Pub Date : 2023-11-08DOI: 10.3390/particles6040062
Marcos Cardoso Rodriguez, Ion Vasile Vancea
In this article, we give a brief review of the origin of the neutrino mass in some interesting non-linear supersymmetric models with R-symmetry. These models are able to address and solve the most important problems of particle physics and provide mechanisms for neutrino mass generation and their mixing parameters in agreement with the current experimental data. Their prediction could be experimentally tested in the near future by collider experiments.
{"title":"Neutrino Masses in Supersymmetric Models with R-Symmetry","authors":"Marcos Cardoso Rodriguez, Ion Vasile Vancea","doi":"10.3390/particles6040062","DOIUrl":"https://doi.org/10.3390/particles6040062","url":null,"abstract":"In this article, we give a brief review of the origin of the neutrino mass in some interesting non-linear supersymmetric models with R-symmetry. These models are able to address and solve the most important problems of particle physics and provide mechanisms for neutrino mass generation and their mixing parameters in agreement with the current experimental data. Their prediction could be experimentally tested in the near future by collider experiments.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"360 24","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135392039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.3390/particles6040063
Igor Kondrashuk, Ivan Schmidt
We argue in favor of the independence on any scale, ultraviolet or infrared, in kernels of the effective action expressed in terms of dressed N=1 superfields for the case of N=4 super-Yang–Mills theory. Under “scale independence” of the effective action of dressed mean superfields, we mean its “finiteness in the off-shell limit of removing all the regularizations”. This off-shell limit is scale independent because no scale remains inside these kernels after removing the regularizations. We use two types of regularization: regularization by dimensional reduction and regularization by higher derivatives in its supersymmetric form. Based on the Slavnov–Taylor identity, we show that dressed fields of matter and of vector multiplets can be introduced to express the effective action in terms of them. Kernels of the effective action expressed in terms of such dressed effective fields do not depend on the ultraviolet scale. In the case of dimensional reduction, by using the developed technique, we show how the problem of inconsistency of the dimensional reduction can be solved. Using Piguet and Sibold formalism, we indicate that the dependence on the infrared scale disappears off shell in both the regularizations.
{"title":"Finiteness of N=4 Super-Yang–Mills Effective Action in Terms of Dressed N=1 Superfields","authors":"Igor Kondrashuk, Ivan Schmidt","doi":"10.3390/particles6040063","DOIUrl":"https://doi.org/10.3390/particles6040063","url":null,"abstract":"We argue in favor of the independence on any scale, ultraviolet or infrared, in kernels of the effective action expressed in terms of dressed N=1 superfields for the case of N=4 super-Yang–Mills theory. Under “scale independence” of the effective action of dressed mean superfields, we mean its “finiteness in the off-shell limit of removing all the regularizations”. This off-shell limit is scale independent because no scale remains inside these kernels after removing the regularizations. We use two types of regularization: regularization by dimensional reduction and regularization by higher derivatives in its supersymmetric form. Based on the Slavnov–Taylor identity, we show that dressed fields of matter and of vector multiplets can be introduced to express the effective action in terms of them. Kernels of the effective action expressed in terms of such dressed effective fields do not depend on the ultraviolet scale. In the case of dimensional reduction, by using the developed technique, we show how the problem of inconsistency of the dimensional reduction can be solved. Using Piguet and Sibold formalism, we indicate that the dependence on the infrared scale disappears off shell in both the regularizations.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":" 42","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135292800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.3390/particles6040061
Adam R. Solomon
We explore the duality invariance of the Maxwell and linearized Einstein–Hilbert actions on a non-rotating black hole background. On-shell, these symmetries are electric–magnetic duality and Chandrasekhar duality, respectively. Off-shell, they lead to conserved quantities; we demonstrate that one of the consequences of these conservation laws is that even- and odd-parity metric perturbations have equal Love numbers. Along the way, we derive an action principle for the Fackerell–Ipser equation and Teukolsky–Starobinsky identities in electromagnetism.
{"title":"Off-Shell Duality Invariance of Schwarzschild Perturbation Theory","authors":"Adam R. Solomon","doi":"10.3390/particles6040061","DOIUrl":"https://doi.org/10.3390/particles6040061","url":null,"abstract":"We explore the duality invariance of the Maxwell and linearized Einstein–Hilbert actions on a non-rotating black hole background. On-shell, these symmetries are electric–magnetic duality and Chandrasekhar duality, respectively. Off-shell, they lead to conserved quantities; we demonstrate that one of the consequences of these conservation laws is that even- and odd-parity metric perturbations have equal Love numbers. Along the way, we derive an action principle for the Fackerell–Ipser equation and Teukolsky–Starobinsky identities in electromagnetism.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135539682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.3390/particles6040060
Athanasios C. Tzemos, George Contopoulos
We study order, chaos and ergodicity in the Bohmian trajectories of a 2D quantum harmonic oscillator. We first present all the possible types (chaotic, ordered) of Bohmian trajectories in wavefunctions made of superpositions of two and three energy eigenstates of the oscillator. There is no chaos in the case of two terms and in some cases of three terms. Then, we show the different geometries of nodal points in bipartite Bohmian systems of entangled qubits. Finally, we study multinodal wavefunctions and find that a large number of nodal points does not always imply the dominance of chaos. We show that, in some cases, the Born distribution is dominated by ordered trajectories, something that has a significant impact on the accessibility of Born’s rule P=|Ψ|2 by initial distributions of Bohmian particles with P0≠|Ψ0|2.
{"title":"Order, Chaos and Born’s Distribution of Bohmian Particles","authors":"Athanasios C. Tzemos, George Contopoulos","doi":"10.3390/particles6040060","DOIUrl":"https://doi.org/10.3390/particles6040060","url":null,"abstract":"We study order, chaos and ergodicity in the Bohmian trajectories of a 2D quantum harmonic oscillator. We first present all the possible types (chaotic, ordered) of Bohmian trajectories in wavefunctions made of superpositions of two and three energy eigenstates of the oscillator. There is no chaos in the case of two terms and in some cases of three terms. Then, we show the different geometries of nodal points in bipartite Bohmian systems of entangled qubits. Finally, we study multinodal wavefunctions and find that a large number of nodal points does not always imply the dominance of chaos. We show that, in some cases, the Born distribution is dominated by ordered trajectories, something that has a significant impact on the accessibility of Born’s rule P=|Ψ|2 by initial distributions of Bohmian particles with P0≠|Ψ0|2.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"21 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A prototype of a combined horizontal and vertical correcting magnet was designed and fabricated for the 3 GeV storage ring of Siam Photon Source II, which will be the second synchrotron light source in Thailand. The magnet will be employed for fast-orbit feedback correction, with a required magnetic field integral of approximately 8 Tesla.mm. The magnet pole and yoke were manufactured using laminated silicon steel to minimize hysteresis and eddy current losses during operation. Magnet modeling and magnetic field calculations were performed using Opera-3D. The size of the gap between the magnet poles is limited by the size of the vacuum chamber over which the magnet will be installed; in this case, it was designed to be 65 mm. Mechanical analysis of the structure of the magnet was performed using SOLIDWORKS and ANSYS. Magnetic field measurements were obtained using the Hall probe technique. The entire prototype, from its design to manufacturing and measurement, was completed in-house. This design will be appropriate for application at the Siam Photon Source II storage ring.
{"title":"Development of a Combined Horizontal and Vertical Correcting Magnet for Siam Photon Source II","authors":"Supachai Prawanta, Prapaiwan Sunwong, Pariwat Singthong, Thongchai Leetha, Pajeeraphorn Numanoy, Warissara Tangyotkhajorn, Apichai Kwankasem, Visitchai Sooksrimuang, Sukho Kongtawong, Supat Klinkiew","doi":"10.3390/particles6040058","DOIUrl":"https://doi.org/10.3390/particles6040058","url":null,"abstract":"A prototype of a combined horizontal and vertical correcting magnet was designed and fabricated for the 3 GeV storage ring of Siam Photon Source II, which will be the second synchrotron light source in Thailand. The magnet will be employed for fast-orbit feedback correction, with a required magnetic field integral of approximately 8 Tesla.mm. The magnet pole and yoke were manufactured using laminated silicon steel to minimize hysteresis and eddy current losses during operation. Magnet modeling and magnetic field calculations were performed using Opera-3D. The size of the gap between the magnet poles is limited by the size of the vacuum chamber over which the magnet will be installed; in this case, it was designed to be 65 mm. Mechanical analysis of the structure of the magnet was performed using SOLIDWORKS and ANSYS. Magnetic field measurements were obtained using the Hall probe technique. The entire prototype, from its design to manufacturing and measurement, was completed in-house. This design will be appropriate for application at the Siam Photon Source II storage ring.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.3390/particles6040059
Alexei A. Deriglazov
We single out a class of Lagrangians on a group manifold, for which one can introduce non-canonical coordinates in the phase space, which simplify the construction of the Poisson structure without explicitly calculating the Dirac bracket. In the case of the SO(3) manifold, the application of this formalism leads to the Poincaré–Chetaev equations. The general solution to these equations is written in terms of an exponential of the Hamiltonian vector field.
{"title":"Poincaré–Chetaev Equations in Dirac’s Formalism of Constrained Systems","authors":"Alexei A. Deriglazov","doi":"10.3390/particles6040059","DOIUrl":"https://doi.org/10.3390/particles6040059","url":null,"abstract":"We single out a class of Lagrangians on a group manifold, for which one can introduce non-canonical coordinates in the phase space, which simplify the construction of the Poisson structure without explicitly calculating the Dirac bracket. In the case of the SO(3) manifold, the application of this formalism leads to the Poincaré–Chetaev equations. The general solution to these equations is written in terms of an exponential of the Hamiltonian vector field.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have studied wake effects on the dissociation of heavy quarkonia states J/ψ and Y by introducing an in-medium modification to the inter-quark potential. The wakes in the quark–gluon plasma were modeled using linear response theory using a dynamic dielectric function obtained from kinetic theory (Boltzmann equation) with a Bhatnagar–Gross–Krook (BGK) collision term. The in-medium modified potential was used to investigate the dissociation character depending on various parameters such as the velocity of quarkonium moving through the medium and the collision frequency. We have also calculated critical values of the dissociation temperature. Modifications of the dissociation energy due to wake-field effects were found.
{"title":"Effect of a Wake-Field on the Dissociation of Quarkonium in Collisional Quark–Gluon Plasma","authors":"Yernur Kuanyshbaiuly, Ardak Junissov, Mukhit Muratov","doi":"10.3390/particles6040057","DOIUrl":"https://doi.org/10.3390/particles6040057","url":null,"abstract":"We have studied wake effects on the dissociation of heavy quarkonia states J/ψ and Y by introducing an in-medium modification to the inter-quark potential. The wakes in the quark–gluon plasma were modeled using linear response theory using a dynamic dielectric function obtained from kinetic theory (Boltzmann equation) with a Bhatnagar–Gross–Krook (BGK) collision term. The in-medium modified potential was used to investigate the dissociation character depending on various parameters such as the velocity of quarkonium moving through the medium and the collision frequency. We have also calculated critical values of the dissociation temperature. Modifications of the dissociation energy due to wake-field effects were found.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10DOI: 10.3390/particles6040056
Alexandra Friesen, Yuriy Kalinovsky
The applicability of the effective models to the description of baryons and the behaviour of ratios of strange baryons to pions is discussed. In the framework of the EPNJL model, the Bethe–Salpeter equation is used to find masses of baryons, which are considered to be in a diquark-quark state. Baryon melting is discussed at a finite chemical potential, and a flavor dependence of the hadronic deconfinement temperature is pointed out. It is shown that the description of the diquark-quark state at finite chemical potential is limited due to the occurrence of Bose condensate. This effect is strongly manifested in the description of light diquarks and baryons. Both the Λ0/π+ and Ξ−/π+ ratios show a sharp behaviour as functions of the T/μB variable, where T and μB are calculated along the melting lines.
{"title":"Diquarks and Λ0/π+, Ξ−/π+ Ratios in the Framework of the EPNJL Model","authors":"Alexandra Friesen, Yuriy Kalinovsky","doi":"10.3390/particles6040056","DOIUrl":"https://doi.org/10.3390/particles6040056","url":null,"abstract":"The applicability of the effective models to the description of baryons and the behaviour of ratios of strange baryons to pions is discussed. In the framework of the EPNJL model, the Bethe–Salpeter equation is used to find masses of baryons, which are considered to be in a diquark-quark state. Baryon melting is discussed at a finite chemical potential, and a flavor dependence of the hadronic deconfinement temperature is pointed out. It is shown that the description of the diquark-quark state at finite chemical potential is limited due to the occurrence of Bose condensate. This effect is strongly manifested in the description of light diquarks and baryons. Both the Λ0/π+ and Ξ−/π+ ratios show a sharp behaviour as functions of the T/μB variable, where T and μB are calculated along the melting lines.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136358079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The entropy produced by Unruh radiation is estimated and compared to the entropy of a Schwarzschild black hole. We simulate a spherical system of mass M by a set of Unruh horizons and estimate the total entropy of the outgoing radiation. Dependence on the mass and spin of the emitted particles is taken into account. The obtained results can be easily extended to any other intrinsic degrees of freedom of outgoing particles. The ratio of Unruh entropy to the Schwarzschild black hole entropy is derived in exact analytical form. For large black holes, this ratio exhibits high susceptibility to quantum numbers, e.g., spin s, of emitted quanta and varies from 0% for s=0 to 19.0% for s=5/2.
{"title":"Unruh Entropy of a Schwarzschild Black Hole","authors":"Maksym Teslyk, Olena Teslyk, Larissa Bravina, Evgeny Zabrodin","doi":"10.3390/particles6030055","DOIUrl":"https://doi.org/10.3390/particles6030055","url":null,"abstract":"The entropy produced by Unruh radiation is estimated and compared to the entropy of a Schwarzschild black hole. We simulate a spherical system of mass M by a set of Unruh horizons and estimate the total entropy of the outgoing radiation. Dependence on the mass and spin of the emitted particles is taken into account. The obtained results can be easily extended to any other intrinsic degrees of freedom of outgoing particles. The ratio of Unruh entropy to the Schwarzschild black hole entropy is derived in exact analytical form. For large black holes, this ratio exhibits high susceptibility to quantum numbers, e.g., spin s, of emitted quanta and varies from 0% for s=0 to 19.0% for s=5/2.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"215 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134913573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-08DOI: 10.3390/particles6030054
Semyon Mikheev, Dmitry Lanskoy, Artur Nasakin, Tatiana Tretyakova
The matter of neutron stars is characterised by the density of the order of typical nuclear densities; hence, it can be described with methods of nuclear physics. However, at high densities, some effects that are absent in nuclear and hypernuclear physics can appear, and this makes neutron stars a good place for studying the properties of baryonic interactions. In the present work, we consider neutron stars consisting of nucleons, leptons and Λ hyperons with Skyrme baryonic forces. We study the character of the ΛN interactions taking place in neutron stars at high densities. In particular, we show the difference between three-body ΛNN and density-dependent ΛN forces. We also demonstrate that the Skyrme ΛN forces proportional to nuclear density are better suited for the modelling of neutron stars than the forces proportional to fractional powers of density. Finally, we emphasize the importance of the point of appearance of hyperons in a further search for parameterizations which are suitable for describing neutron stars.
{"title":"Hyperonic Interactions in Neutron Stars","authors":"Semyon Mikheev, Dmitry Lanskoy, Artur Nasakin, Tatiana Tretyakova","doi":"10.3390/particles6030054","DOIUrl":"https://doi.org/10.3390/particles6030054","url":null,"abstract":"The matter of neutron stars is characterised by the density of the order of typical nuclear densities; hence, it can be described with methods of nuclear physics. However, at high densities, some effects that are absent in nuclear and hypernuclear physics can appear, and this makes neutron stars a good place for studying the properties of baryonic interactions. In the present work, we consider neutron stars consisting of nucleons, leptons and Λ hyperons with Skyrme baryonic forces. We study the character of the ΛN interactions taking place in neutron stars at high densities. In particular, we show the difference between three-body ΛNN and density-dependent ΛN forces. We also demonstrate that the Skyrme ΛN forces proportional to nuclear density are better suited for the modelling of neutron stars than the forces proportional to fractional powers of density. Finally, we emphasize the importance of the point of appearance of hyperons in a further search for parameterizations which are suitable for describing neutron stars.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136362383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}