Pub Date : 2016-02-22DOI: 10.1007/978-4-431-55031-0_21
H. Onishi, T. Morisaki, M. Katano
{"title":"Regulatory T Cells","authors":"H. Onishi, T. Morisaki, M. Katano","doi":"10.1007/978-4-431-55031-0_21","DOIUrl":"https://doi.org/10.1007/978-4-431-55031-0_21","url":null,"abstract":"","PeriodicalId":77043,"journal":{"name":"Biotherapy (Dordrecht, Netherlands)","volume":"48 1","pages":"309-322"},"PeriodicalIF":0.0,"publicationDate":"2016-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73931855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Serum samples obtained from non-immunocompromised patients treated therapeutically with recombinant cytokines (e.g. Il-1alpha; Il-1beta; Il-2 to Il-18; IFNalpha; GM-CSF; G-CSF; etc.) often reveal the presence of high affinity anti-cytokine antibodies. Antibody Fab binding in a saturable manner by ELISA and RIA or western immunoblotting prove their specificity. Antibody level often increases in these patients with repeated cytokine administration, suggesting boosts of antigen stimulation. However, the appearance in circulation of auto-antibodies to exogenous cytokine is not always associated with a decreased clinical response to therapy. The demonstration that non-neutralizing auto-antibodies to several natural cytokines can be found even in sera of normal healthy individuals never treated before with cytokines and particularly during the last trimester of pregnancy and in cord-blood, suggests that these naturally- occurring and therapeutically-induced auto-antibodies may exert different functions, not only as inhibitors or antagonists but also as beneficial physiological cytokine carriers or regulators of their activity.
{"title":"Natural and therapeutically-induced antibodies to cytokines.","authors":"R P Revoltella","doi":"10.1007/BF02678552","DOIUrl":"https://doi.org/10.1007/BF02678552","url":null,"abstract":"<p><p>Serum samples obtained from non-immunocompromised patients treated therapeutically with recombinant cytokines (e.g. Il-1alpha; Il-1beta; Il-2 to Il-18; IFNalpha; GM-CSF; G-CSF; etc.) often reveal the presence of high affinity anti-cytokine antibodies. Antibody Fab binding in a saturable manner by ELISA and RIA or western immunoblotting prove their specificity. Antibody level often increases in these patients with repeated cytokine administration, suggesting boosts of antigen stimulation. However, the appearance in circulation of auto-antibodies to exogenous cytokine is not always associated with a decreased clinical response to therapy. The demonstration that non-neutralizing auto-antibodies to several natural cytokines can be found even in sera of normal healthy individuals never treated before with cytokines and particularly during the last trimester of pregnancy and in cord-blood, suggests that these naturally- occurring and therapeutically-induced auto-antibodies may exert different functions, not only as inhibitors or antagonists but also as beneficial physiological cytokine carriers or regulators of their activity.</p>","PeriodicalId":77043,"journal":{"name":"Biotherapy (Dordrecht, Netherlands)","volume":"10 4","pages":"321-31"},"PeriodicalIF":0.0,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02678552","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20511642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat shock proteins, or stress proteins have been identified as part of a highly conserved cellular defence mechanism mediated by multiple, distinct gene families and corresponding gene products. As intracellular chaperones, stress proteins participate in many essential biochemical pathways of protein maturation and function active during times of stress and during normal cellular homeostasis. In addition to their well-characterized role as protein chaperones, stress proteins are now realized to possess another important biological property: immunogenicity. Stress proteins are now understood to play a fundamental role in immune surveillance of infection and malignancy and this body of basic research has provided a framework for their clinical application. As key targets of both humoral and cellular immunity during infection, stress proteins have accordingly received considerable research interest as prophylactic vaccines for infectious disease applications. The unique and potent immunostimulatory properties of stress proteins have similarly been applied to the development of new approaches to cancer therapy, including both protein and gene-based modalities.
{"title":"Immune responses to stress proteins: applications to infectious disease and cancer.","authors":"L Mizzen","doi":"10.1007/BF02678295","DOIUrl":"https://doi.org/10.1007/BF02678295","url":null,"abstract":"<p><p>Heat shock proteins, or stress proteins have been identified as part of a highly conserved cellular defence mechanism mediated by multiple, distinct gene families and corresponding gene products. As intracellular chaperones, stress proteins participate in many essential biochemical pathways of protein maturation and function active during times of stress and during normal cellular homeostasis. In addition to their well-characterized role as protein chaperones, stress proteins are now realized to possess another important biological property: immunogenicity. Stress proteins are now understood to play a fundamental role in immune surveillance of infection and malignancy and this body of basic research has provided a framework for their clinical application. As key targets of both humoral and cellular immunity during infection, stress proteins have accordingly received considerable research interest as prophylactic vaccines for infectious disease applications. The unique and potent immunostimulatory properties of stress proteins have similarly been applied to the development of new approaches to cancer therapy, including both protein and gene-based modalities.</p>","PeriodicalId":77043,"journal":{"name":"Biotherapy (Dordrecht, Netherlands)","volume":"10 3","pages":"173-89"},"PeriodicalIF":0.0,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02678295","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20481103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of conventional immunoassays (RIA, ELISA) with surface plasmon resonance for pesticide detection and monitoring.","authors":"R P Revoltella, L Laricchia Robbio, B Liedberg","doi":"10.1023/a:1007930112221","DOIUrl":"https://doi.org/10.1023/a:1007930112221","url":null,"abstract":"","PeriodicalId":77043,"journal":{"name":"Biotherapy (Dordrecht, Netherlands)","volume":"11 2-3","pages":"135-45"},"PeriodicalIF":0.0,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1023/a:1007930112221","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20594030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Eridani, U Mazza, P Massaro, M L La Targia, A T Maiolo, A Mosca
Human pluripotential stem cells (PSC) are currently the target for transplantation attempts and genetic manipulation. We have therefore investigated the frequency and the expansion potential of PSC's in different types of blood samples. CD 34+ cells were thus obtained from human bone marrow (BM), as well as from peripheral blood (PB) and cord blood (CB) samples. After immuno-magnetic separation the highest yields of CD 34+ cells were from BM (1.08-2.25%) and CB (0.42-1.32%) while PB samples gave much lower values. Suspension cultures of PSC's from the three sources were then set up, in the presence of combinations of haemopoietic growth factors. A remarkable amplification of the nucleated cell pool was observed reaching a maximum between 10 and 15 days of culture; earliest and maximum expansion (up to 220-fold) was achieved when Erythropoietin (Epo) was added to the culture medium, but this resulted in reduction of colony-forming cells and differentiation into erythroid progenitors. Clonogenic tests for BFU-E's derived colonies showed a peak value at 5 days of liquid culture. Further studies are advisable to establish the best cytokine combination for a valuable ex vivo expansion, coupled with preservation of stem cell properties.
{"title":"Cytokine effect on ex vivo expansion of haemopoietic stem cells from different human sources.","authors":"S Eridani, U Mazza, P Massaro, M L La Targia, A T Maiolo, A Mosca","doi":"10.1023/a:1008081708054","DOIUrl":"https://doi.org/10.1023/a:1008081708054","url":null,"abstract":"<p><p>Human pluripotential stem cells (PSC) are currently the target for transplantation attempts and genetic manipulation. We have therefore investigated the frequency and the expansion potential of PSC's in different types of blood samples. CD 34+ cells were thus obtained from human bone marrow (BM), as well as from peripheral blood (PB) and cord blood (CB) samples. After immuno-magnetic separation the highest yields of CD 34+ cells were from BM (1.08-2.25%) and CB (0.42-1.32%) while PB samples gave much lower values. Suspension cultures of PSC's from the three sources were then set up, in the presence of combinations of haemopoietic growth factors. A remarkable amplification of the nucleated cell pool was observed reaching a maximum between 10 and 15 days of culture; earliest and maximum expansion (up to 220-fold) was achieved when Erythropoietin (Epo) was added to the culture medium, but this resulted in reduction of colony-forming cells and differentiation into erythroid progenitors. Clonogenic tests for BFU-E's derived colonies showed a peak value at 5 days of liquid culture. Further studies are advisable to establish the best cytokine combination for a valuable ex vivo expansion, coupled with preservation of stem cell properties.</p>","PeriodicalId":77043,"journal":{"name":"Biotherapy (Dordrecht, Netherlands)","volume":"11 4","pages":"291-6"},"PeriodicalIF":0.0,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1023/a:1008081708054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20855797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat shock proteins (HSP) have been shown to participate in the antitumor T cell response. First, HSP play a crucial role in the intracellular pathway for antigen processing where HSP can make complexes with a broad spectrum of cellular proteins and peptides through their chaperone functions. In this pathway, macrophages are required for processing the chaperoned peptides to make stable molecules with the major histocompatibility complex (MHC) class I molecules, even when HSP-peptide complexes are exogenously administered. Through this pathway, vaccination with HSP-peptide complexes is thus able to elicit the response of CD8+ T cells specific for the chaperoned peptides. These findings suggest an essential role of HSP in 'cross-priming' and their usefulness for antitumor vaccination with tumor peptides. Second, HSP have been suggested to be expressed on the cell surface by transformation and, in addition, to function as antigen-presenting molecules for double negative T cells. Third, HSP derived from tumor cells have reportedly been recognized by T cells with either T cell receptor (TCR)-alphabeta or TCR-gammadelta. These lines of evidence therefore indicate that HSP may be potentially promising target molecules for antitumor T cell immunotherapy.
{"title":"Heat shock proteins and the antitumor T cell response.","authors":"M Harada, G Kimura, K Nomoto","doi":"10.1007/BF02678301","DOIUrl":"https://doi.org/10.1007/BF02678301","url":null,"abstract":"<p><p>Heat shock proteins (HSP) have been shown to participate in the antitumor T cell response. First, HSP play a crucial role in the intracellular pathway for antigen processing where HSP can make complexes with a broad spectrum of cellular proteins and peptides through their chaperone functions. In this pathway, macrophages are required for processing the chaperoned peptides to make stable molecules with the major histocompatibility complex (MHC) class I molecules, even when HSP-peptide complexes are exogenously administered. Through this pathway, vaccination with HSP-peptide complexes is thus able to elicit the response of CD8+ T cells specific for the chaperoned peptides. These findings suggest an essential role of HSP in 'cross-priming' and their usefulness for antitumor vaccination with tumor peptides. Second, HSP have been suggested to be expressed on the cell surface by transformation and, in addition, to function as antigen-presenting molecules for double negative T cells. Third, HSP derived from tumor cells have reportedly been recognized by T cells with either T cell receptor (TCR)-alphabeta or TCR-gammadelta. These lines of evidence therefore indicate that HSP may be potentially promising target molecules for antitumor T cell immunotherapy.</p>","PeriodicalId":77043,"journal":{"name":"Biotherapy (Dordrecht, Netherlands)","volume":"10 3","pages":"229-35"},"PeriodicalIF":0.0,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02678301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20481084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Geluk, V Taneja, K E van Meijgaarden, R R de Vries, C S David, T H Ottenhoff
Protective immunity against mycobacteria is dependent on antigen/MHC class II specific, CD4+ Th1 cells. HLA-DR3-restricted Th1 cells respond to a subset of mycobacterial antigens, including the immunodominant hsp65, and recognize a single epitope in hsp65, notably p1-20. Altered peptide ligands (APL) of p1-20 can inhibit p1-20/hsp65-induced proliferation of DR3-restricted T cells in an allele specific manner in vitro. In order to develop a preclinical model in which p1-20 APL can be tested in vivo in the context of HLA, we have used murine class II deficient, HLA transgenic (Ab0) mice, in which all CD4+ T cells are restricted by the tg HLA molecule. BCG-immunized DR3.Ab0 and DQ8.Ab0 mice both responded well to hsp65. Furthermore, DR3.Ab0 mice recognized precisely the same p1-20 epitope as DR3-restricted human T cells, whereas DQ8.Ab0 mice responded to a different set of hsp65 peptides. This shows that (i) the same immunodominant protein and peptide epitope are recognized by T cells from DR3.Ab0 mice and DR3+ humans and (ii) indicates the major role of HLA-polymorphism in controlling the human T cell response to mycobacterial antigens. Thus, HLA-transgenic, Ab0 mice provide a novel, preclinical model system to analyze APL and vaccines in the context of HLA polymorphism.
{"title":"HLA-DR/DQ transgenic, class II deficient mice as a novel model to select for HSP T cell epitopes with immunotherapeutic or preventative vaccine potential.","authors":"A Geluk, V Taneja, K E van Meijgaarden, R R de Vries, C S David, T H Ottenhoff","doi":"10.1007/BF02678296","DOIUrl":"https://doi.org/10.1007/BF02678296","url":null,"abstract":"<p><p>Protective immunity against mycobacteria is dependent on antigen/MHC class II specific, CD4+ Th1 cells. HLA-DR3-restricted Th1 cells respond to a subset of mycobacterial antigens, including the immunodominant hsp65, and recognize a single epitope in hsp65, notably p1-20. Altered peptide ligands (APL) of p1-20 can inhibit p1-20/hsp65-induced proliferation of DR3-restricted T cells in an allele specific manner in vitro. In order to develop a preclinical model in which p1-20 APL can be tested in vivo in the context of HLA, we have used murine class II deficient, HLA transgenic (Ab0) mice, in which all CD4+ T cells are restricted by the tg HLA molecule. BCG-immunized DR3.Ab0 and DQ8.Ab0 mice both responded well to hsp65. Furthermore, DR3.Ab0 mice recognized precisely the same p1-20 epitope as DR3-restricted human T cells, whereas DQ8.Ab0 mice responded to a different set of hsp65 peptides. This shows that (i) the same immunodominant protein and peptide epitope are recognized by T cells from DR3.Ab0 mice and DR3+ humans and (ii) indicates the major role of HLA-polymorphism in controlling the human T cell response to mycobacterial antigens. Thus, HLA-transgenic, Ab0 mice provide a novel, preclinical model system to analyze APL and vaccines in the context of HLA polymorphism.</p>","PeriodicalId":77043,"journal":{"name":"Biotherapy (Dordrecht, Netherlands)","volume":"10 3","pages":"191-6"},"PeriodicalIF":0.0,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02678296","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20481104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Homeobox genes encode transcription factors containing a common DNA-binding motif found in virtually all animal species. Different homeobox gene families have evolved which encode homeodomains of different types or classes and thus far approximately 170 homeobox genes have been cloned. Homeoproteins are involved in the control of animal development and several lines of evidence strongly suggest that they may contribute to the regulation of hematopoiesis. Many members of this large family are expressed in blood cells. Moreover, homeobox containing genes have been involved in translocation events occurring in certain leukemias and lymphomas. Furthermore a number of studies indicate that modulation of homeobox gene expression may induce alterations in proliferative, differentiative or phenotypic characteristics of hematopoietic cells. Although the function of each individual gene has not been clearly defined there is strong evidence for cooperativity among homeoproteins indicating that regulatory combinations of homeobox genes may play a pivotal role in controlling survival, proliferation and differentiation of hematopoietic cells.
{"title":"The role of homeobox genes in hematopoiesis.","authors":"M C Magli","doi":"10.1007/BF02678548","DOIUrl":"https://doi.org/10.1007/BF02678548","url":null,"abstract":"<p><p>Homeobox genes encode transcription factors containing a common DNA-binding motif found in virtually all animal species. Different homeobox gene families have evolved which encode homeodomains of different types or classes and thus far approximately 170 homeobox genes have been cloned. Homeoproteins are involved in the control of animal development and several lines of evidence strongly suggest that they may contribute to the regulation of hematopoiesis. Many members of this large family are expressed in blood cells. Moreover, homeobox containing genes have been involved in translocation events occurring in certain leukemias and lymphomas. Furthermore a number of studies indicate that modulation of homeobox gene expression may induce alterations in proliferative, differentiative or phenotypic characteristics of hematopoietic cells. Although the function of each individual gene has not been clearly defined there is strong evidence for cooperativity among homeoproteins indicating that regulatory combinations of homeobox genes may play a pivotal role in controlling survival, proliferation and differentiation of hematopoietic cells.</p>","PeriodicalId":77043,"journal":{"name":"Biotherapy (Dordrecht, Netherlands)","volume":"10 4","pages":"279-94"},"PeriodicalIF":0.0,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02678548","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20512425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-compartmental models of contaminant fate in the environment.","authors":"F Wania","doi":"10.1023/a:1007936823608","DOIUrl":"https://doi.org/10.1023/a:1007936823608","url":null,"abstract":"","PeriodicalId":77043,"journal":{"name":"Biotherapy (Dordrecht, Netherlands)","volume":"11 2-3","pages":"65-8"},"PeriodicalIF":0.0,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1023/a:1007936823608","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20594022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}