首页 > 最新文献

Living journal of computational molecular science最新文献

英文 中文
Introduction to Markov state modeling with the PyEMMA software [Article v1.0] PyEMMA软件的马尔可夫状态建模简介[第v1.0版]
Pub Date : 2019-01-01 DOI: 10.33011/LIVECOMS.1.1.5965
C. Wehmeyer, Martin K. Scherer, Tim Hempel, B. Husic, S. Olsson, F. Noé
{"title":"Introduction to Markov state modeling with the PyEMMA software [Article v1.0]","authors":"C. Wehmeyer, Martin K. Scherer, Tim Hempel, B. Husic, S. Olsson, F. Noé","doi":"10.33011/LIVECOMS.1.1.5965","DOIUrl":"https://doi.org/10.33011/LIVECOMS.1.1.5965","url":null,"abstract":"","PeriodicalId":74084,"journal":{"name":"Living journal of computational molecular science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69480742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
A Suite of Tutorials for the WESTPA Rare-Events Sampling Software [Article v1.0]. 一套关于WESTPA罕见事件采样软件的教程[文章v1.0]。
Pub Date : 2019-01-01 Epub Date: 2019-10-04 DOI: 10.33011/livecoms.1.2.10607
Anthony T Bogetti, Barmak Mostofian, Alex Dickson, A J Pratt, Ali S Saglam, Page O Harrison, Joshua L Adelman, Max Dudek, Paul A Torrillo, Alex J DeGrave, Upendra Adhikari, Matthew C Zwier, Daniel M Zuckerman, Lillian T Chong

The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating pathways and rate constants for rare events such as protein folding and protein binding using atomistic molecular dynamics simulations. Here we present five tutorials instructing users in the best practices for preparing, carrying out, and analyzing WE simulations for various applications using the WESTPA software. Users are expected to already have significant experience with running standard molecular dynamics simulations using the underlying dynamics engine of interest (e.g. Amber, Gromacs, OpenMM). The tutorials range from a molecular association process in explicit solvent to more complex processes such as host-guest association, peptide conformational sampling, and protein folding.

通过原子分子动力学模拟,加权系综(WE)策略已被证明在生成罕见事件(如蛋白质折叠和蛋白质结合)的途径和速率常数方面非常有效。在这里,我们将提供五个教程,指导用户使用WESTPA软件为各种应用程序准备、执行和分析we模拟的最佳实践。期望用户已经具有使用感兴趣的底层动力学引擎(例如Amber、Gromacs、OpenMM)运行标准分子动力学模拟的丰富经验。教程的范围从明确溶剂中的分子结合过程到更复杂的过程,如主客结合、肽构象采样和蛋白质折叠。
{"title":"A Suite of Tutorials for the WESTPA Rare-Events Sampling Software [Article v1.0].","authors":"Anthony T Bogetti,&nbsp;Barmak Mostofian,&nbsp;Alex Dickson,&nbsp;A J Pratt,&nbsp;Ali S Saglam,&nbsp;Page O Harrison,&nbsp;Joshua L Adelman,&nbsp;Max Dudek,&nbsp;Paul A Torrillo,&nbsp;Alex J DeGrave,&nbsp;Upendra Adhikari,&nbsp;Matthew C Zwier,&nbsp;Daniel M Zuckerman,&nbsp;Lillian T Chong","doi":"10.33011/livecoms.1.2.10607","DOIUrl":"https://doi.org/10.33011/livecoms.1.2.10607","url":null,"abstract":"<p><p>The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating pathways and rate constants for rare events such as protein folding and protein binding using atomistic molecular dynamics simulations. Here we present five tutorials instructing users in the best practices for preparing, carrying out, and analyzing WE simulations for various applications using the WESTPA software. Users are expected to already have significant experience with running standard molecular dynamics simulations using the underlying dynamics engine of interest (e.g. Amber, Gromacs, OpenMM). The tutorials range from a molecular association process in explicit solvent to more complex processes such as host-guest association, peptide conformational sampling, and protein folding.</p>","PeriodicalId":74084,"journal":{"name":"Living journal of computational molecular science","volume":"1 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213600/pdf/nihms-1584279.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37924090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Modeling electrostatics in molecular biology: A tutorial of DelPhi and associated resources [Article v1.0] 分子生物学中的静电建模:DelPhi教程和相关资源[第v1.0条]
Pub Date : 2019-01-01 DOI: 10.33011/livecoms.1.2.10841
Shailesh Kumar Panday, Mihiri H. B. Shashikala, Mahesh Koirala, S. Pahari, Arghya Chakrvorty, Yunhui Peng, Lin Li, Zhe Jia, Chuan Li, E. Alexov
This LiveCoMS document is maintained online on GitHub at https: //github.com/delphi001/ delphi_tutorial_livecoms; to provide feedback, suggestions, or help improve it, please visit the GitHub repository and participate via the issue tracker. This version dated November 25, 2019 Abstract Electrostatics play an indispensable role in practically any process in molecular biology. Indeed, at distances larger than several Angstroms, all other forces are negligibly small and electrostatic force dominates. However, modeling electrostatics in molecular biology is a complicated task due to presence of water phase, mobile ions and irregularly shaped inhomogeneous biological macromolecules. A particular approach to calculating electrostatics in such systems is to apply the Poisson-Boltzmann equation (PBE). Here, we provide a tutorial for the popular DelPhi package that solves PBE using a finite-difference method and delivers the electrostatic potential distribution throughout the modeling box. The tutorial comes with a detailed description of different tasks that DelPhi can handle, an assessment of the accuracy against cases with analytical solutions and recommendations about DelPhi usage. Furthermore, since electrostatics is a key component of virtually any modeling in molecular biology, we have created many additional resources utilizing DelPhi to model various biology relevant quantities. Tutorials for these resources are also provided along with examples of their usage.
这个LiveCoMS文档在线维护在GitHub上https: //github.com/delphi001/ delphi_tutorial_livecoms;要提供反馈、建议或帮助改进它,请访问GitHub存储库并通过问题跟踪器参与。摘要静电在分子生物学的几乎任何过程中都起着不可或缺的作用。事实上,在大于几埃的距离上,所有其他力都可以忽略不计,静电力占主导地位。然而,由于存在水相、移动离子和不规则形状的非均质生物大分子,分子生物学中的静电建模是一项复杂的任务。计算此类系统静电的一种特殊方法是应用泊松-玻尔兹曼方程(PBE)。在这里,我们为流行的DelPhi软件包提供一个教程,该软件包使用有限差分方法解决PBE问题,并提供整个建模盒的静电势分布。该教程详细描述了DelPhi可以处理的不同任务,对案例的准确性进行了评估,并提供了有关DelPhi使用的分析解决方案和建议。此外,由于静电学是分子生物学中几乎任何建模的关键组成部分,我们利用DelPhi创建了许多额外的资源来模拟各种生物学相关数量。还提供了这些资源的教程以及它们的使用示例。
{"title":"Modeling electrostatics in molecular biology: A tutorial of DelPhi and associated resources [Article v1.0]","authors":"Shailesh Kumar Panday, Mihiri H. B. Shashikala, Mahesh Koirala, S. Pahari, Arghya Chakrvorty, Yunhui Peng, Lin Li, Zhe Jia, Chuan Li, E. Alexov","doi":"10.33011/livecoms.1.2.10841","DOIUrl":"https://doi.org/10.33011/livecoms.1.2.10841","url":null,"abstract":"This LiveCoMS document is maintained online on GitHub at https: //github.com/delphi001/ delphi_tutorial_livecoms; to provide feedback, suggestions, or help improve it, please visit the GitHub repository and participate via the issue tracker. This version dated November 25, 2019 Abstract Electrostatics play an indispensable role in practically any process in molecular biology. Indeed, at distances larger than several Angstroms, all other forces are negligibly small and electrostatic force dominates. However, modeling electrostatics in molecular biology is a complicated task due to presence of water phase, mobile ions and irregularly shaped inhomogeneous biological macromolecules. A particular approach to calculating electrostatics in such systems is to apply the Poisson-Boltzmann equation (PBE). Here, we provide a tutorial for the popular DelPhi package that solves PBE using a finite-difference method and delivers the electrostatic potential distribution throughout the modeling box. The tutorial comes with a detailed description of different tasks that DelPhi can handle, an assessment of the accuracy against cases with analytical solutions and recommendations about DelPhi usage. Furthermore, since electrostatics is a key component of virtually any modeling in molecular biology, we have created many additional resources utilizing DelPhi to model various biology relevant quantities. Tutorials for these resources are also provided along with examples of their usage.","PeriodicalId":74084,"journal":{"name":"Living journal of computational molecular science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69480794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Lessons learned in atomistic simulation of double-stranded DNA: Solvation and salt concerns [Article v1.0]. 双链 DNA 原子模拟的经验教训:溶解和盐问题[文章 v1.0]。
Pub Date : 2019-01-01 Epub Date: 2019-08-09 DOI: 10.33011/livecoms.1.2.9974
Rodrigo Galindo-Murillo, Thomas E Cheatham

Nucleic acids are highly charged macromolecules sensitive to their surroundings of water, salt, and other biomolecules. Molecular dynamics simulations with accurate biomolecular force fields provide a detailed atomistic view into DNA and RNA that has been useful to study the structure and dynamics of these molecules and their biological relevance. In this work we study the Drew-Dickerson dodecamer duplex with the sequence d(GCGCAATTGCGC)2 in three different salt concentrations and using different monvalent salt types to detect possible structural influence. Overall, the DNA shows no major structural changes regardless of amount or type of monovalent ions used. Our results show that only at very high salt conditions (5M) is a small structural effect observed in the DNA duplex, which mainly consist of narrowing of the grooves due to increased residence of ions. We also present the importance of sampling time to achieve a converged ensemble, which is of major relevance in any simulation to avoid biased or non-meaningful results.

核酸是高电荷大分子,对周围的水、盐和其他生物大分子非常敏感。利用精确的生物分子力场进行的分子动力学模拟为 DNA 和 RNA 提供了详细的原子视图,有助于研究这些分子的结构和动力学及其生物学相关性。在这项工作中,我们研究了序列为 d(GCGCAATTGCGC)2 的 Drew-Dickerson 十二聚体双链,在三种不同浓度的盐中使用不同的单价盐类型来检测可能的结构影响。总体而言,无论使用的单价离子数量或类型如何,DNA 的结构都没有发生重大变化。我们的结果表明,只有在极高的盐浓度条件下(5M),DNA 双链才会出现微小的结构影响,主要是由于离子停留时间增加导致沟槽变窄。我们还介绍了采样时间对实现收敛集合的重要性,这在任何模拟中都具有重要意义,可避免出现有偏差或无意义的结果。
{"title":"Lessons learned in atomistic simulation of double-stranded DNA: Solvation and salt concerns [Article v1.0].","authors":"Rodrigo Galindo-Murillo, Thomas E Cheatham","doi":"10.33011/livecoms.1.2.9974","DOIUrl":"10.33011/livecoms.1.2.9974","url":null,"abstract":"<p><p>Nucleic acids are highly charged macromolecules sensitive to their surroundings of water, salt, and other biomolecules. Molecular dynamics simulations with accurate biomolecular force fields provide a detailed atomistic view into DNA and RNA that has been useful to study the structure and dynamics of these molecules and their biological relevance. In this work we study the Drew-Dickerson dodecamer duplex with the sequence d(GCGCAATTGCGC)<sub>2</sub> in three different salt concentrations and using different monvalent salt types to detect possible structural influence. Overall, the DNA shows no major structural changes regardless of amount or type of monovalent ions used. Our results show that only at very high salt conditions (5M) is a small structural effect observed in the DNA duplex, which mainly consist of narrowing of the grooves due to increased residence of ions. We also present the importance of sampling time to achieve a converged ensemble, which is of major relevance in any simulation to avoid biased or non-meaningful results.</p>","PeriodicalId":74084,"journal":{"name":"Living journal of computational molecular science","volume":"1 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561045/pdf/nihms-1610687.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38505758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Best Practices for Computing Transport Properties 1. Self-Diffusivity and Viscosity from Equilibrium Molecular Dynamics [Article v1.0] 计算传输属性的最佳实践平衡分子动力学中的自扩散率和粘度[第v1.0节]
Pub Date : 2019-01-01 DOI: 10.33011/LIVECOMS.1.1.6324
E. Maginn, Richard A. Messerly, Daniel J. Carlson, Daniel R. Roe, J. Richard Elliott
1Department of Chemical and Biomolecular Engineering, The University of Notre Dame; 2Thermodynamics Research Center, National Institute of Standards and Technology; 3Chemical Engineering Department, Brigham Young University; 4Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health; 5Department of Chemical and Biomolecular Engineering, The University of Akron
1美国圣母大学化学与生物分子工程系;2国家标准与技术研究院热力学研究中心;3杨百翰大学化学工程系;4美国国立卫生研究院国立心肺血液研究所计算生物学实验室;5美国阿克伦大学化学与生物分子工程系
{"title":"Best Practices for Computing Transport Properties 1. Self-Diffusivity and Viscosity from Equilibrium Molecular Dynamics [Article v1.0]","authors":"E. Maginn, Richard A. Messerly, Daniel J. Carlson, Daniel R. Roe, J. Richard Elliott","doi":"10.33011/LIVECOMS.1.1.6324","DOIUrl":"https://doi.org/10.33011/LIVECOMS.1.1.6324","url":null,"abstract":"1Department of Chemical and Biomolecular Engineering, The University of Notre Dame; 2Thermodynamics Research Center, National Institute of Standards and Technology; 3Chemical Engineering Department, Brigham Young University; 4Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health; 5Department of Chemical and Biomolecular Engineering, The University of Akron","PeriodicalId":74084,"journal":{"name":"Living journal of computational molecular science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69480745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 142
Best Practices for Quantification of Uncertainty and Sampling Quality in Molecular Simulations [Article v1.0]. 分子模拟中不确定度和采样质量量化的最佳实践[第v1.0条]。
Pub Date : 2018-01-01 Epub Date: 2018-10-27 DOI: 10.33011/livecoms.1.1.5067
Alan Grossfield, Paul N Patrone, Daniel R Roe, Andrew J Schultz, Daniel W Siderius, Daniel M Zuckerman

The quantitative assessment of uncertainty and sampling quality is essential in molecular simulation. Many systems of interest are highly complex, often at the edge of current computational capabilities. Modelers must therefore analyze and communicate statistical uncertainties so that "consumers" of simulated data understand its significance and limitations. This article covers key analyses appropriate for trajectory data generated by conventional simulation methods such as molecular dynamics and (single Markov chain) Monte Carlo. It also provides guidance for analyzing some 'enhanced' sampling approaches. We do not discuss systematic errors arising, e.g., from inaccuracy in the chosen model or force field.

在分子模拟中,不确定度和采样质量的定量评估至关重要。许多感兴趣的系统是高度复杂的,通常处于当前计算能力的边缘。因此,建模人员必须分析和传达统计不确定性,以便模拟数据的“消费者”了解其重要性和局限性。本文介绍了适用于分子动力学和(单马尔可夫链)蒙特卡罗等传统模拟方法生成的轨迹数据的关键分析。它还为分析一些“增强型”采样方法提供了指导。我们不讨论由于所选模型或力场的不准确而产生的系统误差。
{"title":"Best Practices for Quantification of Uncertainty and Sampling Quality in Molecular Simulations [Article v1.0].","authors":"Alan Grossfield,&nbsp;Paul N Patrone,&nbsp;Daniel R Roe,&nbsp;Andrew J Schultz,&nbsp;Daniel W Siderius,&nbsp;Daniel M Zuckerman","doi":"10.33011/livecoms.1.1.5067","DOIUrl":"10.33011/livecoms.1.1.5067","url":null,"abstract":"<p><p>The quantitative assessment of uncertainty and sampling quality is essential in molecular simulation. Many systems of interest are highly complex, often at the edge of current computational capabilities. Modelers must therefore analyze and communicate statistical uncertainties so that \"consumers\" of simulated data understand its significance and limitations. This article covers key analyses appropriate for trajectory data generated by conventional simulation methods such as molecular dynamics and (single Markov chain) Monte Carlo. It also provides guidance for analyzing some 'enhanced' sampling approaches. We do not discuss <i>systematic</i> errors arising, e.g., from inaccuracy in the chosen model or force field.</p>","PeriodicalId":74084,"journal":{"name":"Living journal of computational molecular science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286151/pdf/nihms-994026.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36768479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 93
期刊
Living journal of computational molecular science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1