechapikul, Chien-Hung Li, Arati Kohlhatkar, H. Tran, P. Gunaratne, T. Lee
MicroRNA (miRNA) has emerged as a promising alternative therapeutic treatment for cancer, but its delivery has been hindered by low cellular uptake and degradation during circulation. In this review, we discuss the various methods of delivering miRNA, including viral and non-viral delivery systems such as liposomes and nanoparticles. We also examine the use of nanoparticles for miRNA-based diagnostics. We focus specifically on non-viral delivery systems utilizing coinage metals in the form of nanoparticles and the use of self-assembled monolayers (SAMs) as a method of surface modification. We review the use of SAMs for the conjugation and delivery of small noncoding ribonucleic acid (ncRNA), particularly SAMs derived from positively charged adsorbates to generate charged surfaces that can interact electrostatically with negatively charged miRNA. We also discuss the effects of the cellular uptake of gold and other plasmonic nanoparticles, as well as the challenges associated with the degradation of oligonucleotides. Our review highlights the potential of SAM-based systems as versatile and robust tools for delivering miRNA and other RNAs in vitro and in vivo and the need for further research to address the challenges associated with miRNA delivery and diagnostics.
{"title":"Self-Assembled Monolayers Derived from Positively Charged Adsorbates on Plasmonic Substrates for MicroRNA Delivery: A Review","authors":"J. Hoang, P. Tajalli, Mina Omidiyan, Maria D. Marquez, Orawan Khantamat, W. Tuntiwechapikul, Chien-Hung Li, Arati Kohlhatkar, H. Tran, P. Gunaratne, T. Lee","doi":"10.3390/jnt4020009","DOIUrl":"https://doi.org/10.3390/jnt4020009","url":null,"abstract":"MicroRNA (miRNA) has emerged as a promising alternative therapeutic treatment for cancer, but its delivery has been hindered by low cellular uptake and degradation during circulation. In this review, we discuss the various methods of delivering miRNA, including viral and non-viral delivery systems such as liposomes and nanoparticles. We also examine the use of nanoparticles for miRNA-based diagnostics. We focus specifically on non-viral delivery systems utilizing coinage metals in the form of nanoparticles and the use of self-assembled monolayers (SAMs) as a method of surface modification. We review the use of SAMs for the conjugation and delivery of small noncoding ribonucleic acid (ncRNA), particularly SAMs derived from positively charged adsorbates to generate charged surfaces that can interact electrostatically with negatively charged miRNA. We also discuss the effects of the cellular uptake of gold and other plasmonic nanoparticles, as well as the challenges associated with the degradation of oligonucleotides. Our review highlights the potential of SAM-based systems as versatile and robust tools for delivering miRNA and other RNAs in vitro and in vivo and the need for further research to address the challenges associated with miRNA delivery and diagnostics.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45045164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kouri, K. Polychronidou, Grigorios Loukas, Aikaterini Megapanou, Ioanna-Aglaia Vagena, Angelica M. Gerardos, E. Spyratou, Eftstathios P. Eftsathopoulos
The multifactorial nature of cancer still classifies the disease as one of the leading causes of death worldwide. Modern medical sciences are following an interdisciplinary approach that has been fueled by the nanoscale revolution of the past years. The exploitation of high-Z materials, in combination with ionizing or non-ionizing radiation, promises to overcome restrictions in medical imaging and to augment the efficacy of current therapeutic modalities. Gold nanoparticles (AuNPs) have proven their value among the scientific community in various therapeutic and diagnostic techniques. However, the high level of multiparametric demands of AuNP experiments in combination with their biocompatibility and cytotoxicity levels remain crucial issues. Gadolinium NPs (GdNPs), have presented high biocompatibility, low cytotoxicity, and excellent hemocompatibility, and have been utilized in MRI-guided radiotherapy, photodynamic and photothermal therapy, etc. Τhe utilization of gadolinium bound to AuNPs may be a promising alternative that would reduce phenomena, such as toxicity, aggregation, etc., and could create a multimodal in vivo contrast and therapeutic agent. This review highlights multi-functionalization strategies against cancer where gold and gadolinium NPs are implicated. Their experimental applications and limitations of the past 5 years will be analyzed in the hope of enlightening the benefits and drawbacks of their proper combination.
{"title":"Consolidation of Gold and Gadolinium Nanoparticles: An Extra Step towards Improving Cancer Imaging and Therapy","authors":"M. Kouri, K. Polychronidou, Grigorios Loukas, Aikaterini Megapanou, Ioanna-Aglaia Vagena, Angelica M. Gerardos, E. Spyratou, Eftstathios P. Eftsathopoulos","doi":"10.3390/jnt4020007","DOIUrl":"https://doi.org/10.3390/jnt4020007","url":null,"abstract":"The multifactorial nature of cancer still classifies the disease as one of the leading causes of death worldwide. Modern medical sciences are following an interdisciplinary approach that has been fueled by the nanoscale revolution of the past years. The exploitation of high-Z materials, in combination with ionizing or non-ionizing radiation, promises to overcome restrictions in medical imaging and to augment the efficacy of current therapeutic modalities. Gold nanoparticles (AuNPs) have proven their value among the scientific community in various therapeutic and diagnostic techniques. However, the high level of multiparametric demands of AuNP experiments in combination with their biocompatibility and cytotoxicity levels remain crucial issues. Gadolinium NPs (GdNPs), have presented high biocompatibility, low cytotoxicity, and excellent hemocompatibility, and have been utilized in MRI-guided radiotherapy, photodynamic and photothermal therapy, etc. Τhe utilization of gadolinium bound to AuNPs may be a promising alternative that would reduce phenomena, such as toxicity, aggregation, etc., and could create a multimodal in vivo contrast and therapeutic agent. This review highlights multi-functionalization strategies against cancer where gold and gadolinium NPs are implicated. Their experimental applications and limitations of the past 5 years will be analyzed in the hope of enlightening the benefits and drawbacks of their proper combination.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47660542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The limitations of current treatment strategies for cancer management have prompted a significant shift in the research and development of new effective strategies exhibiting higher efficacy and acceptable side effects. In this direction, nanotheranostics has gained significant interest in recent years, combining the diagnostic and therapeutic capabilities of nanostructures for efficient disease diagnosis, treatment, and management. Such nano-assisted platforms permit the site-specific release of bioactive cargo in a controlled fashion while permitting non-invasive real-time in situ monitoring. A plethora of materials has been developed as pharmacologically relevant nanoformulations for theranostic applications ranging from metallic to lipid and polymer-based composite systems, with each offering potential opportunities and its own limitations. To improve advancements with better clarity, the main focus of this review is to highlight the recent developments focusing on using different noble metal nanoparticles (noble MNPs) as cancer nanotheranostic agents, highlighting their properties, advantages, and potential modifications for their successful utilization in personalized medicine. The advantage of using noble metals (not all, but those with an atomic number ≥76) over metal NPs is their tendency to provide additional properties, such as X-ray attenuation and near-infrared activity. The combination of these properties translates to noble MNPs for therapeutic and diagnostic applications, independent of the need for additional active molecules. Through this review, we highlighted the potential application of all noble MNPs and the limited use of osmium, iridium, palladium, rhodium, and ruthenium metal NSs, even though they express similar physicochemical characteristics. The literature search was limited by PubMed, full-text availability, and studies including both in vitro and in vivo models.
{"title":"Recent Advances in Noble Metal Nanoparticles for Cancer Nanotheranostics","authors":"Dhiraj Kumar, I. Mutreja, A. Kaushik","doi":"10.3390/jnt4020008","DOIUrl":"https://doi.org/10.3390/jnt4020008","url":null,"abstract":"The limitations of current treatment strategies for cancer management have prompted a significant shift in the research and development of new effective strategies exhibiting higher efficacy and acceptable side effects. In this direction, nanotheranostics has gained significant interest in recent years, combining the diagnostic and therapeutic capabilities of nanostructures for efficient disease diagnosis, treatment, and management. Such nano-assisted platforms permit the site-specific release of bioactive cargo in a controlled fashion while permitting non-invasive real-time in situ monitoring. A plethora of materials has been developed as pharmacologically relevant nanoformulations for theranostic applications ranging from metallic to lipid and polymer-based composite systems, with each offering potential opportunities and its own limitations. To improve advancements with better clarity, the main focus of this review is to highlight the recent developments focusing on using different noble metal nanoparticles (noble MNPs) as cancer nanotheranostic agents, highlighting their properties, advantages, and potential modifications for their successful utilization in personalized medicine. The advantage of using noble metals (not all, but those with an atomic number ≥76) over metal NPs is their tendency to provide additional properties, such as X-ray attenuation and near-infrared activity. The combination of these properties translates to noble MNPs for therapeutic and diagnostic applications, independent of the need for additional active molecules. Through this review, we highlighted the potential application of all noble MNPs and the limited use of osmium, iridium, palladium, rhodium, and ruthenium metal NSs, even though they express similar physicochemical characteristics. The literature search was limited by PubMed, full-text availability, and studies including both in vitro and in vivo models.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43816541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}