首页 > 最新文献

Journal of the International Society for Respiratory Protection最新文献

英文 中文
Filtration Performance of FDA-Cleared Surgical Masks. fda批准的医用口罩的过滤性能。
Samy Rengasamy, Adam Miller, Benjamin C Eimer, Ronald E Shaffer

Ashortage of NIOSH-approved respirators is predicted during an influenza pandemic and other infectious disease outbreaks. Healthcare workers may use surgical masks instead of respirators due to non-availability and for economical reasons. This study investigated the filtration performance of surgical masks for a wide size range of submicron particles including the sizes of many viruses. Five models of FDA-cleared surgical masks were tested for room air particle penetrations at constant and cyclic flow conditions. Penetrations of polydisperse NaCl aerosols (75±20 nm, count median diameter), monodisperse NaCl aerosols (20-400 nm range) and particles in the 20-1000 nm range were measured at 30 and 85 liters/min. Filtration performance of surgical masks varied widely for room air particles at constant flow and correlated with the penetration levels measured under cyclic flow conditions. Room air particle penetration levels were comparable to polydisperse and monodisperse aerosol penetrations at 30 and 85 liters/minute. Filtration performance of FDA-cleared surgical masks varied widely for room air particles, and monodisperse and polydisperse aerosols. The results suggest that not all FDA-cleared surgical masks will provide similar levels of protection to wearers against infectious aerosols in the size range of many viruses.

在流感大流行和其他传染病爆发期间,预计niosh批准的呼吸器短缺。由于供应不足和经济原因,医护人员可能会使用外科口罩而不是呼吸器。本研究考察了医用口罩对亚微米颗粒(包括许多病毒的大小)的过滤性能。在恒定和循环流动条件下测试了五种经fda批准的医用口罩的室内空气颗粒穿透率。以30和85 l /min的速度测量了多分散NaCl气溶胶(75±20 nm,中位数直径)、单分散NaCl气溶胶(20-400 nm范围)和20-1000 nm范围颗粒的穿透率。医用口罩在恒定流量下对室内空气颗粒的过滤性能变化很大,并与循环流动条件下测量的穿透水平相关。室内空气颗粒穿透水平与30和85升/分钟的多分散和单分散气溶胶穿透水平相当。fda批准的医用口罩对室内空气颗粒、单分散和多分散气溶胶的过滤性能差异很大。研究结果表明,并不是所有通过fda认证的医用口罩都能对许多病毒大小范围内的传染性气溶胶提供类似水平的保护。
{"title":"Filtration Performance of FDA-Cleared Surgical Masks.","authors":"Samy Rengasamy,&nbsp;Adam Miller,&nbsp;Benjamin C Eimer,&nbsp;Ronald E Shaffer","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Ashortage of NIOSH-approved respirators is predicted during an influenza pandemic and other infectious disease outbreaks. Healthcare workers may use surgical masks instead of respirators due to non-availability and for economical reasons. This study investigated the filtration performance of surgical masks for a wide size range of submicron particles including the sizes of many viruses. Five models of FDA-cleared surgical masks were tested for room air particle penetrations at constant and cyclic flow conditions. Penetrations of polydisperse NaCl aerosols (75±20 nm, count median diameter), monodisperse NaCl aerosols (20-400 nm range) and particles in the 20-1000 nm range were measured at 30 and 85 liters/min. Filtration performance of surgical masks varied widely for room air particles at constant flow and correlated with the penetration levels measured under cyclic flow conditions. Room air particle penetration levels were comparable to polydisperse and monodisperse aerosol penetrations at 30 and 85 liters/minute. Filtration performance of FDA-cleared surgical masks varied widely for room air particles, and monodisperse and polydisperse aerosols. The results suggest that not all FDA-cleared surgical masks will provide similar levels of protection to wearers against infectious aerosols in the size range of many viruses.</p>","PeriodicalId":73984,"journal":{"name":"Journal of the International Society for Respiratory Protection","volume":"26 3","pages":"54-70"},"PeriodicalIF":0.0,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357397/pdf/nihms-1604065.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38149508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle Filtration Performance of Commercially Available Dust Masks. 市售防尘口罩的纳米颗粒过滤性能。
Samy Rengasamy, Benjamin C Eimer, Ronald E Shaffer

Dust masks are often confused with filtering facepiece respirators (FFR) but are not approved by NIOSH for respiratory protection against particulate exposure. This study reports the filtration performance of commercially available dust masks against submicron particles and discusses the relevance of these findings toward the filtration of nanoparticles. Seven different models of dust masks from local home improvement/hardware stores were challenged with submicron NaCl particles, and initial percentage penetration and resistance levels were measured using two test procedures. A polydisperse aerosol test (PAT) method, similar to the "worst case" conditions used in the NIOSH particulate respirator certification test protocol was used. A monodisperse aerosol test (MAT) method, which utilizes eleven different particle sizes in the range of 20-400 nm, were also used for particle penetration measurements at 30 and 85 L/min flow rates using the TSI 3160. Dust masks were designated as category low-, medium- and high-penetration dust masks based on penetration levels of <5%, 5-25% and >25%, respectively. Data collected using the PAT and the MAT methods showed <5% initial penetration levels for low-penetration dust masks, which is similar to the NIOSH-approved class-95 filtering facepiece respirators. Average penetration levels for medium- and high-penetration dust masks were between 8.9-24.2% and 74.5-96.9%, respectively. Penetration levels of MPPS particles from the MAT correlated with penetration levels from the PAT. Monodisperse MPPS penetration levels from MAT and penetration levels from PAT showed poor correlation with resistance values and no correlation with cost. The results of this study show that dust masks frequently do not provide filtration performance equivalent to that of NIOSH certified devices. Users of dust masks should be cautioned against using them for protection against particulates in the nano- or ultrafine size ranges.

防尘口罩经常与过滤式面罩呼吸器(FFR)混淆,但NIOSH未批准其用于呼吸防护颗粒暴露。本研究报告了市售防尘口罩对亚微米颗粒的过滤性能,并讨论了这些发现与纳米颗粒过滤的相关性。来自当地家装/五金店的七种不同型号的防尘口罩受到亚微米NaCl颗粒的挑战,并通过两种测试程序测量了初始百分比渗透率和阻力水平。采用多分散气溶胶测试(PAT)方法,类似于NIOSH颗粒呼吸器认证测试方案中使用的“最坏情况”条件。单分散气溶胶测试(MAT)方法使用了20-400 nm范围内的11种不同粒径的颗粒,并使用TSI 3160在30和85 L/min流速下进行颗粒穿透测量。根据25%的渗透率,将防尘口罩分为低、中、高渗透率防尘口罩。采用PAT和MAT方法收集的数据显示
{"title":"Nanoparticle Filtration Performance of Commercially Available Dust Masks.","authors":"Samy Rengasamy,&nbsp;Benjamin C Eimer,&nbsp;Ronald E Shaffer","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Dust masks are often confused with filtering facepiece respirators (FFR) but are not approved by NIOSH for respiratory protection against particulate exposure. This study reports the filtration performance of commercially available dust masks against submicron particles and discusses the relevance of these findings toward the filtration of nanoparticles. Seven different models of dust masks from local home improvement/hardware stores were challenged with submicron NaCl particles, and initial percentage penetration and resistance levels were measured using two test procedures. A polydisperse aerosol test (PAT) method, similar to the \"worst case\" conditions used in the NIOSH particulate respirator certification test protocol was used. A monodisperse aerosol test (MAT) method, which utilizes eleven different particle sizes in the range of 20-400 nm, were also used for particle penetration measurements at 30 and 85 L/min flow rates using the TSI 3160. Dust masks were designated as category low-, medium- and high-penetration dust masks based on penetration levels of <5%, 5-25% and >25%, respectively. Data collected using the PAT and the MAT methods showed <5% initial penetration levels for low-penetration dust masks, which is similar to the NIOSH-approved class-95 filtering facepiece respirators. Average penetration levels for medium- and high-penetration dust masks were between 8.9-24.2% and 74.5-96.9%, respectively. Penetration levels of MPPS particles from the MAT correlated with penetration levels from the PAT. Monodisperse MPPS penetration levels from MAT and penetration levels from PAT showed poor correlation with resistance values and no correlation with cost. The results of this study show that dust masks frequently do not provide filtration performance equivalent to that of NIOSH certified devices. Users of dust masks should be cautioned against using them for protection against particulates in the nano- or ultrafine size ranges.</p>","PeriodicalId":73984,"journal":{"name":"Journal of the International Society for Respiratory Protection","volume":"25 3","pages":"27-41"},"PeriodicalIF":0.0,"publicationDate":"2008-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357396/pdf/nihms-1604064.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38149507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the International Society for Respiratory Protection
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1