Pub Date : 2020-07-01DOI: 10.18653/v1/2020.nlpmc-1.1
Xiyu Ding, Michael L Barnett, Ateev Mehrotra, Timothy A Miller
Electronic consult (eConsult) systems allow specialists more flexibility to respond to referrals more efficiently, thereby increasing access in under-resourced healthcare settings like safety net systems. Understanding the usage patterns of eConsult system is an important part of improving specialist efficiency. In this work, we develop and apply classifiers to a dataset of eConsult questions from primary care providers to specialists, classifying the messages for how they were triaged by the specialist office, and the underlying type of clinical question posed by the primary care provider. We show that pre-trained transformer models are strong baselines, with improving performance from domain-specific training and shared representations.
{"title":"Classifying Electronic Consults for Triage Status and Question Type.","authors":"Xiyu Ding, Michael L Barnett, Ateev Mehrotra, Timothy A Miller","doi":"10.18653/v1/2020.nlpmc-1.1","DOIUrl":"https://doi.org/10.18653/v1/2020.nlpmc-1.1","url":null,"abstract":"<p><p>Electronic consult (eConsult) systems allow specialists more flexibility to respond to referrals more efficiently, thereby increasing access in under-resourced healthcare settings like safety net systems. Understanding the usage patterns of eConsult system is an important part of improving specialist efficiency. In this work, we develop and apply classifiers to a dataset of eConsult questions from primary care providers to specialists, classifying the messages for how they were triaged by the specialist office, and the underlying type of clinical question posed by the primary care provider. We show that pre-trained transformer models are strong baselines, with improving performance from domain-specific training and shared representations.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":" ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603636/pdf/nihms-1640423.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38566053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.18653/v1/2020.acl-demos.13
Yonghao Jin, Fei Li, Hong Yu
CodaLab is an open-source web-based platform for collaborative computational research. Although CodaLab has gained popularity in the research community, its interface has limited support for creating reusable tools that can be easily applied to new datasets and composed into pipelines. In clinical domain, natural language processing (NLP) on medical notes generally involves multiple steps, like tokenization, named entity recognition, etc. Since these steps require different tools which are usually scattered in different publications, it is not easy for researchers to use them to process their own datasets. In this paper, we present BENTO, a workflow management platform with a graphic user interface (GUI) that is built on top of CodaLab, to facilitate the process of building clinical NLP pipelines. BENTO comes with a number of clinical NLP tools that have been pre-trained using medical notes and expert annotations and can be readily used for various clinical NLP tasks. It also allows researchers and developers to create their custom tools (e.g., pre-trained NLP models) and use them in a controlled and reproducible way. In addition, the GUI interface enables researchers with limited computer background to compose tools into NLP pipelines and then apply the pipelines on their own datasets in a "what you see is what you get" (WYSIWYG) way. Although BENTO is designed for clinical NLP applications, the underlying architecture is flexible to be tailored to any other domains.
{"title":"BENTO: A Visual Platform for Building Clinical NLP Pipelines Based on CodaLab.","authors":"Yonghao Jin, Fei Li, Hong Yu","doi":"10.18653/v1/2020.acl-demos.13","DOIUrl":"10.18653/v1/2020.acl-demos.13","url":null,"abstract":"<p><p>CodaLab is an open-source web-based platform for collaborative computational research. Although CodaLab has gained popularity in the research community, its interface has limited support for creating reusable tools that can be easily applied to new datasets and composed into pipelines. In clinical domain, natural language processing (NLP) on medical notes generally involves multiple steps, like tokenization, named entity recognition, etc. Since these steps require different tools which are usually scattered in different publications, it is not easy for researchers to use them to process their own datasets. In this paper, we present <i>BENTO</i>, a workflow management platform with a graphic user interface (GUI) that is built on top of CodaLab, to facilitate the process of building clinical NLP pipelines. BENTO comes with a number of clinical NLP tools that have been pre-trained using medical notes and expert annotations and can be readily used for various clinical NLP tasks. It also allows researchers and developers to create their custom tools (e.g., pre-trained NLP models) and use them in a controlled and reproducible way. In addition, the GUI interface enables researchers with limited computer background to compose tools into NLP pipelines and then apply the pipelines on their own datasets in a \"what you see is what you get\" (WYSIWYG) way. Although BENTO is designed for clinical NLP applications, the underlying architecture is flexible to be tailored to any other domains.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":" ","pages":"95-100"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679080/pdf/nihms-1644629.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38630240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A large percentage of medical information is in unstructured text format in electronic medical record systems. Manual extraction of information from clinical notes is extremely time consuming. Natural language processing has been widely used in recent years for automatic information extraction from medical texts. However, algorithms trained on data from a single healthcare provider are not generalizable and error-prone due to the heterogeneity and uniqueness of medical documents. We develop a two-stage federated natural language processing method that enables utilization of clinical notes from different hospitals or clinics without moving the data, and demonstrate its performance using obesity and comorbities phenotyping as medical task. This approach not only improves the quality of a specific clinical task but also facilitates knowledge progression in the whole healthcare system, which is an essential part of learning health system. To the best of our knowledge, this is the first application of federated machine learning in clinical NLP.
{"title":"Two-stage Federated Phenotyping and Patient Representation Learning.","authors":"Dianbo Liu, Dmitriy Dligach, Timothy Miller","doi":"10.18653/v1/W19-5030","DOIUrl":"10.18653/v1/W19-5030","url":null,"abstract":"<p><p>A large percentage of medical information is in unstructured text format in electronic medical record systems. Manual extraction of information from clinical notes is extremely time consuming. Natural language processing has been widely used in recent years for automatic information extraction from medical texts. However, algorithms trained on data from a single healthcare provider are not generalizable and error-prone due to the heterogeneity and uniqueness of medical documents. We develop a two-stage federated natural language processing method that enables utilization of clinical notes from different hospitals or clinics without moving the data, and demonstrate its performance using obesity and comorbities phenotyping as medical task. This approach not only improves the quality of a specific clinical task but also facilitates knowledge progression in the whole healthcare system, which is an essential part of learning health system. To the best of our knowledge, this is the first application of federated machine learning in clinical NLP.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":" ","pages":"283-291"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072229/pdf/nihms-1063931.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38915276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is standard practice in speech & language technology to rank systems according to performance on a test set held out for evaluation. However, few researchers apply statistical tests to determine whether differences in performance are likely to arise by chance, and few examine the stability of system ranking across multiple training-testing splits. We conduct replication and reproduction experiments with nine part-of-speech taggers published between 2000 and 2018, each of which reports state-of-the-art performance on a widely-used "standard split". We fail to reliably reproduce some rankings using randomly generated splits. We suggest that randomly generated splits should be used in system comparison.
{"title":"We need to talk about standard splits.","authors":"Kyle Gorman, Steven Bedrick","doi":"10.18653/v1/p19-1267","DOIUrl":"https://doi.org/10.18653/v1/p19-1267","url":null,"abstract":"<p><p>It is standard practice in speech & language technology to rank systems according to performance on a test set held out for evaluation. However, few researchers apply statistical tests to determine whether differences in performance are likely to arise by chance, and few examine the stability of system ranking across multiple training-testing splits. We conduct replication and reproduction experiments with nine part-of-speech taggers published between 2000 and 2018, each of which reports state-of-the-art performance on a widely-used \"standard split\". We fail to reliably reproduce some rankings using <i>randomly generated</i> splits. We suggest that randomly generated splits should be used in system comparison.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2019 ","pages":"2786-2791"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287171/pdf/nihms-1908534.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9715654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, Ruslan Salakhutdinov
Human language is often multimodal, which comprehends a mixture of natural language, facial gestures, and acoustic behaviors. However, two major challenges in modeling such multimodal human language time-series data exist: 1) inherent data non-alignment due to variable sampling rates for the sequences from each modality; and 2) long-range dependencies between elements across modalities. In this paper, we introduce the Multimodal Transformer (MulT) to generically address the above issues in an end-to-end manner without explicitly aligning the data. At the heart of our model is the directional pairwise cross-modal attention, which attends to interactions between multimodal sequences across distinct time steps and latently adapt streams from one modality to another. Comprehensive experiments on both aligned and non-aligned multimodal time-series show that our model outperforms state-of-the-art methods by a large margin. In addition, empirical analysis suggests that correlated crossmodal signals are able to be captured by the proposed crossmodal attention mechanism in MulT.
{"title":"Multimodal Transformer for Unaligned Multimodal Language Sequences.","authors":"Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, Ruslan Salakhutdinov","doi":"10.18653/v1/p19-1656","DOIUrl":"10.18653/v1/p19-1656","url":null,"abstract":"<p><p>Human language is often multimodal, which comprehends a mixture of natural language, facial gestures, and acoustic behaviors. However, two major challenges in modeling such multimodal human language time-series data exist: 1) inherent data non-alignment due to variable sampling rates for the sequences from each modality; and 2) long-range dependencies between elements across modalities. In this paper, we introduce the Multimodal Transformer (MulT) to generically address the above issues in an end-to-end manner without explicitly aligning the data. At the heart of our model is the directional pairwise cross-modal attention, which attends to interactions between multimodal sequences across distinct time steps and latently adapt streams from one modality to another. Comprehensive experiments on both aligned and non-aligned multimodal time-series show that our model outperforms state-of-the-art methods by a large margin. In addition, empirical analysis suggests that correlated crossmodal signals are able to be captured by the proposed crossmodal attention mechanism in MulT.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":" ","pages":"6558-6569"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195022/pdf/nihms-1570579.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37896067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We examine the utility of linguistic content and vocal characteristics for multimodal deep learning in human spoken language understanding. We present a deep multimodal network with both feature attention and modality attention to classify utterance-level speech data. The proposed hybrid attention architecture helps the system focus on learning informative representations for both modality-specific feature extraction and model fusion. The experimental results show that our system achieves state-of-the-art or competitive results on three published multimodal datasets. We also demonstrated the effectiveness and generalization of our system on a medical speech dataset from an actual trauma scenario. Furthermore, we provided a detailed comparison and analysis of traditional approaches and deep learning methods on both feature extraction and fusion.
{"title":"Hybrid Attention based Multimodal Network for Spoken Language Classification.","authors":"Yue Gu, Kangning Yang, Shiyu Fu, Shuhong Chen, Xinyu Li, Ivan Marsic","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We examine the utility of linguistic content and vocal characteristics for multimodal deep learning in human spoken language understanding. We present a deep multimodal network with both feature attention and modality attention to classify utterance-level speech data. The proposed hybrid attention architecture helps the system focus on learning informative representations for both modality-specific feature extraction and model fusion. The experimental results show that our system achieves state-of-the-art or competitive results on three published multimodal datasets. We also demonstrated the effectiveness and generalization of our system on a medical speech dataset from an actual trauma scenario. Furthermore, we provided a detailed comparison and analysis of traditional approaches and deep learning methods on both feature extraction and fusion.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2018 ","pages":"2379-2390"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41156853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multimodal affective computing, learning to recognize and interpret human affect and subjective information from multiple data sources, is still challenging because:(i) it is hard to extract informative features to represent human affects from heterogeneous inputs; (ii) current fusion strategies only fuse different modalities at abstract levels, ignoring time-dependent interactions between modalities. Addressing such issues, we introduce a hierarchical multimodal architecture with attention and word-level fusion to classify utterance-level sentiment and emotion from text and audio data. Our introduced model outperforms state-of-the-art approaches on published datasets, and we demonstrate that our model's synchronized attention over modalities offers visual interpretability.
{"title":"Multimodal Affective Analysis Using Hierarchical Attention Strategy with Word-Level Alignment.","authors":"Yue Gu, Kangning Yang, Shiyu Fu, Shuhong Chen, Xinyu Li, Ivan Marsic","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Multimodal affective computing, learning to recognize and interpret human affect and subjective information from multiple data sources, is still challenging because:(i) it is hard to extract informative features to represent human affects from heterogeneous inputs; (ii) current fusion strategies only fuse different modalities at abstract levels, ignoring time-dependent interactions between modalities. Addressing such issues, we introduce a hierarchical multimodal architecture with attention and word-level fusion to classify utterance-level sentiment and emotion from text and audio data. Our introduced model outperforms state-of-the-art approaches on published datasets, and we demonstrate that our model's synchronized attention over modalities offers visual interpretability.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2018 ","pages":"2225-2235"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261375/pdf/nihms-993286.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Icon-based communication systems are widely used in the field of Augmentative and Alternative Communication. Typically, icon-based systems have lagged behind word- and character-based systems in terms of predictive typing functionality, due to the challenges inherent to training icon-based language models. We propose a method for synthesizing training data for use in icon-based language models, and explore two different modeling strategies.
{"title":"Compositional Language Modeling for Icon-Based Augmentative and Alternative Communication.","authors":"Shiran Dudy, Steven Bedrick","doi":"10.18653/v1/w18-3404","DOIUrl":"https://doi.org/10.18653/v1/w18-3404","url":null,"abstract":"<p><p>Icon-based communication systems are widely used in the field of Augmentative and Alternative Communication. Typically, icon-based systems have lagged behind word- and character-based systems in terms of predictive typing functionality, due to the challenges inherent to training icon-based language models. We propose a method for synthesizing training data for use in icon-based language models, and explore two different modeling strategies.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2018 ","pages":"25-32"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087438/pdf/nihms-1001619.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38939330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Braden Hancock, Martin Bringmann, Paroma Varma, Percy Liang, Stephanie Wang, Christopher Ré
Training accurate classifiers requires many labels, but each label provides only limited information (one bit for binary classification). In this work, we propose BabbleLabble, a framework for training classifiers in which an annotator provides a natural language explanation for each labeling decision. A semantic parser converts these explanations into programmatic labeling functions that generate noisy labels for an arbitrary amount of unlabeled data, which is used to train a classifier. On three relation extraction tasks, we find that users are able to train classifiers with comparable F1 scores from 5-100× faster by providing explanations instead of just labels. Furthermore, given the inherent imperfection of labeling functions, we find that a simple rule-based semantic parser suffices.
训练精确的分类器需要许多标签,但每个标签只能提供有限的信息(二进制分类时为一个比特)。在这项工作中,我们提出了一个用于训练分类器的框架--BabbleLabble,在这个框架中,注释者为每个标签决定提供自然语言解释。语义解析器将这些解释转换成程序化的标签函数,为任意数量的未标签数据生成噪声标签,用于训练分类器。在三个关系提取任务中,我们发现用户通过提供解释而不仅仅是标签,能够以 5-100 倍的速度训练分类器,并获得相当的 F1 分数。此外,考虑到标签功能本身的不完善,我们发现基于规则的简单语义解析器就足够了。
{"title":"Training Classifiers with Natural Language Explanations.","authors":"Braden Hancock, Martin Bringmann, Paroma Varma, Percy Liang, Stephanie Wang, Christopher Ré","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Training accurate classifiers requires many labels, but each label provides only limited information (one bit for binary classification). In this work, we propose BabbleLabble, a framework for training classifiers in which an annotator provides a natural language explanation for each labeling decision. A semantic parser converts these explanations into programmatic labeling functions that generate noisy labels for an arbitrary amount of unlabeled data, which is used to train a classifier. On three relation extraction tasks, we find that users are able to train classifiers with comparable F1 scores from 5-100× faster by providing explanations instead of just labels. Furthermore, given the inherent imperfection of labeling functions, we find that a simple rule-based semantic parser suffices.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2018 ","pages":"1884-1895"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534135/pdf/nihms-993798.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37013648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Nye, Junyi Jessy Li, Roma Patel, Yinfei Yang, Iain J Marshall, Ani Nenkova, Byron C Wallace
We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the 'PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine.
{"title":"A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature.","authors":"Benjamin Nye, Junyi Jessy Li, Roma Patel, Yinfei Yang, Iain J Marshall, Ani Nenkova, Byron C Wallace","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the 'PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2018 ","pages":"197-207"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174533/pdf/nihms-988059.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41158894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}