Pub Date : 2017-03-31eCollection Date: 2017-04-01DOI: 10.1042/NS20170027
Gerard W O'Keeffe, Shane V Hegarty, Aideen M Sullivan
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by the degeneration of midbrain dopaminergic (mDA) neurons and their axons, and aggregation of α-synuclein, which leads to motor and late-stage cognitive impairments. As the motor symptoms of PD are caused by the degeneration of a specific population of mDA neurons, PD lends itself to neurotrophic factor therapy. The goal of this therapy is to apply a neurotrophic factor that can slow down, halt or even reverse the progressive degeneration of mDA neurons. While the best known neurotrophic factors are members of the glial cell line-derived neurotrophic factor (GDNF) family, their lack of clinical efficacy to date means that it is important to continue to study other neurotrophic factors. Bone morphogenetic proteins (BMPs) are naturally secreted proteins that play critical roles during nervous system development and in the adult brain. In this review, we provide an overview of the BMP ligands, BMP receptors (BMPRs) and their intracellular signalling effectors, the Smad proteins. We review the available evidence that BMP-Smad signalling pathways play an endogenous role in mDA neuronal survival in vivo, before outlining how exogenous application of BMPs exerts potent effects on mDA neuron survival and axon growth in vitro and in vivo. We discuss the molecular mechanisms that mediate these effects, before highlighting the potential of targeting the downstream effectors of BMP-Smad signalling as a novel neuroprotective approach to slow or stop the degeneration of mDA neurons in PD.
{"title":"Targeting bone morphogenetic protein signalling in midbrain dopaminergic neurons as a therapeutic approach in Parkinson's disease.","authors":"Gerard W O'Keeffe, Shane V Hegarty, Aideen M Sullivan","doi":"10.1042/NS20170027","DOIUrl":"https://doi.org/10.1042/NS20170027","url":null,"abstract":"<p><p>Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by the degeneration of midbrain dopaminergic (mDA) neurons and their axons, and aggregation of α-synuclein, which leads to motor and late-stage cognitive impairments. As the motor symptoms of PD are caused by the degeneration of a specific population of mDA neurons, PD lends itself to neurotrophic factor therapy. The goal of this therapy is to apply a neurotrophic factor that can slow down, halt or even reverse the progressive degeneration of mDA neurons. While the best known neurotrophic factors are members of the glial cell line-derived neurotrophic factor (GDNF) family, their lack of clinical efficacy to date means that it is important to continue to study other neurotrophic factors. Bone morphogenetic proteins (BMPs) are naturally secreted proteins that play critical roles during nervous system development and in the adult brain. In this review, we provide an overview of the BMP ligands, BMP receptors (BMPRs) and their intracellular signalling effectors, the Smad proteins. We review the available evidence that BMP-Smad signalling pathways play an endogenous role in mDA neuronal survival <i>in vivo</i>, before outlining how exogenous application of BMPs exerts potent effects on mDA neuron survival and axon growth <i>in vitro</i> and <i>in vivo</i>. We discuss the molecular mechanisms that mediate these effects, before highlighting the potential of targeting the downstream effectors of BMP-Smad signalling as a novel neuroprotective approach to slow or stop the degeneration of mDA neurons in PD.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"1 2","pages":"NS20170027"},"PeriodicalIF":0.0,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1042/NS20170027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38203074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-03-24eCollection Date: 2017-04-01DOI: 10.1042/NS20160020
Claire Thornton
Metabolically energetic organs, such as the brain, require a reliable source of ATP, the majority of which is provided by oxidative phosphorylation in the mitochondrial matrix. Maintaining mitochondrial integrity is therefore of paramount importance in highly specialized cells such as neurons. Beyond acting as cellular 'power stations' and initiators of apoptosis, neuronal mitochondria are highly mobile, transported to pre- and post-synaptic sites for rapid, localized ATP production, serve to buffer physiological and pathological calcium and contribute to dendritic arborization. Given such roles, it is perhaps unsurprising that recent studies implicate AMP-activated protein kinase (AMPK), a cellular energy-sensitive metabolic regulator, in triggering mitochondrial fission, potentially balancing mitochondrial dynamics, biogenesis and mitophagy.
新陈代谢旺盛的器官(如大脑)需要可靠的 ATP 来源,其中大部分由线粒体基质中的氧化磷酸化提供。因此,在神经元等高度特化的细胞中,保持线粒体的完整性至关重要。除了充当细胞 "发电站 "和细胞凋亡的启动器外,神经元线粒体还具有高度流动性,可被运输到突触前后部位以快速、局部地产生 ATP,起到缓冲生理和病理钙的作用,并有助于树突轴化。鉴于线粒体的这些作用,最近的研究发现 AMP 激活蛋白激酶(AMPK)--一种细胞能量敏感的代谢调节因子--与触发线粒体裂变有关,可能会平衡线粒体的动态、生物生成和有丝分裂,这或许不足为奇。
{"title":"AMPK: keeping the (power)house in order?","authors":"Claire Thornton","doi":"10.1042/NS20160020","DOIUrl":"10.1042/NS20160020","url":null,"abstract":"<p><p>Metabolically energetic organs, such as the brain, require a reliable source of ATP, the majority of which is provided by oxidative phosphorylation in the mitochondrial matrix. Maintaining mitochondrial integrity is therefore of paramount importance in highly specialized cells such as neurons. Beyond acting as cellular 'power stations' and initiators of apoptosis, neuronal mitochondria are highly mobile, transported to pre- and post-synaptic sites for rapid, localized ATP production, serve to buffer physiological and pathological calcium and contribute to dendritic arborization. Given such roles, it is perhaps unsurprising that recent studies implicate AMP-activated protein kinase (AMPK), a cellular energy-sensitive metabolic regulator, in triggering mitochondrial fission, potentially balancing mitochondrial dynamics, biogenesis and mitophagy.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"1 2","pages":"NS20160020"},"PeriodicalIF":0.0,"publicationDate":"2017-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38203072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-24eCollection Date: 2017-02-01DOI: 10.1042/NS20160007
Amrita Pathak, Bruce D Carter
Neurotrophins are target-derived factors necessary for mammalian nervous system development and maintenance. They are typically produced by neuronal target tissues and interact with their receptors at axonal endings. Therefore, locally generated neurotrophin signals must be conveyed from the axon back to the cell soma. Retrograde survival signaling by neurotrophin binding to Trk receptors has been extensively studied. However, neurotrophins also bind to the p75 receptor, which can induce apoptosis in a variety of contexts. Selective activation of p75 at distal axon ends has been shown to generate a retrograde apoptotic signal, although the mechanisms involved are poorly understood. The present review summarizes the available evidence for retrograde proapoptotic signaling in general and the role of the p75 receptor in particular, with discussion of unanswered questions in the field. In-depth knowledge of the mechanisms of retrograde apoptotic signaling is essential for understanding the etiology of neurodegeneration in many diseases and injuries.
{"title":"Retrograde apoptotic signaling by the p75 neurotrophin receptor.","authors":"Amrita Pathak, Bruce D Carter","doi":"10.1042/NS20160007","DOIUrl":"https://doi.org/10.1042/NS20160007","url":null,"abstract":"<p><p>Neurotrophins are target-derived factors necessary for mammalian nervous system development and maintenance. They are typically produced by neuronal target tissues and interact with their receptors at axonal endings. Therefore, locally generated neurotrophin signals must be conveyed from the axon back to the cell soma. Retrograde survival signaling by neurotrophin binding to Trk receptors has been extensively studied. However, neurotrophins also bind to the p75 receptor, which can induce apoptosis in a variety of contexts. Selective activation of p75 at distal axon ends has been shown to generate a retrograde apoptotic signal, although the mechanisms involved are poorly understood. The present review summarizes the available evidence for retrograde proapoptotic signaling in general and the role of the p75 receptor in particular, with discussion of unanswered questions in the field. In-depth knowledge of the mechanisms of retrograde apoptotic signaling is essential for understanding the etiology of neurodegeneration in many diseases and injuries.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"1 1","pages":"NS20160007"},"PeriodicalIF":0.0,"publicationDate":"2017-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1042/NS20160007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38203092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-20eCollection Date: 2017-02-01DOI: 10.1042/NS20160003
Norbert Weiss, Gerald W Zamponi
Neuronal voltage-gated calcium channels (VGCCs) serve complex yet essential physiological functions via their pivotal role in translating electrical signals into intracellular calcium elevations and associated downstream signalling pathways. There are a number of regulatory mechanisms to ensure a dynamic control of the number of channels embedded in the plasma membrane, whereas alteration of the surface expression of VGCCs has been linked to various disease conditions. Here, we provide an overview of the mechanisms that control the trafficking of VGCCs to and from the plasma membrane, and discuss their implication in pathophysiological conditions and their potential as therapeutic targets.
{"title":"Trafficking of neuronal calcium channels.","authors":"Norbert Weiss, Gerald W Zamponi","doi":"10.1042/NS20160003","DOIUrl":"https://doi.org/10.1042/NS20160003","url":null,"abstract":"<p><p>Neuronal voltage-gated calcium channels (VGCCs) serve complex yet essential physiological functions via their pivotal role in translating electrical signals into intracellular calcium elevations and associated downstream signalling pathways. There are a number of regulatory mechanisms to ensure a dynamic control of the number of channels embedded in the plasma membrane, whereas alteration of the surface expression of VGCCs has been linked to various disease conditions. Here, we provide an overview of the mechanisms that control the trafficking of VGCCs to and from the plasma membrane, and discuss their implication in pathophysiological conditions and their potential as therapeutic targets.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"1 1","pages":"NS20160003"},"PeriodicalIF":0.0,"publicationDate":"2017-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1042/NS20160003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38203093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-22eCollection Date: 2017-02-01DOI: 10.1042/NS20160009
Francisco Zafra, Ignacio Ibáñez, Cecilio Giménez
Glycinergic neurons are major contributors to the regulation of neuronal excitability, mainly in caudal areas of the nervous system. These neurons control fluxes of sensory information between the periphery and the CNS and diverse motor activities like locomotion, respiration or vocalization. The phenotype of a glycinergic neuron is determined by the expression of at least two proteins: GlyT2, a plasma membrane transporter of glycine, and VIAAT, a vesicular transporter shared by glycine and GABA. In this article, we review recent advances in understanding the role of GlyT2 in the pathophysiology of inhibitory glycinergic neurotransmission. GlyT2 mutations are associated to decreased glycinergic function that results in a rare movement disease termed hyperekplexia (HPX) or startle disease. In addition, glycinergic neurons control pain transmission in the dorsal spinal cord and their function is reduced in chronic pain states. A moderate inhibition of GlyT2 may potentiate glycinergic inhibition and constitutes an attractive target for pharmacological intervention against these devastating conditions.
{"title":"Glycinergic transmission: glycine transporter GlyT2 in neuronal pathologies.","authors":"Francisco Zafra, Ignacio Ibáñez, Cecilio Giménez","doi":"10.1042/NS20160009","DOIUrl":"https://doi.org/10.1042/NS20160009","url":null,"abstract":"<p><p>Glycinergic neurons are major contributors to the regulation of neuronal excitability, mainly in caudal areas of the nervous system. These neurons control fluxes of sensory information between the periphery and the CNS and diverse motor activities like locomotion, respiration or vocalization. The phenotype of a glycinergic neuron is determined by the expression of at least two proteins: GlyT2, a plasma membrane transporter of glycine, and VIAAT, a vesicular transporter shared by glycine and GABA. In this article, we review recent advances in understanding the role of GlyT2 in the pathophysiology of inhibitory glycinergic neurotransmission. GlyT2 mutations are associated to decreased glycinergic function that results in a rare movement disease termed hyperekplexia (HPX) or startle disease. In addition, glycinergic neurons control pain transmission in the dorsal spinal cord and their function is reduced in chronic pain states. A moderate inhibition of GlyT2 may potentiate glycinergic inhibition and constitutes an attractive target for pharmacological intervention against these devastating conditions.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"1 1","pages":"NS20160009"},"PeriodicalIF":0.0,"publicationDate":"2016-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1042/NS20160009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38203070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-18eCollection Date: 2017-02-01DOI: 10.1042/NS20160025
Aideen M Sullivan
There have been a number of advances in our knowledge of neuronal communication in processes involved in development, functioning and disorders of the nervous system. This progress has prompted the Biochemical Society to launch Neuronal Signaling, a new open access journal that aims to expand on the existing knowledge about signaling within and between neurons.
{"title":"<i>Neuronal Signaling</i>: an introduction.","authors":"Aideen M Sullivan","doi":"10.1042/NS20160025","DOIUrl":"https://doi.org/10.1042/NS20160025","url":null,"abstract":"<p><p>There have been a number of advances in our knowledge of neuronal communication in processes involved in development, functioning and disorders of the nervous system. This progress has prompted the Biochemical Society to launch <i>Neuronal Signaling</i>, a new open access journal that aims to expand on the existing knowledge about signaling within and between neurons.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"1 1","pages":"NS20160025"},"PeriodicalIF":0.0,"publicationDate":"2016-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1042/NS20160025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38203071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}