首页 > 最新文献

Cell biology reviews : CBR最新文献

英文 中文
Transendothelial transport of macromolecules: the concept of tissue-blood barriers. 大分子的跨内皮运输:组织-血液屏障的概念。
Pub Date : 1991-01-01
S Irie, M Tavassoli

In addition to its many functions in biosynthesis, growth, coagulation and rheology, vascular endothelium is anatomically interposed between the vascular space and the tissue fluid. Recent evidence indicates that it mediates cellular and molecular exchange between these compartments. The exchange can occur through differentiated microdomains of endothelium such as fenestrae. These areas are differentiated with regard to surface charge, protein distribution within the lipid bilayer, membrane fluidity and other features. The exchange is also affected by certain characteristics of the molecule to be transported: molecular size, charge, shape and its carbohydrate content. Proportionately, the largest volume of exchange occurs across the endothelial cytoplasm by vesicular transport systems. Two systems are particularly in evidence; (a) receptor-mediated transcytosis which is specific, and (b) fluid-phase endocytosis. The molecule may become modified in transit and the modification may be of essence in determining its target point and its subsequent metabolism. While most of these modifications involve the carbohydrate moiety of the glycoproteins, glycosylation of non-glycoproteins such as albumin, may also be of physiological significance in transendothelial transport. By virtue of its transport potential, albumin can thus affect the transport of other substances. Recent advances in the molecular transport function of endothelium have been reviewed in the context of its physiological and clinical significance. The basis for the concept of a generalized tissue-blood barrier has been offered.

血管内皮除了在生物合成、生长、凝血和流变学中具有许多功能外,在解剖学上还位于血管空间和组织液之间。最近的证据表明,它介导这些隔室之间的细胞和分子交换。这种交换可以通过内皮细胞的分化微域(如窗)进行。这些区域是根据表面电荷、脂质双分子层内蛋白质分布、膜流动性和其他特征来区分的。交换还受到要运输的分子的某些特性的影响:分子大小、电荷、形状及其碳水化合物含量。按比例,最大体积的交换发生在内皮细胞质通过囊泡运输系统。两种体系尤其明显;(a)特异性受体介导的胞吞作用和(b)液相胞吞作用。分子在转运过程中可能发生修饰,这种修饰对于确定其靶点和随后的代谢至关重要。虽然大多数这些修饰涉及糖蛋白的碳水化合物部分,但非糖蛋白(如白蛋白)的糖基化也可能在跨内皮运输中具有生理意义。由于白蛋白的转运潜力,它可以影响其他物质的转运。本文从内皮细胞的生理和临床意义两方面综述了近年来内皮细胞分子转运功能的研究进展。为广义组织-血液屏障的概念提供了基础。
{"title":"Transendothelial transport of macromolecules: the concept of tissue-blood barriers.","authors":"S Irie,&nbsp;M Tavassoli","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In addition to its many functions in biosynthesis, growth, coagulation and rheology, vascular endothelium is anatomically interposed between the vascular space and the tissue fluid. Recent evidence indicates that it mediates cellular and molecular exchange between these compartments. The exchange can occur through differentiated microdomains of endothelium such as fenestrae. These areas are differentiated with regard to surface charge, protein distribution within the lipid bilayer, membrane fluidity and other features. The exchange is also affected by certain characteristics of the molecule to be transported: molecular size, charge, shape and its carbohydrate content. Proportionately, the largest volume of exchange occurs across the endothelial cytoplasm by vesicular transport systems. Two systems are particularly in evidence; (a) receptor-mediated transcytosis which is specific, and (b) fluid-phase endocytosis. The molecule may become modified in transit and the modification may be of essence in determining its target point and its subsequent metabolism. While most of these modifications involve the carbohydrate moiety of the glycoproteins, glycosylation of non-glycoproteins such as albumin, may also be of physiological significance in transendothelial transport. By virtue of its transport potential, albumin can thus affect the transport of other substances. Recent advances in the molecular transport function of endothelium have been reviewed in the context of its physiological and clinical significance. The basis for the concept of a generalized tissue-blood barrier has been offered.</p>","PeriodicalId":77064,"journal":{"name":"Cell biology reviews : CBR","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"12948628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial transport of macromolecules: transcytosis and endocytosis. A look from cell biology. 大分子的内皮转运:胞吞作用和内吞作用。从细胞生物学的角度来看。
Pub Date : 1991-01-01
M Simionescu, N Simionescu
{"title":"Endothelial transport of macromolecules: transcytosis and endocytosis. A look from cell biology.","authors":"M Simionescu,&nbsp;N Simionescu","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":77064,"journal":{"name":"Cell biology reviews : CBR","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"12928008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of eicosanoids in mammalian skin epidermis. 类二十烷在哺乳动物皮肤表皮中的作用。
Pub Date : 1990-01-01
G Fürstenberger
{"title":"Role of eicosanoids in mammalian skin epidermis.","authors":"G Fürstenberger","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":77064,"journal":{"name":"Cell biology reviews : CBR","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13287473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell biology reviews : CBR
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1