The accelerated cell cycle progression is one of the hallmarks of human cancer [...]
加速的细胞周期进程是人类癌症的标志之一。
{"title":"Targeting Abnormal Cell Cycle in Cancer: A Preface to the Special Issue","authors":"Chiaki Takahashi, Jun Kato","doi":"10.3390/onco2010003","DOIUrl":"https://doi.org/10.3390/onco2010003","url":null,"abstract":"The accelerated cell cycle progression is one of the hallmarks of human cancer [...]","PeriodicalId":74339,"journal":{"name":"Onco","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42574280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tristan le Clainche, Nazareth Milagros Carigga Gutierrez, Núria Pujol-Solé, J. Coll, M. Broekgaarden
Photodynamic therapy (PDT) is a cancer treatment that relies on the remote-controlled activation of photocatalytic dyes (photosensitizers) in cancer tissues. To effectively treat cancer, a variety of pharmacological and optical parameters require optimization, which are dependent on the photosensitizer type. As most photosensitizers are hydrophobic molecules, nanoliposomes are frequently used to increase the biocompatibility of these therapeutics. However, as nanoliposomes can influence the therapeutic performance of photosensitizers, the most suitable treatment parameters need to be elucidated. Here, we evaluate the efficacy of PDT on spheroid cultures of PANC-1 and MIA PaCa-2 pancreatic cancer cells. Two strategies to photosensitize the pancreatic microtumors were selected, based on either nanoliposomal benzoporphyrin derivative (BPD), or non-liposomal methylene blue (MB). Using a comprehensive image-based assay, our findings show that the PDT efficacy manifests in distinct manners for each photosensitizer. Moreover, the efficacy of each photosensitizer is differentially influenced by the photosensitizer dose, the light dose (radiant exposure or fluence in J/cm2), and the dose rate (fluence rate in mW/cm2). Taken together, our findings illustrate that the most suitable light dosimetry for PDT strongly depends on the selected photosensitization strategy. The PDT dose parameters should therefore always be carefully optimized for different models of cancer.
{"title":"Optimizing the Pharmacological and Optical Dosimetry for Photodynamic Therapy with Methylene Blue and Nanoliposomal Benzoporphyrin on Pancreatic Cancer Spheroids","authors":"Tristan le Clainche, Nazareth Milagros Carigga Gutierrez, Núria Pujol-Solé, J. Coll, M. Broekgaarden","doi":"10.3390/onco2010002","DOIUrl":"https://doi.org/10.3390/onco2010002","url":null,"abstract":"Photodynamic therapy (PDT) is a cancer treatment that relies on the remote-controlled activation of photocatalytic dyes (photosensitizers) in cancer tissues. To effectively treat cancer, a variety of pharmacological and optical parameters require optimization, which are dependent on the photosensitizer type. As most photosensitizers are hydrophobic molecules, nanoliposomes are frequently used to increase the biocompatibility of these therapeutics. However, as nanoliposomes can influence the therapeutic performance of photosensitizers, the most suitable treatment parameters need to be elucidated. Here, we evaluate the efficacy of PDT on spheroid cultures of PANC-1 and MIA PaCa-2 pancreatic cancer cells. Two strategies to photosensitize the pancreatic microtumors were selected, based on either nanoliposomal benzoporphyrin derivative (BPD), or non-liposomal methylene blue (MB). Using a comprehensive image-based assay, our findings show that the PDT efficacy manifests in distinct manners for each photosensitizer. Moreover, the efficacy of each photosensitizer is differentially influenced by the photosensitizer dose, the light dose (radiant exposure or fluence in J/cm2), and the dose rate (fluence rate in mW/cm2). Taken together, our findings illustrate that the most suitable light dosimetry for PDT strongly depends on the selected photosensitization strategy. The PDT dose parameters should therefore always be carefully optimized for different models of cancer.","PeriodicalId":74339,"journal":{"name":"Onco","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44291543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of core needle biopsy (CNB) as a means to verify malignancy preoperatively is a paradigm in current breast cancer care, and the risk of enhancing tumor development by this procedure has been considered insignificant. Experimental work in mice has shown preoperative biopsies to increase tumor supportive elements in the microenvironment, whereas, in humans, the impact of CNB on the host’s immunologic response has not been investigated. In this pilot study, we compared the expression of CCL2/CCR2 pathway components at the protein level in samples from CNBs to those from the corresponding resected tumors from 52 patients with primary breast cancer. We found an increased expression of CD163, CD14 and CCR2 in monocytes/macrophages and a slight decrease of CCL2 in the malignant epithelium in the tumors after the biopsy. The increased infiltration of immunosuppressive monocytes/macrophages and the decreased tumor cell CCL2 expression, presumably due to the CCR2 availability-dependent CCL2 internalization, suggest that CNB enhances the activity of the CCL2/CCR2 pathway, and this finding warrants confirmatory examination. The switch in the context-dependent role of CCL2 on the polarization of macrophages may lead to increased tumor supportive function both locally and in the peripheral immune machinery. The future directions in breast cancer should include early interventions to support the tumor surveillance of the host.
{"title":"Core Needle Biopsy Enhances the Activity of the CCL2/CCR2 Pathway in the Microenvironment of Invasive Breast Cancer","authors":"M. Heiskala, K. Joensuu, P. Heikkilä","doi":"10.3390/onco2010001","DOIUrl":"https://doi.org/10.3390/onco2010001","url":null,"abstract":"The use of core needle biopsy (CNB) as a means to verify malignancy preoperatively is a paradigm in current breast cancer care, and the risk of enhancing tumor development by this procedure has been considered insignificant. Experimental work in mice has shown preoperative biopsies to increase tumor supportive elements in the microenvironment, whereas, in humans, the impact of CNB on the host’s immunologic response has not been investigated. In this pilot study, we compared the expression of CCL2/CCR2 pathway components at the protein level in samples from CNBs to those from the corresponding resected tumors from 52 patients with primary breast cancer. We found an increased expression of CD163, CD14 and CCR2 in monocytes/macrophages and a slight decrease of CCL2 in the malignant epithelium in the tumors after the biopsy. The increased infiltration of immunosuppressive monocytes/macrophages and the decreased tumor cell CCL2 expression, presumably due to the CCR2 availability-dependent CCL2 internalization, suggest that CNB enhances the activity of the CCL2/CCR2 pathway, and this finding warrants confirmatory examination. The switch in the context-dependent role of CCL2 on the polarization of macrophages may lead to increased tumor supportive function both locally and in the peripheral immune machinery. The future directions in breast cancer should include early interventions to support the tumor surveillance of the host.","PeriodicalId":74339,"journal":{"name":"Onco","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42382173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fleur Jeanquartier, Claire Jean-Quartier, Sarah Stryeck, Andreas Holzinger
Supporting data sharing is paramount to making progress in cancer research. This includes the search for more precise targeted therapies and the search for novel biomarkers, through cluster and classification analysis, and extends to learning details in signal transduction pathways or intra- and intercellular interactions in cancer, through network analysis and network simulation. Our work aims to support and promote the use of publicly available resources in cancer research and demonstrates artificial intelligence (AI) methods to find answers to detailed questions. For example, how targeted therapies can be developed based on precision medicine or how to investigate cell-level phenomena with the help of bioinformatical methods. In our paper, we illustrate the current state of the art with examples from glioma research, in particular, how open data can be used for cancer research in general, and point out several resources and tools that are readily available. Presently, cancer researchers are often not aware of these important resources.
{"title":"Open Data to Support CANCER Science—A Bioinformatics Perspective on Glioma Research","authors":"Fleur Jeanquartier, Claire Jean-Quartier, Sarah Stryeck, Andreas Holzinger","doi":"10.3390/onco1020016","DOIUrl":"https://doi.org/10.3390/onco1020016","url":null,"abstract":"Supporting data sharing is paramount to making progress in cancer research. This includes the search for more precise targeted therapies and the search for novel biomarkers, through cluster and classification analysis, and extends to learning details in signal transduction pathways or intra- and intercellular interactions in cancer, through network analysis and network simulation. Our work aims to support and promote the use of publicly available resources in cancer research and demonstrates artificial intelligence (AI) methods to find answers to detailed questions. For example, how targeted therapies can be developed based on precision medicine or how to investigate cell-level phenomena with the help of bioinformatical methods. In our paper, we illustrate the current state of the art with examples from glioma research, in particular, how open data can be used for cancer research in general, and point out several resources and tools that are readily available. Presently, cancer researchers are often not aware of these important resources.","PeriodicalId":74339,"journal":{"name":"Onco","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49406108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. D. Del Rosario, N. Abi-Jaoudeh, M. Cho, Z. Jutric, F. Dayyani
About 70% of patients with metastatic colorectal carcinoma (mCRC) have liver metastases. Hepatic failure accounts for most mCRC-related deaths. Therefore, controlling liver metastases may improve outcomes. A data overview of liver-directed treatment using yttrium-90 selective internal radiation therapy (SIRT) is provided as part of a multimodality treatment. SIRT in mCRC is discussed, and the prognostic factors for patient selection are defined. Pooled analyses of three recent trials incorporating SIRT plus chemotherapy revealed subsets of patients with mCRC who might benefit from SIRT. A multidisciplinary treatment for most mCRC patients is proposed to achieve long-term survival in this cohort of patients.
{"title":"Yttrium-90 Internal Radiation Therapy as Part of the Multimodality Treatment of Metastatic Colorectal Carcinoma","authors":"M. D. Del Rosario, N. Abi-Jaoudeh, M. Cho, Z. Jutric, F. Dayyani","doi":"10.3390/onco1020015","DOIUrl":"https://doi.org/10.3390/onco1020015","url":null,"abstract":"About 70% of patients with metastatic colorectal carcinoma (mCRC) have liver metastases. Hepatic failure accounts for most mCRC-related deaths. Therefore, controlling liver metastases may improve outcomes. A data overview of liver-directed treatment using yttrium-90 selective internal radiation therapy (SIRT) is provided as part of a multimodality treatment. SIRT in mCRC is discussed, and the prognostic factors for patient selection are defined. Pooled analyses of three recent trials incorporating SIRT plus chemotherapy revealed subsets of patients with mCRC who might benefit from SIRT. A multidisciplinary treatment for most mCRC patients is proposed to achieve long-term survival in this cohort of patients.","PeriodicalId":74339,"journal":{"name":"Onco","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45174583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer is one of the leading causes of death worldwide. Multifactorial etiology of cancer and tumor heterogeneity are the two most acute challenges in existing diagnostic and therapeutic strategies for cancer. An effective precision cancer medicine strategy to overcome these challenges requires a clear understanding of the transcriptomic landscape of cancer cells. Recent innovative breakthroughs in high-throughput sequencing technologies have identified the oncogenic or tumor-suppressor role of several long non-coding RNAs (lncRNAs). LncRNAs have been characterized as regulating various signaling cascades which are involved in the pathobiology of cancer. They modulate cancer cell survival, proliferation, metabolism, invasive metastasis, stemness, and therapy-resistance through their interactions with specific sets of proteins, miRNAs and other non-coding RNAs, mRNAs, or DNAs in cells. By virtue of their ability to regulate multiple sets of genes and their cognate signaling pathways, lncRNAs are emerging as potential candidates for diagnostic, prognostic, and therapeutic targets. This review is focused on providing insight into the mechanisms by which different lncRNAs play a critical role in cancer growth, and their potential role in cancer diagnosis, prognosis, and therapy.
{"title":"Decoding the Oncogenic Signals from the Long Non-Coding RNAs","authors":"Revathy Nadhan, D. Dhanasekaran","doi":"10.3390/onco1020014","DOIUrl":"https://doi.org/10.3390/onco1020014","url":null,"abstract":"Cancer is one of the leading causes of death worldwide. Multifactorial etiology of cancer and tumor heterogeneity are the two most acute challenges in existing diagnostic and therapeutic strategies for cancer. An effective precision cancer medicine strategy to overcome these challenges requires a clear understanding of the transcriptomic landscape of cancer cells. Recent innovative breakthroughs in high-throughput sequencing technologies have identified the oncogenic or tumor-suppressor role of several long non-coding RNAs (lncRNAs). LncRNAs have been characterized as regulating various signaling cascades which are involved in the pathobiology of cancer. They modulate cancer cell survival, proliferation, metabolism, invasive metastasis, stemness, and therapy-resistance through their interactions with specific sets of proteins, miRNAs and other non-coding RNAs, mRNAs, or DNAs in cells. By virtue of their ability to regulate multiple sets of genes and their cognate signaling pathways, lncRNAs are emerging as potential candidates for diagnostic, prognostic, and therapeutic targets. This review is focused on providing insight into the mechanisms by which different lncRNAs play a critical role in cancer growth, and their potential role in cancer diagnosis, prognosis, and therapy.","PeriodicalId":74339,"journal":{"name":"Onco","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45416332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Increasing knowledge of cancer immunology has led to the design of therapies using immune cells directly or manipulating their activity, collectively termed immunotherapy. In the field of immuno-oncology, research on adaptive immune T cells has led to the development of CAR-T cells. Innate immune cells such as NK cells can also eliminate oncogenically transformed cells and regulate cells of the immune system. Considering NK cells as a live drug, numerous methods for the isolation and activation of NK cells have been shown to be clinically and therapeutically relevant. In such processes, various cytokines and antibodies present a source of stimulation of NK cells and enhance the efficacy of such treatments. The ex vivo expansion and activation of NK cells, along with genetic modification with CAR, enhance their antitumor activity. Recent preclinical studies have shown an antitumor effect through extracellular vesicles (EVs) derived from NK cells. Work with autologous NK cells has provided insights for clinical applications. In this review, we outline the recent advances of NK-cell-based immunotherapies, summarizing CAR-NK cells, BiKEs, and TriKEs as treatment options against cancer. This review also discusses the challenges of NK cell immunotherapy.
{"title":"Role of NK Cells in Cancer and Immunotherapy","authors":"P. Vishwasrao, S. Hui, D. Smith, V. Khairnar","doi":"10.3390/onco1020013","DOIUrl":"https://doi.org/10.3390/onco1020013","url":null,"abstract":"Increasing knowledge of cancer immunology has led to the design of therapies using immune cells directly or manipulating their activity, collectively termed immunotherapy. In the field of immuno-oncology, research on adaptive immune T cells has led to the development of CAR-T cells. Innate immune cells such as NK cells can also eliminate oncogenically transformed cells and regulate cells of the immune system. Considering NK cells as a live drug, numerous methods for the isolation and activation of NK cells have been shown to be clinically and therapeutically relevant. In such processes, various cytokines and antibodies present a source of stimulation of NK cells and enhance the efficacy of such treatments. The ex vivo expansion and activation of NK cells, along with genetic modification with CAR, enhance their antitumor activity. Recent preclinical studies have shown an antitumor effect through extracellular vesicles (EVs) derived from NK cells. Work with autologous NK cells has provided insights for clinical applications. In this review, we outline the recent advances of NK-cell-based immunotherapies, summarizing CAR-NK cells, BiKEs, and TriKEs as treatment options against cancer. This review also discusses the challenges of NK cell immunotherapy.","PeriodicalId":74339,"journal":{"name":"Onco","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47513010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruno Takao Real Karia, Camila Albuquerque Pinto, C. Gigek, Fernanda Wisnieski, M. Arruda Cardoso Smith
Gastric cancer is one of the most common cancers and the third cause of cancer-related death worldwide. The treatment of GC patients improved due to advancements in surgery, radiotherapy and chemotherapy. However, the long-term survival rate of patients with gastric cancer remains around 20%. Thus, development of novel therapeutic approaches is of great interest, in order to reduce the need for mutilating surgeries and morbid adjuvant therapies. For many years, it was believed that the RNA was a mere intermediate molecule in the genetic information flow. However, during the past decades, with the advent of new sequencing technologies, it was revealed that non-coding RNAs play important roles in many different biological processes. The Wnt/β-catenin signaling pathway has been reported to regulate crucial events during neoplasic development, such as cell differentiation, proliferation, invasion, migration, apoptosis, and angiogenesis. In this review, we will focus on microRNAs and long non-coding RNAs that have been implicated in gastric cancer tumorigenesis via modulation of the Wnt/β-catenin signaling pathway, which provided some biomarkers to prognosis, diagnosis, and therapy.
{"title":"Non-Coding RNAs and Wnt/β-Catenin Signaling Pathway in Gastric Cancer: From EMT to Drug Resistance","authors":"Bruno Takao Real Karia, Camila Albuquerque Pinto, C. Gigek, Fernanda Wisnieski, M. Arruda Cardoso Smith","doi":"10.3390/onco1020012","DOIUrl":"https://doi.org/10.3390/onco1020012","url":null,"abstract":"Gastric cancer is one of the most common cancers and the third cause of cancer-related death worldwide. The treatment of GC patients improved due to advancements in surgery, radiotherapy and chemotherapy. However, the long-term survival rate of patients with gastric cancer remains around 20%. Thus, development of novel therapeutic approaches is of great interest, in order to reduce the need for mutilating surgeries and morbid adjuvant therapies. For many years, it was believed that the RNA was a mere intermediate molecule in the genetic information flow. However, during the past decades, with the advent of new sequencing technologies, it was revealed that non-coding RNAs play important roles in many different biological processes. The Wnt/β-catenin signaling pathway has been reported to regulate crucial events during neoplasic development, such as cell differentiation, proliferation, invasion, migration, apoptosis, and angiogenesis. In this review, we will focus on microRNAs and long non-coding RNAs that have been implicated in gastric cancer tumorigenesis via modulation of the Wnt/β-catenin signaling pathway, which provided some biomarkers to prognosis, diagnosis, and therapy.","PeriodicalId":74339,"journal":{"name":"Onco","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44081593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Filippi, V. Frantellizzi, Marko Magdi Abdou Sidrak, Joana Gorica, Stefano Scippa, A. Chiaravalloti, O. Schillaci, O. Bagni, G. de Vincentis
Neuroblastoma (NB) represents the most common extracranial tumor of childhood. Prognosis is quite variable, ranging from spontaneous regression to aggressive behavior with wide metastatization, high mortality, and limited therapeutic options. Radiotheranostics combines a radiopharmaceutical pair in a unique approach, suitable both for diagnosis and therapy. For many years, metaiodobenzylguanidine (MIBG), labeled with 123I for imaging or 131I for therapy, has represented the main theranostic agent in NB, since up to 90% of NB incorporates the aforementioned radiopharmaceutical. In recent years, novel theranostic agents hold promise in moving the field of NB radiotheranostics forward. In particular, SarTATE, consisting of octreotate targeting somatostatin receptors, has been applied with encouraging results, with 64Cu-SARTATE being used for disease detection and with 67Cu-SARTATE being used for therapy. Furthermore, recent evidence has highlighted the potential of targeted alpha therapy (TAT) for treating cancer by virtue of alpha particles’ high ionizing density and high probability of killing cells along their track. On this path, 211At-astatobenzylguanidine (MABG) has been developed as a potential agent for TAT and is actually under evaluation in preclinical NB models. In this review, we performed a web-based and desktop literature research concerning radiotheranostic approaches in NB, covering both the radiopharmaceuticals already implemented in clinical practice (i.e.,123/1311-MIBG) and those still in a preliminary or preclinical phase.
{"title":"Radiotheranostic Agents Targeting Neuroblastoma: State-of-the-Art and Emerging Perspectives","authors":"L. Filippi, V. Frantellizzi, Marko Magdi Abdou Sidrak, Joana Gorica, Stefano Scippa, A. Chiaravalloti, O. Schillaci, O. Bagni, G. de Vincentis","doi":"10.3390/onco1020011","DOIUrl":"https://doi.org/10.3390/onco1020011","url":null,"abstract":"Neuroblastoma (NB) represents the most common extracranial tumor of childhood. Prognosis is quite variable, ranging from spontaneous regression to aggressive behavior with wide metastatization, high mortality, and limited therapeutic options. Radiotheranostics combines a radiopharmaceutical pair in a unique approach, suitable both for diagnosis and therapy. For many years, metaiodobenzylguanidine (MIBG), labeled with 123I for imaging or 131I for therapy, has represented the main theranostic agent in NB, since up to 90% of NB incorporates the aforementioned radiopharmaceutical. In recent years, novel theranostic agents hold promise in moving the field of NB radiotheranostics forward. In particular, SarTATE, consisting of octreotate targeting somatostatin receptors, has been applied with encouraging results, with 64Cu-SARTATE being used for disease detection and with 67Cu-SARTATE being used for therapy. Furthermore, recent evidence has highlighted the potential of targeted alpha therapy (TAT) for treating cancer by virtue of alpha particles’ high ionizing density and high probability of killing cells along their track. On this path, 211At-astatobenzylguanidine (MABG) has been developed as a potential agent for TAT and is actually under evaluation in preclinical NB models. In this review, we performed a web-based and desktop literature research concerning radiotheranostic approaches in NB, covering both the radiopharmaceuticals already implemented in clinical practice (i.e.,123/1311-MIBG) and those still in a preliminary or preclinical phase.","PeriodicalId":74339,"journal":{"name":"Onco","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47111103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne Stensvold, N. Aggerholm-Pedersen, Anne Winther-Larsen, Birgitte Sandfeld-Paulsen
Improved prognostication of small cell lung cancer (SCLC) patients could strengthen the treatment strategy and, thereby, potentially improve the overall survival (OS) of these patients. C-reactive protein (CRP) has been proposed as a prognostic indicator of inferior survival, although so far, only based on data from smaller studies. Data on SCLC patients diagnosed from January 2009 to June 2018 were extracted from the Danish Lung Cancer Registry and the clinical laboratory information system. CRP measurements were divided at the clinical cut-off value of 8 mg/L or 75 nmol/L) and stratified into quartiles. Cox proportional hazards model assessed the prognostic value of the CRP level. C-statistics further evaluated the biomarker’s prognostic value. In total, 923 patients were included. A pre-treatment CRP level above the clinical cut-off significantly correlated to inferior OS (adjusted hazard ratio (HR) = 1.25 (95% confidence interval (CI): 1.08–1.46). When divided into quartiles, a level-dependent correlation was observed with only the highest quartiles significantly associated with OS (3rd quartile: adjusted HR = 1.26 (95% CI: 1.03–1.55) 4th quartile: adjusted HR = 1.44 (95% CI: 1.17–1.77)). Adding CRP level to already well-established prognostic factors improved the prognostication of SCLC patients. In conclusion, high pre-treatment CRP level is an independent prognostic factor in SCLC patients.
{"title":"Pre-Treatment C-Reactive Protein Predicts Survival in Small Cell Lung Cancer Patients","authors":"Anne Stensvold, N. Aggerholm-Pedersen, Anne Winther-Larsen, Birgitte Sandfeld-Paulsen","doi":"10.3390/onco1020010","DOIUrl":"https://doi.org/10.3390/onco1020010","url":null,"abstract":"Improved prognostication of small cell lung cancer (SCLC) patients could strengthen the treatment strategy and, thereby, potentially improve the overall survival (OS) of these patients. C-reactive protein (CRP) has been proposed as a prognostic indicator of inferior survival, although so far, only based on data from smaller studies. Data on SCLC patients diagnosed from January 2009 to June 2018 were extracted from the Danish Lung Cancer Registry and the clinical laboratory information system. CRP measurements were divided at the clinical cut-off value of 8 mg/L or 75 nmol/L) and stratified into quartiles. Cox proportional hazards model assessed the prognostic value of the CRP level. C-statistics further evaluated the biomarker’s prognostic value. In total, 923 patients were included. A pre-treatment CRP level above the clinical cut-off significantly correlated to inferior OS (adjusted hazard ratio (HR) = 1.25 (95% confidence interval (CI): 1.08–1.46). When divided into quartiles, a level-dependent correlation was observed with only the highest quartiles significantly associated with OS (3rd quartile: adjusted HR = 1.26 (95% CI: 1.03–1.55) 4th quartile: adjusted HR = 1.44 (95% CI: 1.17–1.77)). Adding CRP level to already well-established prognostic factors improved the prognostication of SCLC patients. In conclusion, high pre-treatment CRP level is an independent prognostic factor in SCLC patients.","PeriodicalId":74339,"journal":{"name":"Onco","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47962467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}