Pub Date : 2022-06-01Epub Date: 2022-06-16DOI: 10.17925/EE.2022.18.1.10
Shizuka Kaneko
Gastrointestinal hormones are currently used to treat type 2 diabetes mellitus (T2D). Incretin preparations with gastric inhibitory polypeptide (GIP) activity or glucagon-like peptide-1 (GLP-1) provide new means for controlling blood glucose levels, body weight, and lipid metabolism. GIP, an incretin, has not been used due to lack of promising action against diabetes. However, recent studies have shown that GIP has an important effect on glucagon and insulin secretion under normoglycaemic conditions. Co-existence of GIP with GLP-1 and glucagon signalling leads to a stronger effect than that of GLP-1 stimulation alone. The development of a GIP/GLP-1R unimolecular dual agonist with affinity for both GIP and GLP-1 receptors is under investigation, and the drug is expected to be clinically available in the near future. Tirzepatide, a GIP/GLP-1R unimolecular dual agonist, regulates metabolism via both peripheral organs and the central nervous system. The SURPASS phase III clinical trials conducted for tirzepatide comprise 10 clinical trials, including five global trials and the global SURPASS-CVOT trial, with >13,000 patients with T2D (ClinicalTrials.gov Identifier: NCT04255433). The clinical application of tirzepatide as a therapy for T2D may provide new insights into diabetic conditions and help clarify the role of GIP in its pathogenesis.
{"title":"Tirzepatide: A Novel, Once-weekly Dual GIP and GLP-1 Receptor Agonist for the Treatment of Type 2 Diabetes.","authors":"Shizuka Kaneko","doi":"10.17925/EE.2022.18.1.10","DOIUrl":"https://doi.org/10.17925/EE.2022.18.1.10","url":null,"abstract":"<p><p>Gastrointestinal hormones are currently used to treat type 2 diabetes mellitus (T2D). Incretin preparations with gastric inhibitory polypeptide (GIP) activity or glucagon-like peptide-1 (GLP-1) provide new means for controlling blood glucose levels, body weight, and lipid metabolism. GIP, an incretin, has not been used due to lack of promising action against diabetes. However, recent studies have shown that GIP has an important effect on glucagon and insulin secretion under normoglycaemic conditions. Co-existence of GIP with GLP-1 and glucagon signalling leads to a stronger effect than that of GLP-1 stimulation alone. The development of a GIP/GLP-1R unimolecular dual agonist with affinity for both GIP and GLP-1 receptors is under investigation, and the drug is expected to be clinically available in the near future. Tirzepatide, a GIP/GLP-1R unimolecular dual agonist, regulates metabolism via both peripheral organs and the central nervous system. The SURPASS phase III clinical trials conducted for tirzepatide comprise 10 clinical trials, including five global trials and the global SURPASS-CVOT trial, with >13,000 patients with T2D (ClinicalTrials.gov Identifier: NCT04255433). The clinical application of tirzepatide as a therapy for T2D may provide new insights into diabetic conditions and help clarify the role of GIP in its pathogenesis.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"18 1","pages":"10-19"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40616551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01Epub Date: 2022-06-13DOI: 10.17925/EE.2022.18.1.71
Henriette Beyer, Nicole Lange, Armin H Podtschaske, Jan Martin, Lucia Albers, Alexander von Werder, Jürgen Ruland, Gerhard Schneider, Bernhard Meyer, Simone M Kagerbauer, Jens Gempt
Background: Anterior pituitary hormones in blood follow a circadian rhythm, which may be influenced by various factors such as intracranial pathologies. In cerebrospinal fluid (CSF), pituitary hormones have been collected only selectively and circadian rhythm has not yet been investigated. This pilot study analysed diurnal variations of anterior pituitary hormones in patients in neurocritical care to determine whether circadian rhythmicity exists in these patients. Possible influences of intracranial pathologies were also investigated. Blood and CSF concentrations were assessed simultaneously to explore the value of blood concentrations as a surrogate parameter for CSF levels.
Methods: Blood and CSF samples of 20 non-sedated patients were collected at 06:00, noon, 18:00 and midnight, and analysed for adrenocorticotropic hormone (ACTH), cortisol, thyroid-stimulating hormone (TSH) and insulin-like growth factor-1 (IGF-1) concentrations at each of the four time points. ACTH and IGF-1 were measured by sandwich chemiluminescence immunoassay. Cortisol and TSH were measured by electrochemiluminescence immunoassay.
Results: Results showed inconsistent circadian rhythms. Less than 50% of the patients showed a circadian rhythmicity of ACTH, cortisol, TSH or IGF-1. Significance of diurnal variations was only present for blood concentrations of TSH. Correlations between blood and CSF concentrations were strong for cortisol and TSH.
Conclusions: CSF concentrations were only in the measurable range in some of the patients. No clear circadian rhythmicity could be identified, except for TSH in blood. Absence of significant diurnal variations could be explained by the underlying pathologies or disturbing influences of the intensive care unit. Blood concentrations of cortisol and TSH may be suitable surrogate parameters for CSF.
{"title":"Anterior Pituitary Hormones in Blood and Cerebrospinal Fluid of Patients in Neurocritical Care.","authors":"Henriette Beyer, Nicole Lange, Armin H Podtschaske, Jan Martin, Lucia Albers, Alexander von Werder, Jürgen Ruland, Gerhard Schneider, Bernhard Meyer, Simone M Kagerbauer, Jens Gempt","doi":"10.17925/EE.2022.18.1.71","DOIUrl":"https://doi.org/10.17925/EE.2022.18.1.71","url":null,"abstract":"<p><strong>Background: </strong>Anterior pituitary hormones in blood follow a circadian rhythm, which may be influenced by various factors such as intracranial pathologies. In cerebrospinal fluid (CSF), pituitary hormones have been collected only selectively and circadian rhythm has not yet been investigated. This pilot study analysed diurnal variations of anterior pituitary hormones in patients in neurocritical care to determine whether circadian rhythmicity exists in these patients. Possible influences of intracranial pathologies were also investigated. Blood and CSF concentrations were assessed simultaneously to explore the value of blood concentrations as a surrogate parameter for CSF levels.</p><p><strong>Methods: </strong>Blood and CSF samples of 20 non-sedated patients were collected at 06:00, noon, 18:00 and midnight, and analysed for adrenocorticotropic hormone (ACTH), cortisol, thyroid-stimulating hormone (TSH) and insulin-like growth factor-1 (IGF-1) concentrations at each of the four time points. ACTH and IGF-1 were measured by sandwich chemiluminescence immunoassay. Cortisol and TSH were measured by electrochemiluminescence immunoassay.</p><p><strong>Results: </strong>Results showed inconsistent circadian rhythms. Less than 50% of the patients showed a circadian rhythmicity of ACTH, cortisol, TSH or IGF-1. Significance of diurnal variations was only present for blood concentrations of TSH. Correlations between blood and CSF concentrations were strong for cortisol and TSH.</p><p><strong>Conclusions: </strong>CSF concentrations were only in the measurable range in some of the patients. No clear circadian rhythmicity could be identified, except for TSH in blood. Absence of significant diurnal variations could be explained by the underlying pathologies or disturbing influences of the intensive care unit. Blood concentrations of cortisol and TSH may be suitable surrogate parameters for CSF.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"18 1","pages":"71-79"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40616555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01Epub Date: 2022-06-13DOI: 10.17925/EE.2022.18.1.20
John Doupis, Edward S Horton
Traditional continuous glucose monitoring and flash glucose monitoring systems are proven to lower glycated haemoglobin levels, decrease the time and impact of hypoglycaemia or hyperglycaemia and, consequently, improve the quality of life for children and adults with type 1 diabetes mellitus (T1DM) and adults with type 2 diabetes mellitus (T2DM). These glucose-sensing devices can generate large amounts of glucose data that can be used to define a detailed glycaemic profile for each user, which can be compared with targets for glucose control set by an International Consensus Panel of diabetes experts. Targets have been agreed upon for adults, children and adolescents with T1DM and adults with T2DM; separate targets have been agreed upon for older adults with diabetes, who are at higher risk of hypoglycaemia, and women with pregestational T1DM during pregnancy. Along with the objective measures and targets identified by the International Consensus Panel, the dense glucose data delivered by traditional continuous glucose monitoring and flash glucose monitoring systems is used to generate an ambulatory glucose profile, which summarizes the data in a visually impactful format that can be used to identify patterns and trends in daily glucose control, including those that raise clinical concerns. In this article, we provide a practical guide on how to interpret these new glucometrics using a straightforward algorithm, and clear visual examples that demystify the process of reviewing the glycaemic health of people with T1DM or T2DM such that forward-looking goals for diabetes management can be agreed.
{"title":"Utilizing the New Glucometrics: A Practical Guide to Ambulatory Glucose Profile Interpretation.","authors":"John Doupis, Edward S Horton","doi":"10.17925/EE.2022.18.1.20","DOIUrl":"https://doi.org/10.17925/EE.2022.18.1.20","url":null,"abstract":"<p><p>Traditional continuous glucose monitoring and flash glucose monitoring systems are proven to lower glycated haemoglobin levels, decrease the time and impact of hypoglycaemia or hyperglycaemia and, consequently, improve the quality of life for children and adults with type 1 diabetes mellitus (T1DM) and adults with type 2 diabetes mellitus (T2DM). These glucose-sensing devices can generate large amounts of glucose data that can be used to define a detailed glycaemic profile for each user, which can be compared with targets for glucose control set by an International Consensus Panel of diabetes experts. Targets have been agreed upon for adults, children and adolescents with T1DM and adults with T2DM; separate targets have been agreed upon for older adults with diabetes, who are at higher risk of hypoglycaemia, and women with pregestational T1DM during pregnancy. Along with the objective measures and targets identified by the International Consensus Panel, the dense glucose data delivered by traditional continuous glucose monitoring and flash glucose monitoring systems is used to generate an ambulatory glucose profile, which summarizes the data in a visually impactful format that can be used to identify patterns and trends in daily glucose control, including those that raise clinical concerns. In this article, we provide a practical guide on how to interpret these new glucometrics using a straightforward algorithm, and clear visual examples that demystify the process of reviewing the glycaemic health of people with T1DM or T2DM such that forward-looking goals for diabetes management can be agreed.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"18 1","pages":"20-26"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40696982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01Epub Date: 2022-05-23DOI: 10.17925/EE.2022.18.1.2
Joseph M Pappachan, Bhuvana Sunil, Cornelius J Fernandez, Ian M Lahart, Ambika P Ashraf
Objective: To examine the accuracy of urine c-peptide creatinine ratio (UCPCR) for identifying the type of diabetes in appropriate clinical settings. Design: Systematic review of test accuracy studies on patients with different forms of diabetes. Data sources: Medline, Embase and Cochrane library databases from 1 January 2000 to 15 November 2020. Eligibility criteria: Studies reporting the use of UCPCR for diagnosing patients with type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM) and monogenic forms of diabetes (categorized as maturity-onset diabetes of the young [MODY]). Study selection and data synthesis: Two reviewers independently assessed articles for inclusion and assessed the methodological quality of the studies using the Quality Assessment of Diagnostic Accuracy Studies-2 tool, with input from a third reviewer to reach consensus when there was a dispute. Meta-analysis was performed with the studies reporting complete data to derive the pooled sensitivity, specificity and diagnostic odds ratio (DOR), and narrative synthesis only for those with incomplete data. Results: Nine studies with 4,488 patients were included in the qualitative synthesis, while only four of these (915 patients) had complete data and were included in the quantitative synthesis. All the studies had moderate risk of bias and applicability concerns. Meta-analysis of three studies (n=130) revealed sensitivity, specificity and DOR of 84.4% (95% confidence interval [CI] 68.1-93.2%), 91.6% (82.8-96.1%) and 59.9 (32.8-106.0), respectively, for diagnosing T1DM using a UCPCR cut-off of <0.2 nmol/mmol. For participants with T2DM (three studies; n=739), UCPCR >0.2 nmol/mmol was associated with sensitivity, specificity and DOR of 92.8% (84.2-96.9%), 81.6% (61.3-92.5%) and 56.9 (31.3-103.5), respectively. For patients with MODY in the appropriate clinical setting, a UCPCR cut-off of >0.2 nmol/mmol showed sensitivity, specificity and DOR of 85.2% (73.1-92.4%), 98.0% (92.4-99.5%) and 281.8 (57.5-1,379.7), respectively. Conclusions: Based on studies with moderate risk of bias and applicability concerns, UCPCR confers moderate to high sensitivity, specificity, and DOR for correctly identifying T1DM, T2DM and monogenic diabetes in appropriate clinical settings. Large multinational studies with multi-ethnic participation among different age groups are necessary before this test can be routinely used in clinical practice. Study registration: Protocol was registered as PROSPERO CRD42017060633.
{"title":"Diagnostic Test Accuracy of Urine C-peptide Creatinine Ratio for the Correct Identification of the Type of Diabetes: A Systematic Review.","authors":"Joseph M Pappachan, Bhuvana Sunil, Cornelius J Fernandez, Ian M Lahart, Ambika P Ashraf","doi":"10.17925/EE.2022.18.1.2","DOIUrl":"https://doi.org/10.17925/EE.2022.18.1.2","url":null,"abstract":"<p><p><b>Objective</b>: To examine the accuracy of urine c-peptide creatinine ratio (UCPCR) for identifying the type of diabetes in appropriate clinical settings. <b>Design</b>: Systematic review of test accuracy studies on patients with different forms of diabetes. <b>Data sources</b>: Medline, Embase and Cochrane library databases from 1 January 2000 to 15 November 2020. <b>Eligibility criteria</b>: Studies reporting the use of UCPCR for diagnosing patients with type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM) and monogenic forms of diabetes (categorized as maturity-onset diabetes of the young [MODY]). <b>Study selection and data synthesis</b>: Two reviewers independently assessed articles for inclusion and assessed the methodological quality of the studies using the Quality Assessment of Diagnostic Accuracy Studies-2 tool, with input from a third reviewer to reach consensus when there was a dispute. Meta-analysis was performed with the studies reporting complete data to derive the pooled sensitivity, specificity and diagnostic odds ratio (DOR), and narrative synthesis only for those with incomplete data. <b>Results</b>: Nine studies with 4,488 patients were included in the qualitative synthesis, while only four of these (915 patients) had complete data and were included in the quantitative synthesis. All the studies had moderate risk of bias and applicability concerns. Meta-analysis of three studies (n=130) revealed sensitivity, specificity and DOR of 84.4% (95% confidence interval [CI] 68.1-93.2%), 91.6% (82.8-96.1%) and 59.9 (32.8-106.0), respectively, for diagnosing T1DM using a UCPCR cut-off of <0.2 nmol/mmol. For participants with T2DM (three studies; n=739), UCPCR >0.2 nmol/mmol was associated with sensitivity, specificity and DOR of 92.8% (84.2-96.9%), 81.6% (61.3-92.5%) and 56.9 (31.3-103.5), respectively. For patients with MODY in the appropriate clinical setting, a UCPCR cut-off of >0.2 nmol/mmol showed sensitivity, specificity and DOR of 85.2% (73.1-92.4%), 98.0% (92.4-99.5%) and 281.8 (57.5-1,379.7), respectively. <b>Conclusions</b>: Based on studies with moderate risk of bias and applicability concerns, UCPCR confers moderate to high sensitivity, specificity, and DOR for correctly identifying T1DM, T2DM and monogenic diabetes in appropriate clinical settings. Large multinational studies with multi-ethnic participation among different age groups are necessary before this test can be routinely used in clinical practice. <b>Study registration</b>: Protocol was registered as PROSPERO CRD42017060633.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"18 1","pages":"2-9"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40696984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01Epub Date: 2022-05-30DOI: 10.17925/EE.2022.18.1.63
Sanjay Kalra, Ambrish Mithal, Abdul Hamid Zargar, Bipin Sethi, Mala Dharmalingam, Sujoy Ghosh, Ranjini Sen
Background: Indian patients with type 2 diabetes mellitus (T2D) constitute one-sixth of affected adults globally. Here, we evaluate the association of body mass index (BMI) with body fat percentage (BF%) and glycated haemoglobin (HbA1c) levels among patients with T2D in India. Method: This was a cross-sectional Indian registry study across 845 geographically diverse zones between December 2017 and August 2019. Results: Of 37,927 patients, 55.6% were men, with a mean ± standard deviation age of 54.2 ± 11.5 years and HbA1c of 8.3 ± 1.71%. Mean ± standard deviation BMI and BF% were 27.0 ± 4.6 kg/m2 and 32.0 ± 8.0%, respectively. Overall, 15.4% of patients were overweight, and 25.0% were obese. Despite fewer males (20.7%) having BMI-based obesity than females (31.2%), around three-quarters of both sexes had BF%-defined obesity (males 77.2%; females 71.2%). One-third of males (34.6%) and 41.9% of females had BF%-defined obesity despite normal BMI. The association was substantiated by a moderately significant correlation (r=0.51) between BMI and BF% in the overall population (p<0.0001). Conclusion: This pan-India registry presents a real-world reflection of the Asian Indian phenotype: high BF% despite lower BMI in people with T2D. This highlights the importance of primordial and primary prevention, and may guide decisions on the choice of agents for glycaemic control, with a preference for drugs that promote weight loss or are weight neutral.
{"title":"Indian Phenotype Characteristics Among Patients with Type 2 Diabetes Mellitus: Insights from a Non-interventional Nationwide Registry in India.","authors":"Sanjay Kalra, Ambrish Mithal, Abdul Hamid Zargar, Bipin Sethi, Mala Dharmalingam, Sujoy Ghosh, Ranjini Sen","doi":"10.17925/EE.2022.18.1.63","DOIUrl":"https://doi.org/10.17925/EE.2022.18.1.63","url":null,"abstract":"<p><p><b>Background</b>: Indian patients with type 2 diabetes mellitus (T2D) constitute one-sixth of affected adults globally. Here, we evaluate the association of body mass index (BMI) with body fat percentage (BF%) and glycated haemoglobin (HbA1c) levels among patients with T2D in India. <b>Method</b>: This was a cross-sectional Indian registry study across 845 geographically diverse zones between December 2017 and August 2019. <b>Results</b>: Of 37,927 patients, 55.6% were men, with a mean ± standard deviation age of 54.2 ± 11.5 years and HbA1c of 8.3 ± 1.71%. Mean ± standard deviation BMI and BF% were 27.0 ± 4.6 kg/m2 and 32.0 ± 8.0%, respectively. Overall, 15.4% of patients were overweight, and 25.0% were obese. Despite fewer males (20.7%) having BMI-based obesity than females (31.2%), around three-quarters of both sexes had BF%-defined obesity (males 77.2%; females 71.2%). One-third of males (34.6%) and 41.9% of females had BF%-defined obesity despite normal BMI. The association was substantiated by a moderately significant correlation (r=0.51) between BMI and BF% in the overall population (p<0.0001). <b>Conclusion</b>: This pan-India registry presents a real-world reflection of the Asian Indian phenotype: high BF% despite lower BMI in people with T2D. This highlights the importance of primordial and primary prevention, and may guide decisions on the choice of agents for glycaemic control, with a preference for drugs that promote weight loss or are weight neutral.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"18 1","pages":"63-70"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40696983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01Epub Date: 2022-05-20DOI: 10.17925/EE.2022.18.1.27
Armaan Nallicheri, Katherine M Mahoney, Hanna A Gutow, Natalie Bellini, Diana Isaacs
Automated insulin delivery (AID) systems play an important role in the management of type 1 diabetes mellitus (T1DM). These systems include three components: a continuous glucose monitor (CGM), an insulin pump and an algorithm that adjusts the pump based on the CGM sensor glucose readings. They are not fully automated and still require the user to administer bolus insulin doses for food. Some AID systems have automatic correction boluses, while others only have automatic basal or background insulin adjustments. As CGM has become more accurate and the technology has evolved, AID systems have demonstrated improved glycaemic outcomes. The clinical evaluation of AID systems in randomized controlled trials and real-world studies have shown their utility in helping glycaemic management. In this review, we compare AID systems that are commercially available in the US and summarize the literature, with a special focus on time in range in T1DM. The review also discusses new AID systems on the horizon and explores considerations for personalized care.
胰岛素自动给药系统(AID)在 1 型糖尿病(T1DM)的治疗中发挥着重要作用。这些系统包括三个组成部分:连续血糖监测仪(CGM)、胰岛素泵和根据 CGM 传感器血糖读数调整泵的算法。这些系统并非完全自动化,仍需要用户为食物注射胰岛素。有些 AID 系统具有自动校正胰岛素剂量的功能,而有些则只有自动调整基础或背景胰岛素的功能。随着 CGM 的精确度提高和技术的发展,AID 系统的血糖治疗效果也得到了改善。在随机对照试验和实际研究中对 AID 系统进行的临床评估表明,它们在帮助进行血糖管理方面非常有用。在这篇综述中,我们比较了美国市售的 AID 系统,并总结了相关文献,特别关注了 T1DM 患者的血糖控制时间。综述还讨论了即将推出的新型 AID 系统,并探讨了个性化护理的注意事项。
{"title":"Review of Automated Insulin Delivery Systems for Type 1 Diabetes and Associated Time in Range Outcomes.","authors":"Armaan Nallicheri, Katherine M Mahoney, Hanna A Gutow, Natalie Bellini, Diana Isaacs","doi":"10.17925/EE.2022.18.1.27","DOIUrl":"10.17925/EE.2022.18.1.27","url":null,"abstract":"<p><p>Automated insulin delivery (AID) systems play an important role in the management of type 1 diabetes mellitus (T1DM). These systems include three components: a continuous glucose monitor (CGM), an insulin pump and an algorithm that adjusts the pump based on the CGM sensor glucose readings. They are not fully automated and still require the user to administer bolus insulin doses for food. Some AID systems have automatic correction boluses, while others only have automatic basal or background insulin adjustments. As CGM has become more accurate and the technology has evolved, AID systems have demonstrated improved glycaemic outcomes. The clinical evaluation of AID systems in randomized controlled trials and real-world studies have shown their utility in helping glycaemic management. In this review, we compare AID systems that are commercially available in the US and summarize the literature, with a special focus on time in range in T1DM. The review also discusses new AID systems on the horizon and explores considerations for personalized care.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"18 1","pages":"27-34"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40616552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01Epub Date: 2022-05-25DOI: 10.17925/EE.2022.18.1.49
Concetta Mastromauro, Francesco Chiarelli
Short stature is a common reason for consulting a growth specialist during childhood. Normal height is a polygenic trait involving a complex interaction between hormonal, nutritional and psychosocial components. Genetic factors are becoming very important in the understanding of short stature. After exclusion of the most frequent causes of growth failure, clinicians need to evaluate whether a genetic cause might be taken into consideration. In fact, genetic causes of short stature are probably misdiagnosed during clinical practice and the underlying cause of short stature frequently remains unknown, thus classifying children as having idiopathic short stature (ISS). However, over the past decade, novel genetic techniques have led to the discovery of novel genes associated with linear growth and thus to the ability to define new possible aetiologies of short stature. In fact, thanks to the newer genetic advances, it is possible to properly re-classify about 25-40% of children previously diagnosed with ISS. The purpose of this article is to describe the main monogenic causes of short stature, which, thanks to advances in molecular genetics, are assuming an increasingly important role in the clinical approach to short children.
{"title":"Novel Insights Into the Genetic Causes of Short Stature in Children.","authors":"Concetta Mastromauro, Francesco Chiarelli","doi":"10.17925/EE.2022.18.1.49","DOIUrl":"https://doi.org/10.17925/EE.2022.18.1.49","url":null,"abstract":"<p><p>Short stature is a common reason for consulting a growth specialist during childhood. Normal height is a polygenic trait involving a complex interaction between hormonal, nutritional and psychosocial components. Genetic factors are becoming very important in the understanding of short stature. After exclusion of the most frequent causes of growth failure, clinicians need to evaluate whether a genetic cause might be taken into consideration. In fact, genetic causes of short stature are probably misdiagnosed during clinical practice and the underlying cause of short stature frequently remains unknown, thus classifying children as having idiopathic short stature (ISS). However, over the past decade, novel genetic techniques have led to the discovery of novel genes associated with linear growth and thus to the ability to define new possible aetiologies of short stature. In fact, thanks to the newer genetic advances, it is possible to properly re-classify about 25-40% of children previously diagnosed with ISS. The purpose of this article is to describe the main monogenic causes of short stature, which, thanks to advances in molecular genetics, are assuming an increasingly important role in the clinical approach to short children.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"18 1","pages":"49-57"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40696986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01Epub Date: 2022-06-15DOI: 10.17925/EE.2022.18.1.35
Ides M Colin, Katherine M Gérard
The treatment of obesity can no longer be reduced to a simplistic view of weight loss. Metabolic adaptation leads to systematic weight regain following weight-loss efforts, and new obesity treatments should therefore aim to induce long-standing double-digit weight loss, and thus improve and even reverse obesity-associated comorbidities such as type 2 diabetes. Until now, only metabolic surgery has been able to achieve such a goal, but this invasive procedure cannot be offered on a large scale. Among the alternatives, lifestyle interventions and drug therapies have often been disappointing. The recent availability of once-weekly subcutaneous 2.4 mg semaglutide (a glucagon-like peptide-1 receptor agonist; Wegovy™ Novo Nordisk A/S, Bagsværd, Denmark) has changed the scene, and semaglutide is considered a 'game changer' in the treatment of obesity. The results from the phase III STEP (Semaglutide treatment effect in people with obesity) clinical programme have shown that semaglutide provides clinically meaningful and sustained weight loss in ranges much higher than those achieved with previously available pharmacotherapies. These results led to the approval of semaglutide by regulatory authorities as an adjunct to a reduced-calorie diet and increased physical activity in people with obesity or overweight, with at least one weight-related comorbidity. With data from phase II and III clinical trials showing that newer drugs (i.e. the glucagon-like peptide-1 and gastric inhibitory polypeptide dual receptor agonist tirzepatide and the amylin agonist cagrilintide, either alone or combined) produce a greater sustained weight loss than semaglutide, an upstream 'weight-centric' strategy has emerged as a new standard for the treatment of type 2 diabetes.
{"title":"Once-weekly 2.4 mg Semaglutide for Weight Management in Obesity: A Game Changer?","authors":"Ides M Colin, Katherine M Gérard","doi":"10.17925/EE.2022.18.1.35","DOIUrl":"https://doi.org/10.17925/EE.2022.18.1.35","url":null,"abstract":"<p><p>The treatment of obesity can no longer be reduced to a simplistic view of weight loss. Metabolic adaptation leads to systematic weight regain following weight-loss efforts, and new obesity treatments should therefore aim to induce long-standing double-digit weight loss, and thus improve and even reverse obesity-associated comorbidities such as type 2 diabetes. Until now, only metabolic surgery has been able to achieve such a goal, but this invasive procedure cannot be offered on a large scale. Among the alternatives, lifestyle interventions and drug therapies have often been disappointing. The recent availability of once-weekly subcutaneous 2.4 mg semaglutide (a glucagon-like peptide-1 receptor agonist; Wegovy™ Novo Nordisk A/S, Bagsværd, Denmark) has changed the scene, and semaglutide is considered a 'game changer' in the treatment of obesity. The results from the phase III STEP (Semaglutide treatment effect in people with obesity) clinical programme have shown that semaglutide provides clinically meaningful and sustained weight loss in ranges much higher than those achieved with previously available pharmacotherapies. These results led to the approval of semaglutide by regulatory authorities as an adjunct to a reduced-calorie diet and increased physical activity in people with obesity or overweight, with at least one weight-related comorbidity. With data from phase II and III clinical trials showing that newer drugs (i.e. the glucagon-like peptide-1 and gastric inhibitory polypeptide dual receptor agonist tirzepatide and the amylin agonist cagrilintide, either alone or combined) produce a greater sustained weight loss than semaglutide, an upstream 'weight-centric' strategy has emerged as a new standard for the treatment of type 2 diabetes.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"18 1","pages":"35-42"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40616553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01Epub Date: 2022-03-18DOI: 10.17925/EE.2022.18.1.43
David M Williams, Matthew Staff, Stephen C Bain, Thinzar Min
There is an increasing prevalence of obesity worldwide, associated with significant morbidity and mortality, which frequently reduces quality of life and life expectancy. Consequently, there is a substantial and growing personal and economic burden necessitating the development of more effective therapies for obesity. Glucagon-like peptide-1 receptor analogues (GLP-1RAs) are licensed for the treatment of type 2 diabetes (T2D), and there is substantial evidence that these drugs not only improve cardiovascular outcomes but also promote weight loss. More recent evidence supports the use of the GLP-1RAs liraglutide and semaglutide in people with obesity without T2D. This article discusses the results of the major cardiovascular outcome trials for GLP-1RAs in people with T2D, the SCALE Obesity and Prediabetes study (Effect of liraglutide on body weight in non-diabetic obese subjects or overweight subjects with co-morbidities: SCALE™ - Obesity and Pre-diabetes; ClinicalTrials.gov identifier: NCT01272219; investigating liraglutide) and the STEP studies (Semaglutide treatment effect in people with obesity; assorted studies; investigating subcutaneous semaglutide). We also highlight the importance of a cost-effective approach to obesity pharmacotherapy. Clinicians should consider the use of GLP-1RAs in people with obesity, especially those with T2D or other obesity-related diseases, such as hypertension and dyslipidaemia. Ongoing trials, as well as clinical and cost-effectiveness appraisals, are anticipated over the next 12 months, and their findings may change the current landscape of obesity pharmacotherapy.
{"title":"Glucagon-like Peptide-1 Receptor Analogues for the Treatment of Obesity.","authors":"David M Williams, Matthew Staff, Stephen C Bain, Thinzar Min","doi":"10.17925/EE.2022.18.1.43","DOIUrl":"https://doi.org/10.17925/EE.2022.18.1.43","url":null,"abstract":"<p><p>There is an increasing prevalence of obesity worldwide, associated with significant morbidity and mortality, which frequently reduces quality of life and life expectancy. Consequently, there is a substantial and growing personal and economic burden necessitating the development of more effective therapies for obesity. Glucagon-like peptide-1 receptor analogues (GLP-1RAs) are licensed for the treatment of type 2 diabetes (T2D), and there is substantial evidence that these drugs not only improve cardiovascular outcomes but also promote weight loss. More recent evidence supports the use of the GLP-1RAs liraglutide and semaglutide in people with obesity without T2D. This article discusses the results of the major cardiovascular outcome trials for GLP-1RAs in people with T2D, the SCALE Obesity and Prediabetes study (Effect of liraglutide on body weight in non-diabetic obese subjects or overweight subjects with co-morbidities: SCALE™ - Obesity and Pre-diabetes; ClinicalTrials.gov identifier: NCT01272219; investigating liraglutide) and the STEP studies (Semaglutide treatment effect in people with obesity; assorted studies; investigating subcutaneous semaglutide). We also highlight the importance of a cost-effective approach to obesity pharmacotherapy. Clinicians should consider the use of GLP-1RAs in people with obesity, especially those with T2D or other obesity-related diseases, such as hypertension and dyslipidaemia. Ongoing trials, as well as clinical and cost-effectiveness appraisals, are anticipated over the next 12 months, and their findings may change the current landscape of obesity pharmacotherapy.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"18 1","pages":"43-48"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40617282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01Epub Date: 2021-11-10DOI: 10.17925/EE.2021.17.2.88
John Doupis, Neoklis Baris, Konstantinos Avramidis
Imeglimin is a novel molecule currently under development for the treatment of type 2 diabetes mellitus, and is the first agent of the 'glimin' class of glucose-lowering medication. It has a unique mechanism of action that targets the three main pathophysiologic components of type 2 diabetes: impaired glucose uptake by muscle tissue, excess hepatic gluconeogenesis and increased β-cell apoptosis. To date, imeglimin has been evaluated in many preclinical and clinical trials and has shown to have notable antihyperglycaemic effects, such as statistically significant reductions in glycated haemoglobin, fasting plasma glucose and other glycaemic parameters. The encouraging tolerability profile, combined with its efficacy, could make it suitable as a monotherapy or in combination with other classes of antidiabetic agents, hopefully in the near future.
{"title":"Imeglimin: A New Promising and Effective Weapon in the Treatment of Type 2 Diabetes.","authors":"John Doupis, Neoklis Baris, Konstantinos Avramidis","doi":"10.17925/EE.2021.17.2.88","DOIUrl":"https://doi.org/10.17925/EE.2021.17.2.88","url":null,"abstract":"<p><p>Imeglimin is a novel molecule currently under development for the treatment of type 2 diabetes mellitus, and is the first agent of the 'glimin' class of glucose-lowering medication. It has a unique mechanism of action that targets the three main pathophysiologic components of type 2 diabetes: impaired glucose uptake by muscle tissue, excess hepatic gluconeogenesis and increased β-cell apoptosis. To date, imeglimin has been evaluated in many preclinical and clinical trials and has shown to have notable antihyperglycaemic effects, such as statistically significant reductions in glycated haemoglobin, fasting plasma glucose and other glycaemic parameters. The encouraging tolerability profile, combined with its efficacy, could make it suitable as a monotherapy or in combination with other classes of antidiabetic agents, hopefully in the near future.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"17 2","pages":"88-91"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676108/pdf/touchendo-17-88.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39888373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}