Pub Date : 2023-03-25Epub Date: 2022-09-14DOI: 10.1515/nipt-2022-0013
Peter W Halcrow, Nirmal Kumar, Emily Hao, Nabab Khan, Olimpia Meucci, Jonathan D Geiger
Objectives: Opioids including morphine and DAMGO activate mu-opioid receptors (MOR), increase intracellular reactive oxygen species (ROS) levels, and induce cell death. Ferrous iron (Fe2+) through Fenton-like chemistry increases ROS levels and endolysosomes are "master regulators of iron metabolism" and contain readily-releasable Fe2+ stores. However, mechanisms underlying opioid-induced changes in endolysosome iron homeostasis and downstream-signaling events remain unclear.
Methods: We used SH-SY5Y neuroblastoma cells, flow cytometry, and confocal microscopy to measure Fe2+ and ROS levels and cell death.
Results: Morphine and DAMGO de-acidified endolysosomes, decreased endolysosome Fe2+ levels, increased cytosol and mitochondria Fe2+ and ROS levels, depolarized mitochondrial membrane potential, and induced cell death; effects blocked by the nonselective MOR antagonist naloxone and the selective MOR antagonist β-funaltrexamine (β-FNA). Deferoxamine, an endolysosome-iron chelator, inhibited opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS. Opioid-induced efflux of endolysosome Fe2+ and subsequent Fe2+ accumulation in mitochondria were blocked by the endolysosome-resident two-pore channel inhibitor NED-19 and the mitochondrial permeability transition pore inhibitor TRO.
Conclusions: Opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear downstream of endolysosome de-acidification and Fe2+ efflux from the endolysosome iron pool that is sufficient to affect other organelles.
{"title":"Mu opioid receptor-mediated release of endolysosome iron increases levels of mitochondrial iron, reactive oxygen species, and cell death.","authors":"Peter W Halcrow, Nirmal Kumar, Emily Hao, Nabab Khan, Olimpia Meucci, Jonathan D Geiger","doi":"10.1515/nipt-2022-0013","DOIUrl":"10.1515/nipt-2022-0013","url":null,"abstract":"<p><strong>Objectives: </strong>Opioids including morphine and DAMGO activate mu-opioid receptors (MOR), increase intracellular reactive oxygen species (ROS) levels, and induce cell death. Ferrous iron (Fe<sup>2+</sup>) through Fenton-like chemistry increases ROS levels and endolysosomes are \"master regulators of iron metabolism\" and contain readily-releasable Fe<sup>2+</sup> stores. However, mechanisms underlying opioid-induced changes in endolysosome iron homeostasis and downstream-signaling events remain unclear.</p><p><strong>Methods: </strong>We used SH-SY5Y neuroblastoma cells, flow cytometry, and confocal microscopy to measure Fe<sup>2+</sup> and ROS levels and cell death.</p><p><strong>Results: </strong>Morphine and DAMGO de-acidified endolysosomes, decreased endolysosome Fe<sup>2+</sup> levels, increased cytosol and mitochondria Fe<sup>2+</sup> and ROS levels, depolarized mitochondrial membrane potential, and induced cell death; effects blocked by the nonselective MOR antagonist naloxone and the selective MOR antagonist β-funaltrexamine (β-FNA). Deferoxamine, an endolysosome-iron chelator, inhibited opioid agonist-induced increases in cytosolic and mitochondrial Fe<sup>2+</sup> and ROS. Opioid-induced efflux of endolysosome Fe<sup>2+</sup> and subsequent Fe<sup>2+</sup> accumulation in mitochondria were blocked by the endolysosome-resident two-pore channel inhibitor NED-19 and the mitochondrial permeability transition pore inhibitor TRO.</p><p><strong>Conclusions: </strong>Opioid agonist-induced increases in cytosolic and mitochondrial Fe<sup>2+</sup> and ROS as well as cell death appear downstream of endolysosome de-acidification and Fe<sup>2+</sup> efflux from the endolysosome iron pool that is sufficient to affect other organelles.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"2 1","pages":"19-35"},"PeriodicalIF":0.0,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9684727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-25Epub Date: 2023-02-17DOI: 10.1515/nipt-2022-0017
Dominic Sales, Edward Lin, Victoria Stoffel, Shallyn Dickson, Zafar K Khan, Joris Beld, Pooja Jain
Objectives: HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory autoimmune disease characterized by high levels of infected immortalized T cells in circulation, which makes it difficult for antiretroviral (ART) drugs to work effectively. In previous studies, we established that Apigenin, a flavonoid, can exert immunomodulatory effects to reduce neuroinflammation. Flavonoids are natural ligands for the aryl hydrocarbon receptor (AhR), which is a ligand activated endogenous receptor involved in the xenobiotic response. Consequently, we tested Apigenin's synergy in combination with ART against the survival of HTLV-1-infected cells.
Methods: First, we established a direct protein-protein interaction between Apigenin and AhR. We then demonstrated that Apigenin and its derivative VY-3-68 enter activated T cells, drive nuclear shuttling of AhR, and modulate its signaling both at RNA and protein level.
Results: In HTLV-1 producing cells with high AhR expression, Apigenin cooperates with ARTs such as Lopinavir (LPN) and Zidovudine (AZT), to impart cytotoxicity by exhibiting a major shift in IC50 that was reversed upon AhR knockdown. Mechanistically, Apigenin treatment led to an overall downregulation of NF-κB and several other pro-cancer genes involved in survival.
Conclusions: This study suggest the potential combinatorial use of Apigenin with current first-line antiretrovirals for the benefit of patients affected by HTLV-1 associated pathologies.
{"title":"Apigenin improves cytotoxicity of antiretroviral drugs against HTLV-1 infected cells through the modulation of AhR signaling.","authors":"Dominic Sales, Edward Lin, Victoria Stoffel, Shallyn Dickson, Zafar K Khan, Joris Beld, Pooja Jain","doi":"10.1515/nipt-2022-0017","DOIUrl":"10.1515/nipt-2022-0017","url":null,"abstract":"<p><strong>Objectives: </strong>HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory autoimmune disease characterized by high levels of infected immortalized T cells in circulation, which makes it difficult for antiretroviral (ART) drugs to work effectively. In previous studies, we established that Apigenin, a flavonoid, can exert immunomodulatory effects to reduce neuroinflammation. Flavonoids are natural ligands for the aryl hydrocarbon receptor (AhR), which is a ligand activated endogenous receptor involved in the xenobiotic response. Consequently, we tested Apigenin's synergy in combination with ART against the survival of HTLV-1-infected cells.</p><p><strong>Methods: </strong>First, we established a direct protein-protein interaction between Apigenin and AhR. We then demonstrated that Apigenin and its derivative VY-3-68 enter activated T cells, drive nuclear shuttling of AhR, and modulate its signaling both at RNA and protein level.</p><p><strong>Results: </strong>In HTLV-1 producing cells with high AhR expression, Apigenin cooperates with ARTs such as Lopinavir (LPN) and Zidovudine (AZT), to impart cytotoxicity by exhibiting a major shift in IC<sub>50</sub> that was reversed upon AhR knockdown. Mechanistically, Apigenin treatment led to an overall downregulation of NF-κB and several other pro-cancer genes involved in survival.</p><p><strong>Conclusions: </strong>This study suggest the potential combinatorial use of Apigenin with current first-line antiretrovirals for the benefit of patients affected by HTLV-1 associated pathologies.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"2 1","pages":"49-62"},"PeriodicalIF":0.0,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9270379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-25Epub Date: 2022-10-21DOI: 10.1515/nipt-2022-0014
Courtney Veilleux, Eliseo A Eugenin
Objectives: Zika virus (ZIKV) has become an epidemic in several countries and was declared a major public health issue by the WHO. Although ZIKV infection is asymptomatic or shows mild fever-related symptoms in most people, the virus can be transmitted from a pregnant mother to the fetus, resulting in severe brain developmental abnormalities, including microcephaly. Multiple groups have identified developmental neuronal and neuronal progenitor compromise during ZIKV infection within the fetal brain, but little is known about whether ZIKV could infect human astrocytes and its effect on the developing brain. Thus, our objective was to determine astrocyte ZiKV infection in a developmental-dependent manner.
Methods: We analyze infection of pure cultures of astrocytes and mixed cultures of neurons and astrocytes in response to ZIKV using plaque assays, confocal, and electron microscopy to identify infectivity, ZIKV accumulation and intracellular distribution as well as apoptosis and interorganelle dysfunction.
Results: Here, we demonstrated that ZIKV enters, infects, replicates, and accumulates in large quantities in human fetal astrocytes in a developmental-dependent manner. Astrocyte infection and intracellular viral accumulation resulted in neuronal apoptosis, and we propose astrocytes are a ZIKV reservoir during brain development.
Conclusions: Our data identify astrocytes in different stages of development as major contributors to the devastating effects of ZIKV in the developing brain.
{"title":"Mechanisms of Zika astrocyte infection and neuronal toxicity.","authors":"Courtney Veilleux, Eliseo A Eugenin","doi":"10.1515/nipt-2022-0014","DOIUrl":"10.1515/nipt-2022-0014","url":null,"abstract":"<p><strong>Objectives: </strong>Zika virus (ZIKV) has become an epidemic in several countries and was declared a major public health issue by the WHO. Although ZIKV infection is asymptomatic or shows mild fever-related symptoms in most people, the virus can be transmitted from a pregnant mother to the fetus, resulting in severe brain developmental abnormalities, including microcephaly. Multiple groups have identified developmental neuronal and neuronal progenitor compromise during ZIKV infection within the fetal brain, but little is known about whether ZIKV could infect human astrocytes and its effect on the developing brain. Thus, our objective was to determine astrocyte ZiKV infection in a developmental-dependent manner.</p><p><strong>Methods: </strong>We analyze infection of pure cultures of astrocytes and mixed cultures of neurons and astrocytes in response to ZIKV using plaque assays, confocal, and electron microscopy to identify infectivity, ZIKV accumulation and intracellular distribution as well as apoptosis and interorganelle dysfunction.</p><p><strong>Results: </strong>Here, we demonstrated that ZIKV enters, infects, replicates, and accumulates in large quantities in human fetal astrocytes in a developmental-dependent manner. Astrocyte infection and intracellular viral accumulation resulted in neuronal apoptosis, and we propose astrocytes are a ZIKV reservoir during brain development.</p><p><strong>Conclusions: </strong>Our data identify astrocytes in different stages of development as major contributors to the devastating effects of ZIKV in the developing brain.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"2 1","pages":"5-18"},"PeriodicalIF":0.0,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9270376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hawra Albukhaytan, B. Torkzaban, I. Sariyer, S. Amini
Abstract Objectives PurA is an evolutionary conserved protein that is known to bind to single stranded DNA or RNA and regulate both transcription and translation. PurA has been implicated in many neurological and neurodevelopmental deficits, but its role in response to cellular stress has not yet been clarified. In this study, we have studied the cells’ stress response in the presence and absence of PurA expression. Methods Oxidative stress was induced in MEF cells obtained from PURA WT and K/O mice by paraquat treatments. The cellular response to stress was determined and compared by viability assays, immunocytochemistry and biochemical analyses. Results Interestingly, paraquat treated PurA expressing MEF cells showed higher sensitivity and less cellular viability than those with no PurA expression. Moreover, western blot analysis revealed increase in the expression of the apoptotic marker cleaved caspase 3 and autophagy marker LC3-II in PurA WT MEF cells compared to the PurA K/O MEF cells under oxidative stress induction. Conclusions Our observations indicate that PurA may play a key role in regulating cellular toxicity induced by oxidative stress and emphasize its importance for cell-fate determination under cytotoxic stress conditions.
{"title":"PurA sensitizes cells to toxicity induced by oxidative stress","authors":"Hawra Albukhaytan, B. Torkzaban, I. Sariyer, S. Amini","doi":"10.1515/nipt-2022-0020","DOIUrl":"https://doi.org/10.1515/nipt-2022-0020","url":null,"abstract":"Abstract Objectives PurA is an evolutionary conserved protein that is known to bind to single stranded DNA or RNA and regulate both transcription and translation. PurA has been implicated in many neurological and neurodevelopmental deficits, but its role in response to cellular stress has not yet been clarified. In this study, we have studied the cells’ stress response in the presence and absence of PurA expression. Methods Oxidative stress was induced in MEF cells obtained from PURA WT and K/O mice by paraquat treatments. The cellular response to stress was determined and compared by viability assays, immunocytochemistry and biochemical analyses. Results Interestingly, paraquat treated PurA expressing MEF cells showed higher sensitivity and less cellular viability than those with no PurA expression. Moreover, western blot analysis revealed increase in the expression of the apoptotic marker cleaved caspase 3 and autophagy marker LC3-II in PurA WT MEF cells compared to the PurA K/O MEF cells under oxidative stress induction. Conclusions Our observations indicate that PurA may play a key role in regulating cellular toxicity induced by oxidative stress and emphasize its importance for cell-fate determination under cytotoxic stress conditions.","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"2 1","pages":"119 - 125"},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47831064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammed Bishir, Tatiana Rengifo, Wenfei Huang, Ryan J. Kim, S. Chidambaram, Sulie L. Chang
Abstract Objectives Cross sectional surveys have reported that alcohol consumption has skyrocketed during the COVID-19 pandemic. Chronic alcohol use triggers systemic inflammation which leads to neuroinflammation and neurodegeneration. In the present study, we hypothesize that alcohol consumption and cytokine elevation during inflammatory conditions synergistically increase amyloid-beta precursor protein (APP) expression and worsens Alzheimer’s disease (AD) pathology. Methods QIAGEN Ingenuity Pathway Analysis (IPA) was employed to conduct network meta-analysis on the molecular mechanisms underlying ethanol (EtOH) influence on APP expression and AD in inflammatory conditions including COVID-19, inflammation of respiratory system, organ, absolute anatomical region, body cavity, joint, respiratory system component, gastrointestinal tract, large intestine, liver, central nerve system, and lung. IPA tools were utilized to identify the molecules associated with EtOH, inflammatory conditions and the common molecules between them. Results Simulation activity of EtOH, mimicking exposure to alcohol, upregulated the APP expression and augmented AD pathology in all inflammatory conditions including COVID-19. Our studies identified six molecules including ADORA2A, Cytokine, IFN-gamma, IL1-beta, Immunoglobulin and TNF, which concurrently contribute to increased APP expression and AD progression upon EtOH simulation in all diseases studied. Conclusions The present study has revealed molecular mechanisms underlying alcohol augmentation of AD in COVID-19 and other diseases of inflammation.
{"title":"Network meta-analysis on alcohol-mediated modulation of Alzheimer’s disease in the diseases of inflammation including COVID-19","authors":"Muhammed Bishir, Tatiana Rengifo, Wenfei Huang, Ryan J. Kim, S. Chidambaram, Sulie L. Chang","doi":"10.1515/nipt-2022-0018","DOIUrl":"https://doi.org/10.1515/nipt-2022-0018","url":null,"abstract":"Abstract Objectives Cross sectional surveys have reported that alcohol consumption has skyrocketed during the COVID-19 pandemic. Chronic alcohol use triggers systemic inflammation which leads to neuroinflammation and neurodegeneration. In the present study, we hypothesize that alcohol consumption and cytokine elevation during inflammatory conditions synergistically increase amyloid-beta precursor protein (APP) expression and worsens Alzheimer’s disease (AD) pathology. Methods QIAGEN Ingenuity Pathway Analysis (IPA) was employed to conduct network meta-analysis on the molecular mechanisms underlying ethanol (EtOH) influence on APP expression and AD in inflammatory conditions including COVID-19, inflammation of respiratory system, organ, absolute anatomical region, body cavity, joint, respiratory system component, gastrointestinal tract, large intestine, liver, central nerve system, and lung. IPA tools were utilized to identify the molecules associated with EtOH, inflammatory conditions and the common molecules between them. Results Simulation activity of EtOH, mimicking exposure to alcohol, upregulated the APP expression and augmented AD pathology in all inflammatory conditions including COVID-19. Our studies identified six molecules including ADORA2A, Cytokine, IFN-gamma, IL1-beta, Immunoglobulin and TNF, which concurrently contribute to increased APP expression and AD progression upon EtOH simulation in all diseases studied. Conclusions The present study has revealed molecular mechanisms underlying alcohol augmentation of AD in COVID-19 and other diseases of inflammation.","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45526010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-04eCollection Date: 2023-06-01DOI: 10.1515/nipt-2022-0015
Silvana Valdebenito, Akira Ono, Libin Rong, Eliseo A Eugenin
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
{"title":"The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure.","authors":"Silvana Valdebenito, Akira Ono, Libin Rong, Eliseo A Eugenin","doi":"10.1515/nipt-2022-0015","DOIUrl":"10.1515/nipt-2022-0015","url":null,"abstract":"<p><p>Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"2 2","pages":"169-186"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9853137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-15eCollection Date: 2023-06-01DOI: 10.1515/nipt-2022-0006
Muhammad G Saleh, Linda Chang, Huajun Liang, Meghann C Ryan, Eric Cunningham, Jonathan Garner, Eleanor Wilson, Andrea R Levine, Shyamasundaran Kottilil, Thomas Ernst
Objectives: Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is associated with lower plasma glutathione (GSH) levels due to oxidative stress. However, plasma levels may not reflect brain GSH levels. Individuals with post-acute sequelae of COVID-19 (PASC) have a higher prevalence of cognitive fatigue, which might be related to altered brain γ-aminobutyric-acid (GABA) levels. Hence, our study aims to measure the brain GSH and GABA levels in PASC.
Methods: 29 PASC participants and 24 uninfected controls were recruited for this study. Each was evaluated with detailed neuropsychiatric assessments and an edited proton MRS (Hadamard Encoding and Reconstruction of Mega-Edited Spectroscopy, HERMES) method to measure GABA and GSH concentrations in predominantly grey matter (GM) and predominantly white matter (WM) brain frontal voxels.
Results: PASC participants were 219 ± 137 days since their COVID-19 diagnosis. Nine individuals with PASC were hospitalized. Compared to controls, individuals with PASC had similar levels of GABA in both brain regions, but lower GSH and greater age-related GSH decline in the frontal GM region.
Conclusions: The lower-than-normal frontal GM GSH level in participants with PASC suggest that they have ongoing oxidative stress in the brain, and that older individuals may be even more vulnerable to oxidative stress.
{"title":"Ongoing oxidative stress in individuals with post-acute sequelae of COVID-19.","authors":"Muhammad G Saleh, Linda Chang, Huajun Liang, Meghann C Ryan, Eric Cunningham, Jonathan Garner, Eleanor Wilson, Andrea R Levine, Shyamasundaran Kottilil, Thomas Ernst","doi":"10.1515/nipt-2022-0006","DOIUrl":"10.1515/nipt-2022-0006","url":null,"abstract":"<p><strong>Objectives: </strong>Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is associated with lower plasma glutathione (GSH) levels due to oxidative stress. However, plasma levels may not reflect brain GSH levels. Individuals with post-acute sequelae of COVID-19 (PASC) have a higher prevalence of cognitive fatigue, which might be related to altered brain γ-aminobutyric-acid (GABA) levels. Hence, our study aims to measure the brain GSH and GABA levels in PASC.</p><p><strong>Methods: </strong>29 PASC participants and 24 uninfected controls were recruited for this study. Each was evaluated with detailed neuropsychiatric assessments and an edited proton MRS (Hadamard Encoding and Reconstruction of Mega-Edited Spectroscopy, HERMES) method to measure GABA and GSH concentrations in predominantly grey matter (GM) and predominantly white matter (WM) brain frontal voxels.</p><p><strong>Results: </strong>PASC participants were 219 ± 137 days since their COVID-19 diagnosis. Nine individuals with PASC were hospitalized. Compared to controls, individuals with PASC had similar levels of GABA in both brain regions, but lower GSH and greater age-related GSH decline in the frontal GM region.</p><p><strong>Conclusions: </strong>The lower-than-normal frontal GM GSH level in participants with PASC suggest that they have ongoing oxidative stress in the brain, and that older individuals may be even more vulnerable to oxidative stress.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"2 2","pages":"89-94"},"PeriodicalIF":0.0,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355326/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10108340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Objectives Evidence suggests that obesity may represent a risk factor for neurodegenerative pathologies including Alzheimer’s disease (AD). With excessive accumulation of adipose tissue, obesity is associated with chronic low-grade inflammation, increased production of adipokines, elevated levels of free fatty acids (FFAs) including palmitic acid (PA), the most abundant saturated fatty acid (SFA) in circulation. Excessive PA has been shown to induce lipotoxicity in many different types of cells including microglia and neuronal cells. We hypothesized that PA may contribute to the development of obesity-associated neurological conditions. Methods This study was designed to examine how increased PA may affect microglia activation and neurodegeneration using QIAGEN Ingenuity Pathway Analysis (IPA). Kramer analysis was used to quantitatively characterize the impact of PA on microglia activation and neurodegeneration. Results Simulated increase of PA enhanced the activities of intermediating molecules including CCL5, IL1β, IL1RN, IL6, NF-κB, NOS2, PTGS2, TLR2, TLR4, and TNF. Increased PA level induced microglia activation with a z score of 2.38 (p=0.0173) and neurodegeneration with a z score of 1.55 (p=0.121). Increased PA level also activated neuroinflammation signaling pathway, the top canonical pathway associated with both microglia activation and neurodegeneration. Conclusions Our IPA analysis demonstrated that increased PA significantly induced microglia activation and might augment neurodegeneration by altering the activities of key intermediating molecules and canonical pathways. Our findings shed light on how increased PA level may contribute to the development of neurodegenerative pathologies in the course of obesity.
{"title":"Meta-analysis of the effects of palmitic acid on microglia activation and neurodegeneration","authors":"Heping Zhou, Sulie L. Chang","doi":"10.1515/nipt-2022-0008","DOIUrl":"https://doi.org/10.1515/nipt-2022-0008","url":null,"abstract":"Abstract Objectives Evidence suggests that obesity may represent a risk factor for neurodegenerative pathologies including Alzheimer’s disease (AD). With excessive accumulation of adipose tissue, obesity is associated with chronic low-grade inflammation, increased production of adipokines, elevated levels of free fatty acids (FFAs) including palmitic acid (PA), the most abundant saturated fatty acid (SFA) in circulation. Excessive PA has been shown to induce lipotoxicity in many different types of cells including microglia and neuronal cells. We hypothesized that PA may contribute to the development of obesity-associated neurological conditions. Methods This study was designed to examine how increased PA may affect microglia activation and neurodegeneration using QIAGEN Ingenuity Pathway Analysis (IPA). Kramer analysis was used to quantitatively characterize the impact of PA on microglia activation and neurodegeneration. Results Simulated increase of PA enhanced the activities of intermediating molecules including CCL5, IL1β, IL1RN, IL6, NF-κB, NOS2, PTGS2, TLR2, TLR4, and TNF. Increased PA level induced microglia activation with a z score of 2.38 (p=0.0173) and neurodegeneration with a z score of 1.55 (p=0.121). Increased PA level also activated neuroinflammation signaling pathway, the top canonical pathway associated with both microglia activation and neurodegeneration. Conclusions Our IPA analysis demonstrated that increased PA significantly induced microglia activation and might augment neurodegeneration by altering the activities of key intermediating molecules and canonical pathways. Our findings shed light on how increased PA level may contribute to the development of neurodegenerative pathologies in the course of obesity.","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"0 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44100713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-21eCollection Date: 2022-03-01DOI: 10.1515/nipt-2022-0001
Milica Markovic, Pravin Yeapuri, Krista L Namminga, Yaman Lu, Maamoon Saleh, Katherine E Olson, Howard E Gendelman, R Lee Mosley
Background: Pharmacological approaches that boost neuroprotective regulatory T cell (Treg) number and function lead to neuroprotective activities in neurodegenerative disorders.
Objectives: We investigated whether low-dose interleukin 2 (IL-2) expands Treg populations and protects nigrostriatal dopaminergic neurons in a model of Parkinson's disease (PD).
Methods: IL-2 at 2.5 × 104 IU/dose/mouse was administered for 5 days. Lymphocytes were isolated and phenotype determined by flow cytometric analyses. To 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice, 0.5 × 106 of enriched IL-2-induced Tregs were adoptively transferred to assess the effects on nigrostriatal neuron survival.
Results: IL-2 increased frequencies of CD4+CD25+CD127lowFoxP3+ Tregs that express ICOS and CD39 in blood and spleen. Adoptive transfer of IL-2-induced Tregs to MPTP-treated recipients increased tyrosine hydroxylase (TH)+ nigral dopaminergic neuronal bodies by 51% and TH+ striatal termini by 52% compared to control MPTP-treated animal controls.
Conclusions: IL-2 expands numbers of neuroprotective Tregs providing a vehicle for neuroprotection of nigrostriatal dopaminergic neurons in a pre-clinical PD model.
{"title":"Interleukin-2 expands neuroprotective regulatory T cells in Parkinson's disease.","authors":"Milica Markovic, Pravin Yeapuri, Krista L Namminga, Yaman Lu, Maamoon Saleh, Katherine E Olson, Howard E Gendelman, R Lee Mosley","doi":"10.1515/nipt-2022-0001","DOIUrl":"10.1515/nipt-2022-0001","url":null,"abstract":"<p><strong>Background: </strong>Pharmacological approaches that boost neuroprotective regulatory T cell (Treg) number and function lead to neuroprotective activities in neurodegenerative disorders.</p><p><strong>Objectives: </strong>We investigated whether low-dose interleukin 2 (IL-2) expands Treg populations and protects nigrostriatal dopaminergic neurons in a model of Parkinson's disease (PD).</p><p><strong>Methods: </strong>IL-2 at 2.5 × 10<sup>4</sup> IU/dose/mouse was administered for 5 days. Lymphocytes were isolated and phenotype determined by flow cytometric analyses. To 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice, 0.5 × 10<sup>6</sup> of enriched IL-2-induced Tregs were adoptively transferred to assess the effects on nigrostriatal neuron survival.</p><p><strong>Results: </strong>IL-2 increased frequencies of CD4<sup>+</sup>CD25<sup>+</sup>CD127<sup>low</sup>FoxP3<sup>+</sup> Tregs that express ICOS and CD39 in blood and spleen. Adoptive transfer of IL-2-induced Tregs to MPTP-treated recipients increased tyrosine hydroxylase (TH)<sup>+</sup> nigral dopaminergic neuronal bodies by 51% and TH<sup>+</sup> striatal termini by 52% compared to control MPTP-treated animal controls.</p><p><strong>Conclusions: </strong>IL-2 expands numbers of neuroprotective Tregs providing a vehicle for neuroprotection of nigrostriatal dopaminergic neurons in a pre-clinical PD model.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"1 1","pages":"43-50"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42624818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}