Pub Date : 2006-01-01DOI: 10.1007/s00281-006-0010-y
J. Inal
{"title":"Complement C2 receptor inhibitor trispanning: from man to schistosome","authors":"J. Inal","doi":"10.1007/s00281-006-0010-y","DOIUrl":"https://doi.org/10.1007/s00281-006-0010-y","url":null,"abstract":"","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"27 1","pages":"509-510"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0010-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52138756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-11-01Epub Date: 2005-11-11DOI: 10.1007/s00281-005-0007-y
Marten Trendelenburg
The first component of the classical pathway of complement (C1q) is considered to be involved in the pathogenesis of systemic lupus erythematosus (SLE). This view is based on the observation that a substantial number of patients with SLE develop hypocomplementemia with depletion of the classical pathway components, and C1q has been shown to play an important role in the clearance of immune complexes and apoptotic bodies. In addition, homozygous C1q deficiency is the strongest disease susceptibility gene for the development of SLE that has been characterised in humans. However, most SLE patients have no primary complement deficiency. Hypocomplementemia in SLE patients is a secondary event and often associated with antibodies against C1q (anti-C1q). Although anti-C1q have been found in a number of distinct autoimmune disorders, they are best described in patients with SLE where they strongly correlate with renal flares. Current data suggest that the occurrence of anti-C1q in SLE patients is necessary but not sufficient for the development of proliferative lupus nephritis, suggesting an interference with the normal function of the complement system.
{"title":"Antibodies against C1q in patients with systemic lupus erythematosus.","authors":"Marten Trendelenburg","doi":"10.1007/s00281-005-0007-y","DOIUrl":"https://doi.org/10.1007/s00281-005-0007-y","url":null,"abstract":"<p><p>The first component of the classical pathway of complement (C1q) is considered to be involved in the pathogenesis of systemic lupus erythematosus (SLE). This view is based on the observation that a substantial number of patients with SLE develop hypocomplementemia with depletion of the classical pathway components, and C1q has been shown to play an important role in the clearance of immune complexes and apoptotic bodies. In addition, homozygous C1q deficiency is the strongest disease susceptibility gene for the development of SLE that has been characterised in humans. However, most SLE patients have no primary complement deficiency. Hypocomplementemia in SLE patients is a secondary event and often associated with antibodies against C1q (anti-C1q). Although anti-C1q have been found in a number of distinct autoimmune disorders, they are best described in patients with SLE where they strongly correlate with renal flares. Current data suggest that the occurrence of anti-C1q in SLE patients is necessary but not sufficient for the development of proliferative lupus nephritis, suggesting an interference with the normal function of the complement system.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"27 3","pages":"276-85"},"PeriodicalIF":0.0,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-005-0007-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25605764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-11-01Epub Date: 2005-11-11DOI: 10.1007/s00281-005-0006-z
Rikke Sørensen, Steffen Thiel, Jens C Jensenius
Mannan-binding lectin (MBL)-associated serine proteases (MASPs) circulate in plasma as zymogens in complexes with MBL and with L- and H-ficolin. Upon binding of MBL or ficolin to pathogen-associated molecular patterns, the MASPs are activated. MASP-2 can now cleave C4 and C2 to generate the C3 convertase, C4bC2b. The functions of the other two MASPs, MASP-1 and MASP-3 have not been elucidated. MASP-1 can cleave C2, and with low efficiency also C3, and may serve a function through direct C3 activation. No natural substrate for MASP-3 has been identified. MBL deficiency, occurring at a frequency of about 10%, is the most common congenital immunodeficiency and is associated with susceptibility to infections and autoimmune disorders. Inherited MASP-2 deficiency has been described as the result of a mutation causing the exchange of aspartic acid with a glycine at position 105, a position in the first domain, CUB1, involved in calcium binding. This mutation abolishes the binding to MBL and ficolins, and deprives MASP-2 of functional activity. The index case suffered from recurrent severe infections and autoimmune reactions. The gene frequency of the mutation among Caucasians is 3.6%. It is not found in Chinese, who present a different mutation also associated with MASP-2 deficiency.
{"title":"Mannan-binding-lectin-associated serine proteases, characteristics and disease associations.","authors":"Rikke Sørensen, Steffen Thiel, Jens C Jensenius","doi":"10.1007/s00281-005-0006-z","DOIUrl":"10.1007/s00281-005-0006-z","url":null,"abstract":"<p><p>Mannan-binding lectin (MBL)-associated serine proteases (MASPs) circulate in plasma as zymogens in complexes with MBL and with L- and H-ficolin. Upon binding of MBL or ficolin to pathogen-associated molecular patterns, the MASPs are activated. MASP-2 can now cleave C4 and C2 to generate the C3 convertase, C4bC2b. The functions of the other two MASPs, MASP-1 and MASP-3 have not been elucidated. MASP-1 can cleave C2, and with low efficiency also C3, and may serve a function through direct C3 activation. No natural substrate for MASP-3 has been identified. MBL deficiency, occurring at a frequency of about 10%, is the most common congenital immunodeficiency and is associated with susceptibility to infections and autoimmune disorders. Inherited MASP-2 deficiency has been described as the result of a mutation causing the exchange of aspartic acid with a glycine at position 105, a position in the first domain, CUB1, involved in calcium binding. This mutation abolishes the binding to MBL and ficolins, and deprives MASP-2 of functional activity. The index case suffered from recurrent severe infections and autoimmune reactions. The gene frequency of the mutation among Caucasians is 3.6%. It is not found in Chinese, who present a different mutation also associated with MASP-2 deficiency.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"27 3","pages":"299-319"},"PeriodicalIF":0.0,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-005-0006-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25606300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-11-01DOI: 10.1007/s00281-005-0008-x
Jürg A Schifferli
{"title":"Complement: a member of the innate immune system.","authors":"Jürg A Schifferli","doi":"10.1007/s00281-005-0008-x","DOIUrl":"https://doi.org/10.1007/s00281-005-0008-x","url":null,"abstract":"","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"27 3","pages":"273-5"},"PeriodicalIF":0.0,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-005-0008-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25621664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-11-01Epub Date: 2005-11-11DOI: 10.1007/s00281-005-0002-3
M Kathryn Liszewski, Claudia Kemper, Jeffrey D Price, John P Atkinson
In the past 20 years, our understanding of the workings of complement regulatory protein, CD46 (membrane cofactor protein), has grown as has the impressive list of pathogens interacting with this membrane-bound complement inhibitor. Referred to as a "pathogen magnet," CD46 serves as a receptor for seven human pathogens. Initially discovered as a widely expressed C3b- and C4b-binding protein, it was subsequently shown to be a cofactor for the serine protease factor I to inactivate by limited proteolysis these two opsonins and components of the convertases. The involvement of CD46 in reproductive processes continues to be an emerging story. It is a protector of placental tissue, but it may also play a more direct role in reproduction through its expression on the inner acrosomal membrane of spermatozoa. Cross-linking CD46 with antibodies or natural or pathogenic ligands induces rapid turnover and signaling events. In this regard, much attention is currently focused on generating human T lymphocyte regulatory cells by cross-linking CD46. Finally, highlighting its importance in protecting cells against excessive complement activation is the discovery that even a heterozygous deficiency of CD46 predisposes to hemolytic uremic syndrome.
{"title":"Emerging roles and new functions of CD46.","authors":"M Kathryn Liszewski, Claudia Kemper, Jeffrey D Price, John P Atkinson","doi":"10.1007/s00281-005-0002-3","DOIUrl":"https://doi.org/10.1007/s00281-005-0002-3","url":null,"abstract":"<p><p>In the past 20 years, our understanding of the workings of complement regulatory protein, CD46 (membrane cofactor protein), has grown as has the impressive list of pathogens interacting with this membrane-bound complement inhibitor. Referred to as a \"pathogen magnet,\" CD46 serves as a receptor for seven human pathogens. Initially discovered as a widely expressed C3b- and C4b-binding protein, it was subsequently shown to be a cofactor for the serine protease factor I to inactivate by limited proteolysis these two opsonins and components of the convertases. The involvement of CD46 in reproductive processes continues to be an emerging story. It is a protector of placental tissue, but it may also play a more direct role in reproduction through its expression on the inner acrosomal membrane of spermatozoa. Cross-linking CD46 with antibodies or natural or pathogenic ligands induces rapid turnover and signaling events. In this regard, much attention is currently focused on generating human T lymphocyte regulatory cells by cross-linking CD46. Finally, highlighting its importance in protecting cells against excessive complement activation is the discovery that even a heterozygous deficiency of CD46 predisposes to hemolytic uremic syndrome.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"27 3","pages":"345-58"},"PeriodicalIF":0.0,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-005-0002-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25616292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-11-01Epub Date: 2005-11-11DOI: 10.1007/s00281-005-0001-4
Marco Cicardi, Lorenza Zingale, Andrea Zanichelli, Emanuela Pappalardo, Benedetta Cicardi
C1 inhibitor (C1-INH) is a serine protease inhibitor (serpins) that inactivates several different proteases in the complement, contact, coagulation, and fibrinolytic systems. By its C-terminal part (serpin domain), characterized by three beta-sheets and an exposed mobile reactive loop, C1-INH binds, and blocks the activity of its target proteases. The N-terminal end (nonserpin domain) confers to C1-INH the capacity to bind lipopolysaccharides and E-selectin. Owing to this moiety, C1-INH intervenes in regulation of the inflammatory reaction. The heterozygous deficiency of C1-INH results in hereditary angioedema (HAE). The clinical picture of HAE is characterized by bouts of local increase in vascular permeability. Depending on the affected site, patients suffer from disfiguring subcutaneous edema, abdominal pain, vomiting and/or diarrhoea for edema of the gastrointestinal mucosa, dysphagia, and dysphonia up to asphyxia for edema of the pharynx and larynx. Apart from its genetic deficiency, there are several pathological conditions such as ischemia-reperfusion, septic shock, capillary leak syndrome, and pancreatitis, in which C1-INH has been reported to either play a pathogenic role or be a potential therapeutic tool. These potential applications were identified long ago, but controlled studies have not been performed to confirm pilot experiences. Recombinant C1-INH, produced in transgenic animals, has recently been produced for treatment of HAE, and clinical trials are in progress. We can expect that the introduction of this new product, along with the existing plasma derivative, will renew interest in exploiting C1-INH as a therapeutic agent.
{"title":"C1 inhibitor: molecular and clinical aspects.","authors":"Marco Cicardi, Lorenza Zingale, Andrea Zanichelli, Emanuela Pappalardo, Benedetta Cicardi","doi":"10.1007/s00281-005-0001-4","DOIUrl":"https://doi.org/10.1007/s00281-005-0001-4","url":null,"abstract":"<p><p>C1 inhibitor (C1-INH) is a serine protease inhibitor (serpins) that inactivates several different proteases in the complement, contact, coagulation, and fibrinolytic systems. By its C-terminal part (serpin domain), characterized by three beta-sheets and an exposed mobile reactive loop, C1-INH binds, and blocks the activity of its target proteases. The N-terminal end (nonserpin domain) confers to C1-INH the capacity to bind lipopolysaccharides and E-selectin. Owing to this moiety, C1-INH intervenes in regulation of the inflammatory reaction. The heterozygous deficiency of C1-INH results in hereditary angioedema (HAE). The clinical picture of HAE is characterized by bouts of local increase in vascular permeability. Depending on the affected site, patients suffer from disfiguring subcutaneous edema, abdominal pain, vomiting and/or diarrhoea for edema of the gastrointestinal mucosa, dysphagia, and dysphonia up to asphyxia for edema of the pharynx and larynx. Apart from its genetic deficiency, there are several pathological conditions such as ischemia-reperfusion, septic shock, capillary leak syndrome, and pancreatitis, in which C1-INH has been reported to either play a pathogenic role or be a potential therapeutic tool. These potential applications were identified long ago, but controlled studies have not been performed to confirm pilot experiences. Recombinant C1-INH, produced in transgenic animals, has recently been produced for treatment of HAE, and clinical trials are in progress. We can expect that the introduction of this new product, along with the existing plasma derivative, will renew interest in exploiting C1-INH as a therapeutic agent.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"27 3","pages":"286-98"},"PeriodicalIF":0.0,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-005-0001-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25673135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-11-01Epub Date: 2005-11-11DOI: 10.1007/s00281-005-0005-0
Steven H Sacks, Wuding Zhou
The complement system is known for its ability to participate in non-specific inflammation and membrane injury as well as contributing to antigen-specific immune stimulation. In renal transplantation, the complement cascade behaves true to form in that both non-immune- and immune-mediated destruction of the renal tubules are complement dependent. What is remarkable, however, is the extent of involvement of local synthesis of complement in both of these injuries, suggesting that the extravascular tissue compartment is the domain of local synthesis, whereas the effect of circulating complement is much less. This creates a new paradigm for studying the influence of local synthesis of complement in other organ-based diseases and underlines the need for tissue-targeting strategies in successful therapeutic development.
{"title":"Allograft rejection: effect of local synthesis of complement.","authors":"Steven H Sacks, Wuding Zhou","doi":"10.1007/s00281-005-0005-0","DOIUrl":"https://doi.org/10.1007/s00281-005-0005-0","url":null,"abstract":"<p><p>The complement system is known for its ability to participate in non-specific inflammation and membrane injury as well as contributing to antigen-specific immune stimulation. In renal transplantation, the complement cascade behaves true to form in that both non-immune- and immune-mediated destruction of the renal tubules are complement dependent. What is remarkable, however, is the extent of involvement of local synthesis of complement in both of these injuries, suggesting that the extravascular tissue compartment is the domain of local synthesis, whereas the effect of circulating complement is much less. This creates a new paradigm for studying the influence of local synthesis of complement in other organ-based diseases and underlines the need for tissue-targeting strategies in successful therapeutic development.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"27 3","pages":"332-44"},"PeriodicalIF":0.0,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-005-0005-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25606301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haemolytic uraemic syndrome (HUS) is a thrombotic microangiopathy (TMA) disorder characterised by the association of haemolytic anaemia, thrombocytopenia and acute renal failure. Atypical forms (non-related to shigatoxin) may be familial or sporadic, with frequent recurrences and most of them lead to end stage renal failure. During the last years, different groups have demonstrated genetic predisposition of atypical HUS involving complement components factor H (FH), CD46 [or membrane co-factor protein (MCP)] and factor I. These three proteins are involved in the regulation of the alternative pathway of the complement system. Several series have reported mutations in the FH gene (called HF1) in between 10 and 22% of atypical HUS patients. At this time, four pedigrees corresponding to 13 cases have been reported with an MCP mutation and four cases with a sporadic disease presented factor I mutation. Whereas FH mutations were reported in both familial and sporadic forms of HUS, CD46 mutations were restricted to familial HUS, and factor I mutations were only observed in cases of sporadic HUS. We speculate that the penetrance of the disease may be variable regarding the identified susceptibility factors. Recently, the analysis of single nucleotide polymorphisms in both HF1 and MCP in three large cohorts of HUS patients identified significant association between atypical HUS and HF1 and MCP particular alleles. All these results, together with the finding of anti-FH antibodies in some atypical HUS patients, strongly suggest that an abnormality in the regulation of the alternative pathway participates in the patho-physiological mechanisms of atypical HUS. The recent progress made in the determination of susceptibility factors for atypical HUS has permitted the development of new diagnostic tests and may eventually lead to new specific treatments to block the pathological process.
{"title":"Atypical haemolytic uraemic syndrome and mutations in complement regulator genes.","authors":"Marie-Agnès Dragon-Durey, Véronique Frémeaux-Bacchi","doi":"10.1007/s00281-005-0003-2","DOIUrl":"https://doi.org/10.1007/s00281-005-0003-2","url":null,"abstract":"<p><p>Haemolytic uraemic syndrome (HUS) is a thrombotic microangiopathy (TMA) disorder characterised by the association of haemolytic anaemia, thrombocytopenia and acute renal failure. Atypical forms (non-related to shigatoxin) may be familial or sporadic, with frequent recurrences and most of them lead to end stage renal failure. During the last years, different groups have demonstrated genetic predisposition of atypical HUS involving complement components factor H (FH), CD46 [or membrane co-factor protein (MCP)] and factor I. These three proteins are involved in the regulation of the alternative pathway of the complement system. Several series have reported mutations in the FH gene (called HF1) in between 10 and 22% of atypical HUS patients. At this time, four pedigrees corresponding to 13 cases have been reported with an MCP mutation and four cases with a sporadic disease presented factor I mutation. Whereas FH mutations were reported in both familial and sporadic forms of HUS, CD46 mutations were restricted to familial HUS, and factor I mutations were only observed in cases of sporadic HUS. We speculate that the penetrance of the disease may be variable regarding the identified susceptibility factors. Recently, the analysis of single nucleotide polymorphisms in both HF1 and MCP in three large cohorts of HUS patients identified significant association between atypical HUS and HF1 and MCP particular alleles. All these results, together with the finding of anti-FH antibodies in some atypical HUS patients, strongly suggest that an abnormality in the regulation of the alternative pathway participates in the patho-physiological mechanisms of atypical HUS. The recent progress made in the determination of susceptibility factors for atypical HUS has permitted the development of new diagnostic tests and may eventually lead to new specific treatments to block the pathological process.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"27 3","pages":"359-74"},"PeriodicalIF":0.0,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-005-0003-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25606303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-11-01Epub Date: 2005-11-11DOI: 10.1007/s00281-005-0004-1
David Pilzer, Olivier Gasser, Oren Moskovich, Jurg A Schifferli, Zvi Fishelson
Complement-mediated cell death is caused by C5b-9, the membrane attack complex (MAC) composed of the five complement proteins C5b, C6, C7, C8, and C9. Assembly of the C5b-9 complex initiates oligomerization of C9 and production of a transmembrane protein channel that inflicts damage to target cells. For protection, cells eliminate the MAC from their surface either by ectocytosis (direct emission of membrane vesicles) or by endocytosis (internalization). The process of ectosome release is rapid and involves cytosolic Ca(2+) and activation of protein kinases, such as protein kinase C (PKC) and extracellular signal-regulated protein kinase (ERK). Recently, the involvement of mortalin (also known as GRP75 and mitochondrial hsp70) in MAC elimination has been suggested. Extracellular application of antibodies directed to mortalin increases cell sensitivity to MAC-mediated lysis. Release of membrane vesicles is ubiquitous and enhanced in apoptotic or tumor cells and upon cell activation. Composition of the ectosomes (also often referred to as microparticles) membrane proteins and lipids appears to be different from those of the original plasma membrane, indicating involvement of a selective sorting process during ectosome formation. Exosomes (unlike ectosomes) are membrane vesicles generated by endocytosis, endosome sorting into perinuclear multivesicular bodies (MVB) and exocytosis of MVBs. Exosomes appear to be different in size and composition from ectosomes. Exosome-associated MAC has also been described. Although research on ectosomes and exosomes is still limited, physiological roles in coagulation, vascular functions, angiogenesis, wound healing and development have been attributed to these shed membrane vesicles. On the other hand, there are indications that elevated levels of ectosomes and exosomes may predispose to morbidity. Membrane vesicles released by cells exposed to complement MAC may play roles in health and disease beyond protection from cell death.
{"title":"Emission of membrane vesicles: roles in complement resistance, immunity and cancer.","authors":"David Pilzer, Olivier Gasser, Oren Moskovich, Jurg A Schifferli, Zvi Fishelson","doi":"10.1007/s00281-005-0004-1","DOIUrl":"https://doi.org/10.1007/s00281-005-0004-1","url":null,"abstract":"<p><p>Complement-mediated cell death is caused by C5b-9, the membrane attack complex (MAC) composed of the five complement proteins C5b, C6, C7, C8, and C9. Assembly of the C5b-9 complex initiates oligomerization of C9 and production of a transmembrane protein channel that inflicts damage to target cells. For protection, cells eliminate the MAC from their surface either by ectocytosis (direct emission of membrane vesicles) or by endocytosis (internalization). The process of ectosome release is rapid and involves cytosolic Ca(2+) and activation of protein kinases, such as protein kinase C (PKC) and extracellular signal-regulated protein kinase (ERK). Recently, the involvement of mortalin (also known as GRP75 and mitochondrial hsp70) in MAC elimination has been suggested. Extracellular application of antibodies directed to mortalin increases cell sensitivity to MAC-mediated lysis. Release of membrane vesicles is ubiquitous and enhanced in apoptotic or tumor cells and upon cell activation. Composition of the ectosomes (also often referred to as microparticles) membrane proteins and lipids appears to be different from those of the original plasma membrane, indicating involvement of a selective sorting process during ectosome formation. Exosomes (unlike ectosomes) are membrane vesicles generated by endocytosis, endosome sorting into perinuclear multivesicular bodies (MVB) and exocytosis of MVBs. Exosomes appear to be different in size and composition from ectosomes. Exosome-associated MAC has also been described. Although research on ectosomes and exosomes is still limited, physiological roles in coagulation, vascular functions, angiogenesis, wound healing and development have been attributed to these shed membrane vesicles. On the other hand, there are indications that elevated levels of ectosomes and exosomes may predispose to morbidity. Membrane vesicles released by cells exposed to complement MAC may play roles in health and disease beyond protection from cell death.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"27 3","pages":"375-87"},"PeriodicalIF":0.0,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-005-0004-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25606302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-11-01Epub Date: 2005-11-11DOI: 10.1007/s00281-005-0009-9
Jameel M Inal
Horizontal gene transfer (HGT), in relation to genetic transfer between hosts and parasites, is a little described mechanism. Since the complement inhibitor CRIT was first discovered in the human Schistosoma parasite (the causative agent of Bilharzia) and in Trypanosoma cruzi (a parasite causing Chagas' disease), it has been found to be distributed amongst various species, ranging from the early teleost cod to rats and humans. In terms of evolutionary distance, as measured in a phylogenetic analysis of these CRIT genes at nucleotide level, the parasitic species are as removed from their human host as is the rat sequence, suggesting HGT. The hypotheses that CRIT in humans and schistosomes is orthologous and that the presence of CRIT in schistosomes occurs as a result of host-to-parasite HGT are presented in the light of empirical data and the growing body of data on mobile genetic elements in human and schistosome genomes. In summary, these data indicate phylogenetic proximity between Schistosoma and human CRIT, identity of function, high nucleotide/amino acid identity and secondary protein structure, as well as identical genomic organization.
{"title":"Complement C2 receptor inhibitor trispanning: from man to schistosome.","authors":"Jameel M Inal","doi":"10.1007/s00281-005-0009-9","DOIUrl":"https://doi.org/10.1007/s00281-005-0009-9","url":null,"abstract":"<p><p>Horizontal gene transfer (HGT), in relation to genetic transfer between hosts and parasites, is a little described mechanism. Since the complement inhibitor CRIT was first discovered in the human Schistosoma parasite (the causative agent of Bilharzia) and in Trypanosoma cruzi (a parasite causing Chagas' disease), it has been found to be distributed amongst various species, ranging from the early teleost cod to rats and humans. In terms of evolutionary distance, as measured in a phylogenetic analysis of these CRIT genes at nucleotide level, the parasitic species are as removed from their human host as is the rat sequence, suggesting HGT. The hypotheses that CRIT in humans and schistosomes is orthologous and that the presence of CRIT in schistosomes occurs as a result of host-to-parasite HGT are presented in the light of empirical data and the growing body of data on mobile genetic elements in human and schistosome genomes. In summary, these data indicate phylogenetic proximity between Schistosoma and human CRIT, identity of function, high nucleotide/amino acid identity and secondary protein structure, as well as identical genomic organization.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"27 3","pages":"320-31"},"PeriodicalIF":0.0,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-005-0009-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25665501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}