首页 > 最新文献

Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications最新文献

英文 中文
Improving gene expression programming performance by using differential evolution 利用差分进化改进基因表达编程性能
Qiongyun Zhang, Chi Zhou, Weimin Xiao, Peter C. Nelson
Gene Expression Programming (GEP) is an evolutionary algorithm that incorporates both the idea of a simple, linear chromosome of fixed length used in Genetic Algorithms (GAs) and the tree structure of different sizes and shapes used in Genetic Programming (GP). As with other GP algorithms, GEP has difficulty finding appropriate numeric constants for terminal nodes in the expression trees. In this work, we describe a new approach of constant generation using Differential Evolution (DE), a real-valued GA robust and efficient at parameter optimization. Our experimental results on two symbolic regression problems show that the approach significantly improves the performance of the GEP algorithm. The proposed approach can be easily extended to other Genetic Programming variations.
基因表达编程(GEP)是一种进化算法,它结合了遗传算法(GAs)中使用的固定长度的简单线性染色体的思想和遗传规划(GP)中使用的不同大小和形状的树结构。与其他GP算法一样,GEP很难为表达式树中的终端节点找到合适的数字常量。在这项工作中,我们描述了一种新的使用微分进化(DE)的常数生成方法,微分进化是一种在参数优化方面鲁棒且高效的实值遗传算法。我们在两个符号回归问题上的实验结果表明,该方法显著提高了GEP算法的性能。所提出的方法可以很容易地扩展到其他遗传规划变体。
{"title":"Improving gene expression programming performance by using differential evolution","authors":"Qiongyun Zhang, Chi Zhou, Weimin Xiao, Peter C. Nelson","doi":"10.1109/ICMLA.2007.55","DOIUrl":"https://doi.org/10.1109/ICMLA.2007.55","url":null,"abstract":"Gene Expression Programming (GEP) is an evolutionary algorithm that incorporates both the idea of a simple, linear chromosome of fixed length used in Genetic Algorithms (GAs) and the tree structure of different sizes and shapes used in Genetic Programming (GP). As with other GP algorithms, GEP has difficulty finding appropriate numeric constants for terminal nodes in the expression trees. In this work, we describe a new approach of constant generation using Differential Evolution (DE), a real-valued GA robust and efficient at parameter optimization. Our experimental results on two symbolic regression problems show that the approach significantly improves the performance of the GEP algorithm. The proposed approach can be easily extended to other Genetic Programming variations.","PeriodicalId":74528,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","volume":"28 1","pages":"31-37"},"PeriodicalIF":0.0,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79307268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Comparison of semantic and single term similarity measures for clustering turkish documents 聚类土耳其语文档的语义和单术语相似度度量的比较
Bülent Yücesoy, Ş. Öğüdücü
With the rapid growth of the World Wide Web (www), it becomes a critical issue to design and organize the vast amounts of on-line documents on the web according to their topic. Even for the search engines it is very important to group similar documents in order to improve their performance when a query is submitted to the system. Clustering is useful for taxonomy design and similarity search of documents on such a domain. Similarity is fundamental to many clustering applications on hypertext. In this paper, we will study how measures of similarity are used to cluster a collection of documents on a web site. Most of the document clustering techniques rely on single term analysis of text, such as vector space model. To better group of related documents we propose a new semantic similarity measure. We compare our measure with Wu-Palmer similarity and cosine similarity. Experimental results show that cosine similarity perform better than the semantic similarities. We demonstrate our results on Turkish documents. This is a first study that considers the semantic similarities between Turkish documents.
随着万维网(World Wide Web)的迅速发展,如何对网络上大量的在线文档进行主题化设计和组织已成为一个重要的问题。即使对于搜索引擎来说,将相似的文档分组也是非常重要的,以便在向系统提交查询时提高它们的性能。聚类对于该领域文档的分类设计和相似度搜索非常有用。相似性是许多超文本聚类应用程序的基础。在本文中,我们将研究如何使用相似性度量来对网站上的文档集合进行聚类。大多数文档聚类技术依赖于文本的单词分析,如向量空间模型。为了更好地对相关文档进行分类,我们提出了一种新的语义相似度度量方法。我们将我们的测度与Wu-Palmer相似度和余弦相似度进行了比较。实验结果表明,余弦相似度优于语义相似度。我们在土耳其文件上展示了我们的结果。这是第一个考虑土耳其文献之间语义相似性的研究。
{"title":"Comparison of semantic and single term similarity measures for clustering turkish documents","authors":"Bülent Yücesoy, Ş. Öğüdücü","doi":"10.1109/ICMLA.2007.52","DOIUrl":"https://doi.org/10.1109/ICMLA.2007.52","url":null,"abstract":"With the rapid growth of the World Wide Web (www), it becomes a critical issue to design and organize the vast amounts of on-line documents on the web according to their topic. Even for the search engines it is very important to group similar documents in order to improve their performance when a query is submitted to the system. Clustering is useful for taxonomy design and similarity search of documents on such a domain. Similarity is fundamental to many clustering applications on hypertext. In this paper, we will study how measures of similarity are used to cluster a collection of documents on a web site. Most of the document clustering techniques rely on single term analysis of text, such as vector space model. To better group of related documents we propose a new semantic similarity measure. We compare our measure with Wu-Palmer similarity and cosine similarity. Experimental results show that cosine similarity perform better than the semantic similarities. We demonstrate our results on Turkish documents. This is a first study that considers the semantic similarities between Turkish documents.","PeriodicalId":74528,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","volume":"738 ","pages":"393-398"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91444990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1