During pregnancy, interactions between uterine immune cells and cells of the surrounding reproductive tissues are thought to be vital for regulating labour. The mechanism that specifically initiates spontaneous labour has not been determined, but distinct changes in uterine immune cell populations and their activation status have been observed during labour at term gestation. To understand the regulation of human labour by the immune system, the ability to isolate both immune cells and non-immune cells from the uterus is required. Here, we describe protocols developed in our laboratory to isolate single cells from uterine tissues, which preserve both immune and non-immune cell populations for further analysis. We provide detailed methods for isolating immune and non-immune cells from human myometrium, chorion, amnion and decidua, together with representative flow cytometry analysis of isolated cell populations present. The protocols can be completed in tandem and take approximately 4-5 h, resulting in single-cell suspensions that contain viable leucocytes, and non-immune cells in sufficient numbers for single-cell analysis approaches such as flow cytometry and single cell RNA sequencing (scRNAseq).
T cells recognize antigens through the interaction of their T cell receptor (TCR) with a peptide-major histocompatibility complex (pMHC) molecule. Following thymic-positive selection, TCRs in peripheral naive T cells are expected to bind MHC alleles of the host. Peripheral clonal selection is expected to further increase the frequency of antigen-specific TCRs that bind to the host MHC alleles. To check for a systematic preference for MHC-binding T cells in TCR repertoires, we developed Natural Language Processing-based methods to predict TCR-MHC binding independently of the peptide presented for Class I MHC alleles. We trained a classifier on published TCR-pMHC binding pairs and obtained a high area under curve (AUC) of over 0.90 on the test set. However, when applied to TCR repertoires, the accuracy of the classifier dropped. We thus developed a two-stage prediction model, based on large-scale naive and memory TCR repertoires, denoted TCR HLA-binding predictor (CLAIRE). Since each host carries multiple human leukocyte antigen (HLA) alleles, we first computed whether a TCR on a CD8 T cell binds an MHC from any of the host Class-I HLA alleles. We then performed an iteration, where we predict the binding with the most probable allele from the first round. We show that this classifier is more precise for memory than for naïve cells. Moreover, it can be transferred between datasets. Finally, we developed a CD4-CD8 T cell classifier to apply CLAIRE to unsorted bulk sequencing datasets and showed a high AUC of 0.96 and 0.90 on large datasets. CLAIRE is available through a GitHub at: https://github.com/louzounlab/CLAIRE, and as a server at: https://claire.math.biu.ac.il/Home.
Wegener's granulomatosis is an autoimmune disease where autoantibodies target human autoantigen PR3, a serine protease locates on the neutrophil membrane. This disease affects blood small vessels and could be deadly. The origin of these autoantibodies is unknown, but infections have been implicated with autoimmune disease. In this study, we explored potential molecular mimicry between human PR3 and homologous pathogens through in silico analysis. Thirteen serine proteases from human pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Salmonella sp., Streptococcus suis, Vibrio parahaemolyticus, Bacteroides fragilis, Enterobacter ludwigii, Vibrio alginolyticus, Staphylococcus haemolyticus, Enterobacter cloacae, Escherichia coli and Pseudomonas aeruginosa) shared structural homology and amino acid sequence identity with human PR3. Epitope prediction found an only conserved epitope IVGG, located between residues 59-74. However, multiple alignments showed conserved regions that could be involved in cross-reactivity between human and pathogens serine proteases (90-98, 101-108, 162-169, 267 and 262 residues positions). In conclusion, this is the first report providing in silico evidence about the existence of molecular mimicry between human and pathogens serine proteases, that could explain the origins of autoantibodies found in patients suffering from Wegener's granulomatosis.
Destabilization of balanced immune cell numbers and frequencies is a common feature of viral infections. This occurs due to, and further enhances, viral immune evasion and survival. Since the discovery of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which manifests in coronavirus disease 2019 (COVID-19), a great number of studies have described the association between this virus and pathologically increased or decreased immune cell counts. In this review, we consider the absolute and relative changes to innate and adaptive immune cell numbers, in COVID-19. In severe disease particularly, neutrophils are increased, which can lead to inflammation and tissue damage. Dysregulation of other granulocytes, basophils and eosinophils represents an unusual COVID-19 phenomenon. Contrastingly, the impact on the different types of monocytes leans more strongly to an altered phenotype, e.g. HLA-DR expression, rather than numerical changes. However, it is the adaptive immune response that bears the most profound impact of SARS-CoV-2 infection. T cell lymphopenia correlates with increased risk of intensive care unit admission and death; therefore, this parameter is particularly important for clinical decision-making. Mild and severe diseases differ in the rate of immune cell counts returning to normal levels post disease. Tracking the recovery trajectories of various immune cell counts may also have implications for long-term COVID-19 monitoring. This review represents a snapshot of our current knowledge, showing that much has been achieved in a short period of time. Alterations in counts of distinct immune cells represent an accessible metric to inform patient care decisions or predict disease outcomes.
Protease inhibitors influence a range of innate immunity and inflammatory pathways. We quantified plasma concentrations of key anti-inflammatory protease inhibitors in chronic haemodialysis patients with coronavirus disease 2019 (COVID-19). The samples were collected early in the disease course to determine whether plasma protease inhibitor levels associated with the presence and severity of COVID-19. We used antibody-based immunoassays to measure plasma concentrations of C1 esterase inhibitor, alpha2-macroglobulin, antithrombin and inter-alpha-inhibitor heavy chain 4 (ITIH4) in 100 serial samples from 27 haemodialysis patients with COVID-19. ITIH4 was tested in two assays, one measuring intact ITIH4 and another also detecting any fragmented ITIH4 (total ITIH4). Control cohorts were 32 haemodialysis patients without COVID-19 and 32 healthy controls. We compared protease inhibitor concentration based on current and future COVID-19 severity and with C-reactive protein. Results were adjusted for repeated measures and multiple comparisons. Analysis of all available samples demonstrated lower plasma C1 esterase inhibitor and α2M and higher total ITIH4 in COVID-19 compared with dialysis controls. These differences were also seen in the first sample collected after COVID-19 diagnosis, a median of 4 days from diagnostic swab. Plasma ITIH4 levels were higher in severe than the non-severe COVID-19. Serum C-reactive protein correlated positively with plasma levels of antithrombin, intact ITIH4 and total ITIH4. In conclusion, plasma protease inhibitor concentrations are altered in COVID-19.
The generation of high-affinity long-lived antibody responses is dependent on the differentiation of plasma cells and memory B cells, which are themselves the product of the germinal centre (GC) response. The GC forms in secondary lymphoid organs in response to antigenic stimulation and is dependent on the coordinated interactions between many types of leucocytes. These leucocytes are brought together on an interconnected network of specialized lymphoid stromal cells, which provide physical and chemical guidance to immune cells that are essential for the GC response. In this review we will highlight recent advancements in lymphoid stromal cell immunobiology and their role in regulating the GC, and discuss the contribution of lymphoid stromal cells to age-associated immunosenescence.
The rapid design and implementation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is testament to a successfully coordinated global research effort. While employing a variety of different technologies, some of which have been used for the first time, all approved vaccines demonstrate high levels of efficacy with excellent safety profiles. Despite this, there remains an urgent global demand for coronavirus disease 2019 vaccines that require further candidates to pass phase 3 clinical trials. In the expectation of SARS-CoV-2 becoming endemic, researchers are looking to adjust the vaccine constructs to tackle emerging variants. In this review, we outline different platforms used for approved vaccines and summarize latest research data with regards to immunogenicity, dosing regimens and efficiency against emerging variants.
Innate lymphoid cells (ILCs) are critical for host defense and are notably important in the context of the newborn when adaptive immunity is immature. There is an increasing evidence that development and function of group 3 ILCs (ILC3) can be modulated by the maternal and neonatal microbiome and is involved in neonatal disease pathogenesis. In this review, we explore the evidence that supports a critical role for ILC3 in resistance to infection and disease pathogenesis in the newborn, with a focus on microbial factors that modulate ILC3 function. We then briefly explore opportunities for research that are focused on the fetus and newborn.
Over the last few decades, changing population demographics have shown that there are a growing number of individuals living past the age of 60. With this expanding older population comes an increase in individuals that are more susceptible to chronic illness and disease. An important part of maintaining health in this population is through prophylactic vaccination, however, there is growing evidence that vaccines may be less effective in the elderly. Furthermore, with the success of anti-viral therapies, chronic infections such as HIV are becoming increasingly prevalent in older populations and present a relatively unstudied population with respect to the efficacy of vaccination. Here we will examine the evidence for age-associated reduction in antibody and cellular responsiveness to a variety of common vaccines and investigate the underlying causes attributed to this phenomenon, such as inflammation and senescence. We will also discuss the impact of chronic viral infections on immune responses in both young and elderly patients, particularly those living with HIV, and how this affects vaccinations in these populations.

