James F. Busch, Thomas H. Boag, Erik A. Sperling, Alan D. Rooney, Xiahong Feng, David P. Moynihan, Justin V. Strauss
The Ediacaran Gametrail Formation of northwestern Canada chronicles the evolution of a complex carbonate ramp system in response to fluctuations in relative sea level and regional tectonic subsidence alongside exceptional global change associated with the Shuram carbon isotope excursion (CIE). Here, we use extensive outcrop exposures of the Gametrail Formation in the Wernecke Mountains of Yukon, Canada, to construct a shelf-slope transect across the Shuram CIE. Twelve stratigraphic sections of the Gametrail Formation are combined with geological mapping and a suite of geochemical analyses to develop an integrated litho-, chemo-, and sequence stratigraphic model for these strata. In the more proximal Corn/Goz Creek region, the Gametrail Formation represents a storm-dominated inner to outer ramp depositional setting, while slope depositional environments in the Nadaleen River region are dominated by hemipelagic sedimentation, turbidites, and debris flows. The magnitude of the Shuram CIE is largest in slope limestones which underwent sediment-buffered diagenesis, while the CIE is notably smaller in the inner-outer ramp dolostones which experienced fluid-buffered diagenesis. Our regional mapping identified a distinct structural panel within the shelf-slope transect that was transported ~30 km via strike-slip motion during the Mesozoic–Cenozoic Cordilleran orogeny. One location in this transported structural block contains a stromatolite reef complex with extremely negative carbon isotope values down to ~ -30‰, while the other location contains an overthickened ooid shoal complex that does not preserve the characteristic negative CIE associated with the Shuram event. These deviations from the usual expression of the Shuram CIE along the shelf-slope transect in the Wernecke Mountains, and elsewhere globally, provide useful examples for how local tectonic, stratigraphic, and/or geochemical complexities can result in unusually large or completely absent expressions of a globally recognized CIE.
{"title":"Integrated Litho-, Chemo- and Sequence Stratigraphy of the Ediacaran Gametrail Formation Across a Shelf-Slope Transect in the Wernecke Mountains, Yukon, Canada","authors":"James F. Busch, Thomas H. Boag, Erik A. Sperling, Alan D. Rooney, Xiahong Feng, David P. Moynihan, Justin V. Strauss","doi":"10.2475/001c.74874","DOIUrl":"https://doi.org/10.2475/001c.74874","url":null,"abstract":"The Ediacaran Gametrail Formation of northwestern Canada chronicles the evolution of a complex carbonate ramp system in response to fluctuations in relative sea level and regional tectonic subsidence alongside exceptional global change associated with the Shuram carbon isotope excursion (CIE). Here, we use extensive outcrop exposures of the Gametrail Formation in the Wernecke Mountains of Yukon, Canada, to construct a shelf-slope transect across the Shuram CIE. Twelve stratigraphic sections of the Gametrail Formation are combined with geological mapping and a suite of geochemical analyses to develop an integrated litho-, chemo-, and sequence stratigraphic model for these strata. In the more proximal Corn/Goz Creek region, the Gametrail Formation represents a storm-dominated inner to outer ramp depositional setting, while slope depositional environments in the Nadaleen River region are dominated by hemipelagic sedimentation, turbidites, and debris flows. The magnitude of the Shuram CIE is largest in slope limestones which underwent sediment-buffered diagenesis, while the CIE is notably smaller in the inner-outer ramp dolostones which experienced fluid-buffered diagenesis. Our regional mapping identified a distinct structural panel within the shelf-slope transect that was transported ~30 km via strike-slip motion during the Mesozoic–Cenozoic Cordilleran orogeny. One location in this transported structural block contains a stromatolite reef complex with extremely negative carbon isotope values down to ~ -30‰, while the other location contains an overthickened ooid shoal complex that does not preserve the characteristic negative CIE associated with the Shuram event. These deviations from the usual expression of the Shuram CIE along the shelf-slope transect in the Wernecke Mountains, and elsewhere globally, provide useful examples for how local tectonic, stratigraphic, and/or geochemical complexities can result in unusually large or completely absent expressions of a globally recognized CIE.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":"126 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134995959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-04eCollection Date: 2023-01-01DOI: 10.5837/bjc.2023.010
Madalina Garbi
{"title":"Improving access to echocardiography for the detection and follow-up of heart valve disease in the UK.","authors":"Madalina Garbi","doi":"10.5837/bjc.2023.010","DOIUrl":"10.5837/bjc.2023.010","url":null,"abstract":"","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":"20 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90862107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Tull, C. Holm-Denoma, Nawwaf A. Almuntshry, Ericka McMahan
The Allatoona thrust fault in the southernmost hinterland of the Appalachian Blue Ridge-Piedmont megathrust sheet is among the latest structures in the kinematic sequence of events along the west flank of the orogen. It is an out-of-sequence, craton-directed thrust fault that cuts metamorphic isograds and earlier thrusts, and it has a nearly linear trace of ≥280 km, making it one of the major thrust faults in the orogen. On the northwest, the fault cuts Pennsylvanian or younger(?) regional cross antiforms that cause significant orogenic curvature of older underlying thrust sheets and is likely Permian in age. To the southeast, however, units within the fault hanging wall maintain a nearly constant width resulting in a significant change in the regional structural architecture of the orogen. In the central segment of the fault, where it marks the western/eastern Blue Ridge domain boundary, a ~20 km-long eyelid window (Mulberry Rock window) framed by three amphibolite facies thrust sheets overlying the greenschist facies Talladega belt allochthon, allows a 3-D view into the structural architecture, kinematics, and trajectories of the regional thrusts. Two earlier thrusts within the window (Mulberry Rock and Burnt Hickory Ridge thrusts, with a combined minimum horizontal net slip component of 27 km) are cut by the Allatoona fault, which is a ~15 m-wide high strain zone with top-to-the-northwest displacement, and a >17.2 km horizontal net slip vector. Structural branch points between the Allatoona and Mulberry Rock thrusts indicate that the Mulberry Rock allochthon is a large north-trending horse beneath the Allatoona fault, centered on the Mulberry Rock window, which is likely the result of oblique ramp thrusting over the massive Mulberry Rock Gneiss. The Allatoona fault cuts down obliquely into the tectonostratigraphy progressively deeper both to the northeast and northwest, locally approaching underlying foreland thrust sheets, and cutting older regional structures. To the northeast, the Allatoona fault lies at the base of the Dahlonega gold belt, becoming an internal eastern Blue Ridge thrust at Dawsonville, Georgia. Although that sequence extends another 120 km into North Carolina, continuation of the Allatoona fault that additional distance is in debate. Regardless, the Allatoona is one of the kinematically latest and longest faults in the southern Appalachian orogen.
{"title":"The Geometry and Kinematics of the Latest Paleozoic Allatoona Fault, One of the Youngest Thrusts in the Southernmost Appalachian Hinterland, Alabama and Georgia, U.S.A.","authors":"J. Tull, C. Holm-Denoma, Nawwaf A. Almuntshry, Ericka McMahan","doi":"10.2475/001c.72988","DOIUrl":"https://doi.org/10.2475/001c.72988","url":null,"abstract":"The Allatoona thrust fault in the southernmost hinterland of the Appalachian Blue Ridge-Piedmont megathrust sheet is among the latest structures in the kinematic sequence of events along the west flank of the orogen. It is an out-of-sequence, craton-directed thrust fault that cuts metamorphic isograds and earlier thrusts, and it has a nearly linear trace of ≥280 km, making it one of the major thrust faults in the orogen. On the northwest, the fault cuts Pennsylvanian or younger(?) regional cross antiforms that cause significant orogenic curvature of older underlying thrust sheets and is likely Permian in age. To the southeast, however, units within the fault hanging wall maintain a nearly constant width resulting in a significant change in the regional structural architecture of the orogen. In the central segment of the fault, where it marks the western/eastern Blue Ridge domain boundary, a ~20 km-long eyelid window (Mulberry Rock window) framed by three amphibolite facies thrust sheets overlying the greenschist facies Talladega belt allochthon, allows a 3-D view into the structural architecture, kinematics, and trajectories of the regional thrusts. Two earlier thrusts within the window (Mulberry Rock and Burnt Hickory Ridge thrusts, with a combined minimum horizontal net slip component of 27 km) are cut by the Allatoona fault, which is a ~15 m-wide high strain zone with top-to-the-northwest displacement, and a >17.2 km horizontal net slip vector. Structural branch points between the Allatoona and Mulberry Rock thrusts indicate that the Mulberry Rock allochthon is a large north-trending horse beneath the Allatoona fault, centered on the Mulberry Rock window, which is likely the result of oblique ramp thrusting over the massive Mulberry Rock Gneiss. The Allatoona fault cuts down obliquely into the tectonostratigraphy progressively deeper both to the northeast and northwest, locally approaching underlying foreland thrust sheets, and cutting older regional structures. To the northeast, the Allatoona fault lies at the base of the Dahlonega gold belt, becoming an internal eastern Blue Ridge thrust at Dawsonville, Georgia. Although that sequence extends another 120 km into North Carolina, continuation of the Allatoona fault that additional distance is in debate. Regardless, the Allatoona is one of the kinematically latest and longest faults in the southern Appalachian orogen.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48225007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Moulas, Y. Podladchikov, K. Zingerman, A. Vershinin, V. Levin
Mineral inclusions are trapped in a variety of geological environments and physical conditions. If brought to conditions different than their entrapment, mineral inclusions will generally experience different stress conditions than their hosts due to differences in their thermo-elastic properties and the associated deformation. These stress differences develop both in prograde and retrograde metamorphic conditions. The currently available analytical solutions consider isotropic materials and employ either fully linear-elastic behavior or they account for the non-linear-elastic volumetric deformation of minerals. Here we show that, by taking into account the finite volumetric deformation, we are able to explain the systematic differences amongst the available linear and non-linear elastic solutions. Furthermore, we employ a newly derived analytical solution for fully non-linear elastic materials (generalized Varga materials) to the host-inclusion problem. This solution considers both the geometric non-linearity and the material non-linearity by employing a Murnaghan equation of state. Our results show that the complete non-linear, hyperelastic behavior is not needed to explain the pressure differences that develop in common, unreacting, host-inclusion systems. The effects of plastic yielding are also investigated for the case of large finite deformations that can be relevant for the cases of phase transitions and mineral reactions that induce significant volume changes. Our results show that in the case of very large volumetric deformations the incorporation of finite strain effects may become important. Moreover, depending on the yield stress of the materials, the effects of plasticity may be dominant. In the latter case, significant pressure gradients will be developed as a consequence of stress balance. These results are general and they can also be used for elastic-barometry/volcanology applications and for benchmarking compressible Navier-Stokes geodynamic models. Accurate stress predictions in mechanical problems with large volumetric deformation can be significant in modeling the effects of mineral reactions that are generally non-isochoric.
{"title":"Large-strain Elastic and Elasto-Plastic Formulations for Host-Inclusion Systems and Their Applications in Thermobarometry and Geodynamics","authors":"E. Moulas, Y. Podladchikov, K. Zingerman, A. Vershinin, V. Levin","doi":"10.2475/001c.68195","DOIUrl":"https://doi.org/10.2475/001c.68195","url":null,"abstract":"Mineral inclusions are trapped in a variety of geological environments and physical conditions. If brought to conditions different than their entrapment, mineral inclusions will generally experience different stress conditions than their hosts due to differences in their thermo-elastic properties and the associated deformation. These stress differences develop both in prograde and retrograde metamorphic conditions. The currently available analytical solutions consider isotropic materials and employ either fully linear-elastic behavior or they account for the non-linear-elastic volumetric deformation of minerals. Here we show that, by taking into account the finite volumetric deformation, we are able to explain the systematic differences amongst the available linear and non-linear elastic solutions. Furthermore, we employ a newly derived analytical solution for fully non-linear elastic materials (generalized Varga materials) to the host-inclusion problem. This solution considers both the geometric non-linearity and the material non-linearity by employing a Murnaghan equation of state. Our results show that the complete non-linear, hyperelastic behavior is not needed to explain the pressure differences that develop in common, unreacting, host-inclusion systems. The effects of plastic yielding are also investigated for the case of large finite deformations that can be relevant for the cases of phase transitions and mineral reactions that induce significant volume changes. Our results show that in the case of very large volumetric deformations the incorporation of finite strain effects may become important. Moreover, depending on the yield stress of the materials, the effects of plasticity may be dominant. In the latter case, significant pressure gradients will be developed as a consequence of stress balance. These results are general and they can also be used for elastic-barometry/volcanology applications and for benchmarking compressible Navier-Stokes geodynamic models. Accurate stress predictions in mechanical problems with large volumetric deformation can be significant in modeling the effects of mineral reactions that are generally non-isochoric.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46995022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite its importance, only a few researchers have incorporated the effects of fracturing into models of reactive transport for rock weathering. Here we explore 2D simulations that describe weathering under conditions of diffusive and advective transport within heterogeneous media consisting of rocky blocks and fractures. In our simulations, the Darcy velocities vary in space and time and depend on weathering processes within the rock matrix. We explore simulations with saturated and unsaturated flow for weathering bedrock that consists of blocks separated by inert or weathered material. The simulations show that a simplified homogenized model can approximate exact solutions for some of the simulated columns and hills and can allow exploration of coupling between flow and reaction in fractured rock. These hillslope simulations document that, even in the presence of 2D water flow, i) an increase in fracture density results in faster weathering advance rates; and ii) the water table locates deeper for a rock system that is weathered and fractured rather than weathered and unfractured. Some of these patterns have also been observed for natural systems. But these simulations also highlight how simplified models that do not use appropriate averaging of heterogeneities can be inaccurate in predicting weathering rate for natural systems. For example, if water flows both vertically and laterally through the vadose zone of a hill, then a prediction of the depth of regolith that is based on modeling strictly unidirectional downward infiltration will be unrealistically large. Likewise, if the fracture density observed near the land surface is used in a model to predict depth of weathering for a system where the fracture density decreases downward, the model will overestimate regolith depth. Learning how to develop accurately homogenized models could thus enable better conceptual models and predictions of weathering advance in natural systems.
{"title":"Using Homogenized Models to Explore the Effect of Fracture Densities on Weathering","authors":"M. Lebedeva, S. Brantley","doi":"10.2475/001c.68308","DOIUrl":"https://doi.org/10.2475/001c.68308","url":null,"abstract":"Despite its importance, only a few researchers have incorporated the effects of fracturing into models of reactive transport for rock weathering. Here we explore 2D simulations that describe weathering under conditions of diffusive and advective transport within heterogeneous media consisting of rocky blocks and fractures. In our simulations, the Darcy velocities vary in space and time and depend on weathering processes within the rock matrix. We explore simulations with saturated and unsaturated flow for weathering bedrock that consists of blocks separated by inert or weathered material. The simulations show that a simplified homogenized model can approximate exact solutions for some of the simulated columns and hills and can allow exploration of coupling between flow and reaction in fractured rock. These hillslope simulations document that, even in the presence of 2D water flow, i) an increase in fracture density results in faster weathering advance rates; and ii) the water table locates deeper for a rock system that is weathered and fractured rather than weathered and unfractured. Some of these patterns have also been observed for natural systems. But these simulations also highlight how simplified models that do not use appropriate averaging of heterogeneities can be inaccurate in predicting weathering rate for natural systems. For example, if water flows both vertically and laterally through the vadose zone of a hill, then a prediction of the depth of regolith that is based on modeling strictly unidirectional downward infiltration will be unrealistically large. Likewise, if the fracture density observed near the land surface is used in a model to predict depth of weathering for a system where the fracture density decreases downward, the model will overestimate regolith depth. Learning how to develop accurately homogenized models could thus enable better conceptual models and predictions of weathering advance in natural systems.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43884486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Colleps, N. McKenzie, P. A. van der Beek, W. Guenthner, Mukund Sharma, A. Nordsvan, D. Stockli
Modern approaches in low-temperature thermochronometry are capable of extracting long-term thermal histories from cratonic settings that may elucidate potential drivers of deep-time phases of intracontinental burial and erosion. Here, we assess the utilization of the Radiation Damage Accumulation and Annealing Model for apatite (RDAAM) and zircon (ZRDAAM) to track the long-term low-temperature thermal evolution of the Archean Bundelkhand craton and the surrounding undeformed strata of the ∼1.7–0.9 Ga Vindhyan successions in central India. We correspondingly interpret a complex basement and detrital zircon and apatite (U-Th)/He (ZHe and AHe, respectively) dataset in light of observed model limitations and known geologic context. ZHe and AHe dates from across the craton reveal a significant (>300 Myr) date inversion between the two systems within grains with moderate to high effective uranium (eU) concentrations. Inverse thermal models utilizing current ZRDAAM and RDAAM parameters are not capable of reproducing observed coupled basement ZHe and AHe data for the same thermal history. However, meaningful thermal information can be extracted from AHe inverse models coupled with a forward modeling approach applied to detrital ZHe data from Vindhyan deposits, which have notably lower eU concentrations and yield significantly older ZHe dates (between ∼1,475 and 575 Ma) than basement zircon. Resulting thermal models indicate that the Bundelkhand craton experienced peak burial temperatures of ∼150°C between 850 and 475 Ma, followed by a major crustal cooling event at ∼350–310 Ma, possibly driven by late Paleozoic glaciations and/or epeirorogenic uplift. Inverse models including AHe data require a Deccan Traps related thermal perturbation between ∼66 and 65 Ma, and we suspect that this event overprinted basement zircon with moderate to high eU concentrations. Although the effects of zonation, grain morphology, and/or uncertainties in damage-annealing parameters contribute to disparities between predicted and observed AHe and ZHe dates, these factors alone cannot account for the major ZHe and AHe date inversion observed from the Bundelkhand craton. Instead, it is likely the case that current damage-dependent models for 4He diffusion are not adequately calibrated at the resolution necessary to predict short-lived thermal perturbations that occurred in a late phase relative to a prolonged period of extensive damage accumulation.
低温热年代学的现代方法能够从克拉通环境中提取长期热历史,这可能阐明陆内埋藏和侵蚀的深层时间阶段的潜在驱动因素。在这里,我们评估了磷灰石(RDAAM)和锆石(ZRDAAM)辐射损伤累积和退火模型的使用情况,以跟踪印度中部太古宙Bundelkhand克拉通和~1.7–0.9 Ga Vindhyan序列周围未变形地层的长期低温热演化。根据观察到的模型限制和已知的地质背景,我们相应地解释了复杂的基底和碎屑锆石和磷灰石(U-Th)/He(分别为ZHe和AHe)数据集。整个克拉通的ZHe和AHe日期显示,在具有中等至高有效铀(eU)浓度的颗粒内,两个系统之间存在显著的(>300 Myr)日期反演。利用当前ZRDAAM和RDAAM参数的逆热模型不能再现相同热历史的观测到的耦合基底ZHe和AHe数据。然而,可以从AHe反演模型中提取有意义的热信息,再加上应用于Vindhyan矿床碎屑ZHe数据的正演建模方法,这些矿床的eU浓度明显较低,产生的ZHe日期(约1475至575 Ma)明显早于基底锆石。由此产生的热模型表明,Bundelkhand克拉通在850至475 Ma之间经历了约150°C的峰值埋藏温度,随后在约350至310 Ma发生了一次主要的地壳冷却事件,可能是由晚古生代冰川作用和/或表生隆升驱动的。包括AHe数据在内的反演模型需要在~66和65Ma之间的Deccan Traps相关热扰动,我们怀疑这一事件叠加了具有中高eU浓度的基底锆石。尽管分区、晶粒形态和/或损伤退火参数的不确定性的影响导致了预测和观测到的AHe和ZHe日期之间的差异,但仅凭这些因素并不能解释从Bundelkhand克拉通观测到的主要ZHe和AHe日期反演。相反,可能的情况是,4He扩散的当前损伤相关模型没有以预测短时间热扰动所需的分辨率进行充分校准,该热扰动发生在相对于长时间的广泛损伤累积的后期阶段。
{"title":"Assessing the long-term low-temperature thermal evolution of the central Indian Bundelkhand craton with a complex apatite and zircon (U-Th)/He dataset","authors":"C. Colleps, N. McKenzie, P. A. van der Beek, W. Guenthner, Mukund Sharma, A. Nordsvan, D. Stockli","doi":"10.2475/10.2022.01","DOIUrl":"https://doi.org/10.2475/10.2022.01","url":null,"abstract":"Modern approaches in low-temperature thermochronometry are capable of extracting long-term thermal histories from cratonic settings that may elucidate potential drivers of deep-time phases of intracontinental burial and erosion. Here, we assess the utilization of the Radiation Damage Accumulation and Annealing Model for apatite (RDAAM) and zircon (ZRDAAM) to track the long-term low-temperature thermal evolution of the Archean Bundelkhand craton and the surrounding undeformed strata of the ∼1.7–0.9 Ga Vindhyan successions in central India. We correspondingly interpret a complex basement and detrital zircon and apatite (U-Th)/He (ZHe and AHe, respectively) dataset in light of observed model limitations and known geologic context. ZHe and AHe dates from across the craton reveal a significant (>300 Myr) date inversion between the two systems within grains with moderate to high effective uranium (eU) concentrations. Inverse thermal models utilizing current ZRDAAM and RDAAM parameters are not capable of reproducing observed coupled basement ZHe and AHe data for the same thermal history. However, meaningful thermal information can be extracted from AHe inverse models coupled with a forward modeling approach applied to detrital ZHe data from Vindhyan deposits, which have notably lower eU concentrations and yield significantly older ZHe dates (between ∼1,475 and 575 Ma) than basement zircon. Resulting thermal models indicate that the Bundelkhand craton experienced peak burial temperatures of ∼150°C between 850 and 475 Ma, followed by a major crustal cooling event at ∼350–310 Ma, possibly driven by late Paleozoic glaciations and/or epeirorogenic uplift. Inverse models including AHe data require a Deccan Traps related thermal perturbation between ∼66 and 65 Ma, and we suspect that this event overprinted basement zircon with moderate to high eU concentrations. Although the effects of zonation, grain morphology, and/or uncertainties in damage-annealing parameters contribute to disparities between predicted and observed AHe and ZHe dates, these factors alone cannot account for the major ZHe and AHe date inversion observed from the Bundelkhand craton. Instead, it is likely the case that current damage-dependent models for 4He diffusion are not adequately calibrated at the resolution necessary to predict short-lived thermal perturbations that occurred in a late phase relative to a prolonged period of extensive damage accumulation.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":"322 1","pages":"1089 - 1123"},"PeriodicalIF":2.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42882126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stratigraphic variations in the carbon isotope composition of marine limestones (δ13Ccarb) have been widely reported from the Guadalupian, particularly in the uppermost Capitanian, but the extent to which they reflect global carbon cycle dynamics remains in dispute. Resolving these uncertainties is critical for interpreting the dynamics of the carbon cycle during the Guadalupian as well as for testing hypothesized circumstances of the marine extinction event during the Capitanian (latest Guadalupian). To assess the local versus global causes of stratigraphic variations in δ13Ccarb, here we report δ13Ccarb values from Guadalupian strata in the Hambast Valley, Abadeh region, southwest Iran, in two sections. We then compare the data from the two sections (Abadeh-1 and Abadeh-2) to data from numerous other well-studied sections that were distant from central Iran at the time of deposition. In the Hambast sections, there are broad excursions of δ13Ccarb, of up to 3‰. However, the δ13Ccarb values do not show any remarkable shifts across the Wordian/Capitanian or Capitanian/Wuchiapingian boundaries in the Abadeh-1 section. An excursion occurs near the Capitanian/Wuchiapingian boundary in the Abadeh-2 section but is associated with elemental and oxygen-isotope evidence for diagenetic resetting. The lack of reproducibility in the δ13Ccarb shifts between the two studied sections at Abadeh and evidence for diagenetic resetting in association with negative excursions are consistent with evidence from other, previously reported, study sites that negative excursions can be accounted for by local primary or diagenetic factors and do not require any global perturbation of the carbon cycle through this interval. When carbonate values are compared with previously published organic carbon isotope data and carbonate sections are compared for shared isotope features, the primary global signal that is supported by the data is one of stable and relatively heavy values of δ13Ccarb in marine limestone during the Guadalupian.
{"title":"Guadalupian carbon isotope stratigraphy indicates extended interval of carbon cycle stability","authors":"S. Arefifard, J. Payne, M. Rizzi","doi":"10.2475/09.2022.01","DOIUrl":"https://doi.org/10.2475/09.2022.01","url":null,"abstract":"Stratigraphic variations in the carbon isotope composition of marine limestones (δ13Ccarb) have been widely reported from the Guadalupian, particularly in the uppermost Capitanian, but the extent to which they reflect global carbon cycle dynamics remains in dispute. Resolving these uncertainties is critical for interpreting the dynamics of the carbon cycle during the Guadalupian as well as for testing hypothesized circumstances of the marine extinction event during the Capitanian (latest Guadalupian). To assess the local versus global causes of stratigraphic variations in δ13Ccarb, here we report δ13Ccarb values from Guadalupian strata in the Hambast Valley, Abadeh region, southwest Iran, in two sections. We then compare the data from the two sections (Abadeh-1 and Abadeh-2) to data from numerous other well-studied sections that were distant from central Iran at the time of deposition. In the Hambast sections, there are broad excursions of δ13Ccarb, of up to 3‰. However, the δ13Ccarb values do not show any remarkable shifts across the Wordian/Capitanian or Capitanian/Wuchiapingian boundaries in the Abadeh-1 section. An excursion occurs near the Capitanian/Wuchiapingian boundary in the Abadeh-2 section but is associated with elemental and oxygen-isotope evidence for diagenetic resetting. The lack of reproducibility in the δ13Ccarb shifts between the two studied sections at Abadeh and evidence for diagenetic resetting in association with negative excursions are consistent with evidence from other, previously reported, study sites that negative excursions can be accounted for by local primary or diagenetic factors and do not require any global perturbation of the carbon cycle through this interval. When carbonate values are compared with previously published organic carbon isotope data and carbonate sections are compared for shared isotope features, the primary global signal that is supported by the data is one of stable and relatively heavy values of δ13Ccarb in marine limestone during the Guadalupian.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":"322 1","pages":"1019 - 1046"},"PeriodicalIF":2.9,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46381319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Davis, L. Reeher, G. Jepson, B. Carrapa, P. DeCelles, Kayla M. Chaudoir
Interpretation of the late Cretaceous to Eocene Laramide tectonic evolution of the Colorado Plateau is hampered by the difficulty of placing precise temporal constraints on fault-induced basement uplift, for there is a paucity of exposed basement from which thermochronologic ages might be obtained. The Defiance and Zuni uplifts, located on the southeasternmost Colorado Plateau, offer rare basement exposure that provide additional temporal insights. The Zuni uplift exposes abundant Precambrian basement rock, which has been the subject of previous apatite thermochronologic study to interpret low-temperature tectonic/exhumation history. In the Defiance uplift region, which is the main focus of this study, there are two outcrop areas of Precambrian-basement rock along the trace of the East Defiance monocline. Both sites are quarries. Uplift/erosion consequences of Pennsylvanian-Permian Ancestral Rocky Mountains (ARM) deformation are explicit in the geology of these quarries, for the contact between the Supai Group (Permian) and underlying basement (1,703 ± 1.3 Ma, zircon U-Pb) is a nonconformity. Here, we apply a combination of structural analysis of Laramide fold/fault relations and multi-method thermochronology to the exposed granitic basement of both the Defiance and Zuni uplifts. Zircon U-Pb, zircon (U-Th)/He, apatite fission-track, apatite (U-Th-Sm)/He, and hematite (U-Th)/He reveal a poly-phase thermo-tectonic history. Initially, the Paleo-Proterozoic 1.7 Ga basement cooled to ∼400 °C by at least 1.4 Ga, followed by 1.4–1.0 Ga unroofing to depths of ∼8 km. Following cooling, the Defiance-Zuni granitic basement experienced protracted residence at temperatures ≤200 °C (∼8 km) between ca. 900 and 600 Ma. Sedimentary evidence and hematite (U-Th)/He dates bracket the ARM event (400–200 Ma), which may suggest fluid-rock interaction or near-surface exposure associated with the ARM. Following the ARM, the Defiance uplift experienced heating (>120 °C) associated with burial consistent with the stratigraphic overburden, until approximately 80 Ma. Finally, the Defiance-Zuni region experienced initial cooling at <70 Ma, with the main phase of exhumation to the upper crust (<2 km) at ca. 60–40 Ma. Detailed structural modeling along 15 normal-profile cross-sections across the east margin of the Defiance uplift reveals that Laramide trishear monoclinal folding was generated by an oblique-slip master fault that partitioned ∼8 km of strike-slip and ∼1.5 km of reverse-slip displacement. Inferred strike-slip compartmental faulting in the Zuni uplift appears to fit coherently within this overall kinematic model in relation to Laramide loading direction. In the context of geodynamic models for flat-slab subduction during the Laramide tectonic event, consideration of new data from the Defiance uplift (along with other recently reported thermochronology data) provides support for models that bring the flat slab beneath North America along an east-northeastward trajec
{"title":"Structure and thermochronology of basement/cover relations along the Defiance uplift (AZ and NM), and implications regarding Laramide tectonic evolution of the Colorado Plateau","authors":"G. Davis, L. Reeher, G. Jepson, B. Carrapa, P. DeCelles, Kayla M. Chaudoir","doi":"10.2475/09.2022.02","DOIUrl":"https://doi.org/10.2475/09.2022.02","url":null,"abstract":"Interpretation of the late Cretaceous to Eocene Laramide tectonic evolution of the Colorado Plateau is hampered by the difficulty of placing precise temporal constraints on fault-induced basement uplift, for there is a paucity of exposed basement from which thermochronologic ages might be obtained. The Defiance and Zuni uplifts, located on the southeasternmost Colorado Plateau, offer rare basement exposure that provide additional temporal insights. The Zuni uplift exposes abundant Precambrian basement rock, which has been the subject of previous apatite thermochronologic study to interpret low-temperature tectonic/exhumation history. In the Defiance uplift region, which is the main focus of this study, there are two outcrop areas of Precambrian-basement rock along the trace of the East Defiance monocline. Both sites are quarries. Uplift/erosion consequences of Pennsylvanian-Permian Ancestral Rocky Mountains (ARM) deformation are explicit in the geology of these quarries, for the contact between the Supai Group (Permian) and underlying basement (1,703 ± 1.3 Ma, zircon U-Pb) is a nonconformity. Here, we apply a combination of structural analysis of Laramide fold/fault relations and multi-method thermochronology to the exposed granitic basement of both the Defiance and Zuni uplifts. Zircon U-Pb, zircon (U-Th)/He, apatite fission-track, apatite (U-Th-Sm)/He, and hematite (U-Th)/He reveal a poly-phase thermo-tectonic history. Initially, the Paleo-Proterozoic 1.7 Ga basement cooled to ∼400 °C by at least 1.4 Ga, followed by 1.4–1.0 Ga unroofing to depths of ∼8 km. Following cooling, the Defiance-Zuni granitic basement experienced protracted residence at temperatures ≤200 °C (∼8 km) between ca. 900 and 600 Ma. Sedimentary evidence and hematite (U-Th)/He dates bracket the ARM event (400–200 Ma), which may suggest fluid-rock interaction or near-surface exposure associated with the ARM. Following the ARM, the Defiance uplift experienced heating (>120 °C) associated with burial consistent with the stratigraphic overburden, until approximately 80 Ma. Finally, the Defiance-Zuni region experienced initial cooling at <70 Ma, with the main phase of exhumation to the upper crust (<2 km) at ca. 60–40 Ma. Detailed structural modeling along 15 normal-profile cross-sections across the east margin of the Defiance uplift reveals that Laramide trishear monoclinal folding was generated by an oblique-slip master fault that partitioned ∼8 km of strike-slip and ∼1.5 km of reverse-slip displacement. Inferred strike-slip compartmental faulting in the Zuni uplift appears to fit coherently within this overall kinematic model in relation to Laramide loading direction. In the context of geodynamic models for flat-slab subduction during the Laramide tectonic event, consideration of new data from the Defiance uplift (along with other recently reported thermochronology data) provides support for models that bring the flat slab beneath North America along an east-northeastward trajec","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":"322 1","pages":"1047 - 1087"},"PeriodicalIF":2.9,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42896222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanning Wang, Shengchao Xue, R. Klemd, Lin Yang, F. Zhao, Qingfei Wang
Geochronological investigations of mafic dikes along the southwestern margin of the Emeishan large igneous province (ELIP) in the South China block display a restricted range of U-Pb zircon, baddeleyite, and apatite isotopic ages ranging from 263 to 257 Ma, which overlaps with that of previously studied ELIP basalts and mafic intrusions. The dikes are divided into high-Ti and low-Ti groups, whereby the latter is further divided into two subgroups (low-Ti group-1 and -2). The high-Ti group rocks (Ti/Y > 500) are characterized by ocean island basalt-like trace element patterns with mantle-like zircon δ18O of 5.0 ± 0.10‰ and slightly enriched εNd(t) values of −1.0 to +1.0. The low-Ti group-1 rocks (Ti/Y < 500) have trace element patterns similar to those of the high-Ti group, yet generally with weak negative Nb-Ta anomalies, lower (Sm/Yb)N ratios, elevated zircon δ18O (6.6 ± 0.33 ‰), and highly variable εNd(t) values (−3.9 to +3.2). The low-Ti group-2 rocks (Ti/Y < 500) are characterized by pronounced negative Nb-Ta anomalies, more negative εNd(t) (−8.4 to −6.6) values, and higher initial 87Sr/86Sr ratios than those of the other two groups. The compositional variations of the high-Ti group and the low-Ti group-1 rocks, in conjunction with the negative correlation between the εNd(t) values and the (Th/Nb)N ratios, suggest that the two groups were generated from an isotopically heterogeneous mantle plume at different depths, and experienced varying degrees of crustal contamination (but < 20 wt.%). The high-Ti group rocks are considered to have originated from a deeper garnet-stable source, and the low-Ti group-1 rocks from a shallower source. Mixing calculations indicate that the highly enriched Sr-Nd isotopes of the low-Ti group-2 rocks cannot be explained by crustal contamination. A subduction-modified mantle source is required to account for the arc-like geochemical characteristics of this group. This is consistent with the spatial overlap of the low-Ti group-2 rocks and previously studied geochemically similar samples with rocks from the Neoproterozoic subduction zone along the western margin of the South China block. Furthermore, a fertilized mantle is also consistent with the variable δ18O values of various mafic-ultramafic rocks of the western and central ELIP due to the involvement of recycled oceanic crustal materials. Our results are in accordance with the model that the western ELIP late Permian magmatism was generated by the interaction of two distinct sources, that is, an isotopically heterogenous mantle plume and a Neoproterozoic subduction-modified, Nd isotope-enriched lithospheric mantle with distinct heterogenous oxygen isotope characteristics.
{"title":"Late Permian plume and Neoproterozoic subduction-modified mantle interaction: Insights from geochronology and Sr-Nd-O isotopes of mafic dikes of the western Emeishan large igneous province","authors":"Yanning Wang, Shengchao Xue, R. Klemd, Lin Yang, F. Zhao, Qingfei Wang","doi":"10.2475/08.2022.02","DOIUrl":"https://doi.org/10.2475/08.2022.02","url":null,"abstract":"Geochronological investigations of mafic dikes along the southwestern margin of the Emeishan large igneous province (ELIP) in the South China block display a restricted range of U-Pb zircon, baddeleyite, and apatite isotopic ages ranging from 263 to 257 Ma, which overlaps with that of previously studied ELIP basalts and mafic intrusions. The dikes are divided into high-Ti and low-Ti groups, whereby the latter is further divided into two subgroups (low-Ti group-1 and -2). The high-Ti group rocks (Ti/Y > 500) are characterized by ocean island basalt-like trace element patterns with mantle-like zircon δ18O of 5.0 ± 0.10‰ and slightly enriched εNd(t) values of −1.0 to +1.0. The low-Ti group-1 rocks (Ti/Y < 500) have trace element patterns similar to those of the high-Ti group, yet generally with weak negative Nb-Ta anomalies, lower (Sm/Yb)N ratios, elevated zircon δ18O (6.6 ± 0.33 ‰), and highly variable εNd(t) values (−3.9 to +3.2). The low-Ti group-2 rocks (Ti/Y < 500) are characterized by pronounced negative Nb-Ta anomalies, more negative εNd(t) (−8.4 to −6.6) values, and higher initial 87Sr/86Sr ratios than those of the other two groups. The compositional variations of the high-Ti group and the low-Ti group-1 rocks, in conjunction with the negative correlation between the εNd(t) values and the (Th/Nb)N ratios, suggest that the two groups were generated from an isotopically heterogeneous mantle plume at different depths, and experienced varying degrees of crustal contamination (but < 20 wt.%). The high-Ti group rocks are considered to have originated from a deeper garnet-stable source, and the low-Ti group-1 rocks from a shallower source. Mixing calculations indicate that the highly enriched Sr-Nd isotopes of the low-Ti group-2 rocks cannot be explained by crustal contamination. A subduction-modified mantle source is required to account for the arc-like geochemical characteristics of this group. This is consistent with the spatial overlap of the low-Ti group-2 rocks and previously studied geochemically similar samples with rocks from the Neoproterozoic subduction zone along the western margin of the South China block. Furthermore, a fertilized mantle is also consistent with the variable δ18O values of various mafic-ultramafic rocks of the western and central ELIP due to the involvement of recycled oceanic crustal materials. Our results are in accordance with the model that the western ELIP late Permian magmatism was generated by the interaction of two distinct sources, that is, an isotopically heterogenous mantle plume and a Neoproterozoic subduction-modified, Nd isotope-enriched lithospheric mantle with distinct heterogenous oxygen isotope characteristics.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":"322 1","pages":"993 - 1018"},"PeriodicalIF":2.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47673724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Bradley, D. Evans, P. O’Sullivan, Cliff D. Taylor, B. Eglington
Detrital zircon data are reported from Mesoproterozoic to Ordovician strata from two tectonic domains in Mauritania: 14 samples from the Taoudeni Basin of the West African Craton and 15 samples from the Mauritanide orogen. Taoudeni Basin samples show four sequential, distinctive detrital zircon age distributions, which we refer to as “barcodes”. From old to young these are the Char, Assabet, Téniagouri, and Oujeft barcodes, each named for a constituent stratigraphic unit. Zircon age maxima are as follows, with the dominant ones in italics. The Char barcode, from Mesoproterozoic (ca. 1100 Ma) strata including the Char Group, yielded zircon age maxima at 2941, 2871, 2703, 2447, 2076, and 2041 Ma, all potentially traceable to sources in the West African Craton. The Assabet barcode is from strata, including the eponymous Assabet el Hassiane Group, that were deposited between ca. 883 and ca. 570 Ma; it has age maxima at 2137, 2053, 1769, 1510, 1212, 1021, and 936 Ma and a pronounced minimum during Geon 16 (1699–1600 Ma). The Assabet's Mesoproterozoic to early Neoproterozoic zircons cannot have come from the West African Craton or any of its surrounding orogens. The Téniagouri barcode, which takes its name from the Téniagouri Group, was deposited at ca. 569 Ma; it has dominant maxima at 1983, 1872, 1522, 1215, 1109, 988, and 601 Ma and resembles the Assabet barcode but with the addition of the youngest population. The Oujeft barcode, named for the Oujeft Group, is from strata deposited between 541 or slightly earlier and 444 Ma or younger, has age maxima at 2124, 2053, 1197, 624 and 579 Ma. The Téniagouri and Oujeft barcodes record input from Pan-African orogens. In the Mauritanide orogen, most of the metasedimentary rock units that were sampled yielded detrital zircon age spectra that match one of the Taoudeni Basin barcodes. These results imply new depositional age constraints based on barcode correlation and suggest affinities between Mauritanide strata and the West African Craton. Detrital zircon age distributions that broadly resemble the Assabet barcode occur in the Neoproterozoic of Morocco, Ghana, Greece, Russia, Brazil, and, in the Appalachian orogen of Canada and the United States, Avalonia and Ganderia. The recent Rodinia reconstruction of Evans (2021) restores these far-flung localities to a more compact area, with Avalonia, Ganderia, and other peri-Gondwanan terranes occupying an oblong area between Amazonia, Laurentia, Baltica, and West Africa. Our preferred explanation is that most of these places received detritus via the same continent-scale fluvial system as the West African craton. Among the craton's nearest Rodinia neighbors in the Evans (2021) reconstruction for 900 Ma, Amazonia has known igneous rocks corresponding to all of the major Assabet age populations, and also a lull, though not a complete magmatic gap, during Geon 16. This is consistent with overall north-directed paleocurrents in the Assabet El Hassiane Group and its cor
本文报道了毛里塔尼亚两个构造域中元古代至奥陶系地层的碎屑锆石资料:西非克拉通Taoudeni盆地14份,毛里塔尼亚造山带15份。陶德尼盆地样品显示出4个顺序分明的碎屑锆石年龄分布,我们称之为“条形码”。从老到年轻分别是Char, Assabet, tsamniagouri和Oujeft条形码,每个条形码都以一个组成地层单位命名。锆石年龄最大值如下,以斜体为优势值。中元古代(约1100 Ma)地层(包括Char群)的Char条形码测得的锆石年龄最大值分别为2941、2871、2703、2447、2076和2041 Ma,均可能溯源于西非克拉通。Assabet条形码来自地层,包括同名的Assabet el Hassiane组,沉积于约883至约570 Ma之间;其年龄最大值在2137、2053、1769、1510、1212、1021和936 Ma,最小值在1699 ~ 1600 Ma。阿萨比特的中元古代至新元古代早期锆石不可能来自西非克拉通或其周围的任何造山带。tsamiagouri条形码,它的名字来自tsamiagouri组,大约在569 Ma;它在1983年、1872年、1522年、1215年、1109年、988年和601年有优势的最大值,类似于Assabet条形码,但增加了最年轻的人口。以Oujeft群命名的Oujeft条形码来自于541或稍早至444 Ma或更年轻的地层,其年龄最大值为2124、2053、1197、624和579 Ma。tsamniagouri和Oujeft条形码记录了来自泛非造山带的输入。在茅里塔尼造山带,大多数变质沉积岩单元的碎屑锆石年龄谱与陶德尼盆地的一个条形码相匹配。这些结果暗示了基于条形码对比的新的沉积时代约束,并表明毛里塔尼地层与西非克拉通之间存在亲缘关系。与Assabet条形码大致相似的碎屑锆石年龄分布出现在摩洛哥、加纳、希腊、俄罗斯、巴西的新元古代,以及加拿大和美国的阿巴拉契亚造山带Avalonia和Ganderia。最近的Rodinia重建Evans(2021)将这些遥远的地区恢复到一个更紧凑的区域,Avalonia, Ganderia和其他周边冈瓦南地区占据了亚马逊,劳伦西亚,波罗的海和西非之间的长方形区域。我们更喜欢的解释是,这些地方中的大多数都是通过与西非克拉通相同的大陆尺度河流系统接收碎屑的。在埃文斯(2021)900 Ma重建中,在克拉通最近的Rodinia邻居中,亚马逊地区已知的火成岩与所有主要的Assabet时代人口相对应,并且在Geon 16期间也有一个平静期,尽管不是完整的岩浆缺口。这与Assabet El Hassiane群及其在西非克拉通上的同类群的整体北向古流一致。
{"title":"The Assabet barcode: Mesoproterozoic detrital zircons in Neoproterozoic strata from Mauritania, West Africa","authors":"D. Bradley, D. Evans, P. O’Sullivan, Cliff D. Taylor, B. Eglington","doi":"10.2475/08.2022.01","DOIUrl":"https://doi.org/10.2475/08.2022.01","url":null,"abstract":"Detrital zircon data are reported from Mesoproterozoic to Ordovician strata from two tectonic domains in Mauritania: 14 samples from the Taoudeni Basin of the West African Craton and 15 samples from the Mauritanide orogen. Taoudeni Basin samples show four sequential, distinctive detrital zircon age distributions, which we refer to as “barcodes”. From old to young these are the Char, Assabet, Téniagouri, and Oujeft barcodes, each named for a constituent stratigraphic unit. Zircon age maxima are as follows, with the dominant ones in italics. The Char barcode, from Mesoproterozoic (ca. 1100 Ma) strata including the Char Group, yielded zircon age maxima at 2941, 2871, 2703, 2447, 2076, and 2041 Ma, all potentially traceable to sources in the West African Craton. The Assabet barcode is from strata, including the eponymous Assabet el Hassiane Group, that were deposited between ca. 883 and ca. 570 Ma; it has age maxima at 2137, 2053, 1769, 1510, 1212, 1021, and 936 Ma and a pronounced minimum during Geon 16 (1699–1600 Ma). The Assabet's Mesoproterozoic to early Neoproterozoic zircons cannot have come from the West African Craton or any of its surrounding orogens. The Téniagouri barcode, which takes its name from the Téniagouri Group, was deposited at ca. 569 Ma; it has dominant maxima at 1983, 1872, 1522, 1215, 1109, 988, and 601 Ma and resembles the Assabet barcode but with the addition of the youngest population. The Oujeft barcode, named for the Oujeft Group, is from strata deposited between 541 or slightly earlier and 444 Ma or younger, has age maxima at 2124, 2053, 1197, 624 and 579 Ma. The Téniagouri and Oujeft barcodes record input from Pan-African orogens. In the Mauritanide orogen, most of the metasedimentary rock units that were sampled yielded detrital zircon age spectra that match one of the Taoudeni Basin barcodes. These results imply new depositional age constraints based on barcode correlation and suggest affinities between Mauritanide strata and the West African Craton. Detrital zircon age distributions that broadly resemble the Assabet barcode occur in the Neoproterozoic of Morocco, Ghana, Greece, Russia, Brazil, and, in the Appalachian orogen of Canada and the United States, Avalonia and Ganderia. The recent Rodinia reconstruction of Evans (2021) restores these far-flung localities to a more compact area, with Avalonia, Ganderia, and other peri-Gondwanan terranes occupying an oblong area between Amazonia, Laurentia, Baltica, and West Africa. Our preferred explanation is that most of these places received detritus via the same continent-scale fluvial system as the West African craton. Among the craton's nearest Rodinia neighbors in the Evans (2021) reconstruction for 900 Ma, Amazonia has known igneous rocks corresponding to all of the major Assabet age populations, and also a lull, though not a complete magmatic gap, during Geon 16. This is consistent with overall north-directed paleocurrents in the Assabet El Hassiane Group and its cor","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":"322 1","pages":"939 - 992"},"PeriodicalIF":2.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46463940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}