Pub Date : 2021-10-27DOI: 10.1101/2021.10.27.466054
J. Jansen, Bartholomeus T. van den Berge, M. van den Broek, R. Maas, Brigith K. Willemsen, C. Kuppe, Katharina C. Reimer, Gianluca Di Giovanni, F. Mooren, Q. Nlandu, Helmer Mudde, Roy Wetzels, Dirk den Braanker, N. Parr, J. Nagai, Vedran Drenic, I. Costa, E. Steenbergen, Tom Nijenhuis, N. Endlich, N. C. van de Kar, R. Schneider, J. Wetzels, J. van der Vlag, R. Kramann, M. Schreuder, B. Smeets
Nephrotic syndrome (NS) is characterized by severe proteinuria as a consequence of kidney glomerular injury due to podocyte damage. In vitro models mimicking in vivo podocyte characteristics are a prerequisite to resolve NS pathogenesis. Here, we report human induced pluripotent stem cell derived kidney organoids containing a podocyte population that heads towards adult podocytes and were superior compared to 2D counterparts, based on scRNA sequencing, super-resolution imaging and electron microscopy. In this study, these next-generation podocytes in kidney organoids enabled personalized idiopathic nephrotic syndrome modeling as shown by activated slit diaphragm signaling and podocyte injury following protamine sulfate treatment and exposure to NS plasma containing pathogenic permeability factors. Organoids cultured from cells of a patient with heterozygous NPHS2 mutations showed poor NPHS2 expression and aberrant NPHS1 localization, which was reversible after genetic correction. Repaired organoids displayed increased VEGFA pathway activity and transcription factor activity known to be essential for podocyte physiology, as shown by RNA sequencing. This study shows that organoids are the preferred model of choice to study idiopathic and congenital podocytopathies. Summary Statement Kidney organoid podocytes allow personalized nephrotic sydrome modeling,
{"title":"Human pluripotent stem cell-derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling","authors":"J. Jansen, Bartholomeus T. van den Berge, M. van den Broek, R. Maas, Brigith K. Willemsen, C. Kuppe, Katharina C. Reimer, Gianluca Di Giovanni, F. Mooren, Q. Nlandu, Helmer Mudde, Roy Wetzels, Dirk den Braanker, N. Parr, J. Nagai, Vedran Drenic, I. Costa, E. Steenbergen, Tom Nijenhuis, N. Endlich, N. C. van de Kar, R. Schneider, J. Wetzels, J. van der Vlag, R. Kramann, M. Schreuder, B. Smeets","doi":"10.1101/2021.10.27.466054","DOIUrl":"https://doi.org/10.1101/2021.10.27.466054","url":null,"abstract":"Nephrotic syndrome (NS) is characterized by severe proteinuria as a consequence of kidney glomerular injury due to podocyte damage. In vitro models mimicking in vivo podocyte characteristics are a prerequisite to resolve NS pathogenesis. Here, we report human induced pluripotent stem cell derived kidney organoids containing a podocyte population that heads towards adult podocytes and were superior compared to 2D counterparts, based on scRNA sequencing, super-resolution imaging and electron microscopy. In this study, these next-generation podocytes in kidney organoids enabled personalized idiopathic nephrotic syndrome modeling as shown by activated slit diaphragm signaling and podocyte injury following protamine sulfate treatment and exposure to NS plasma containing pathogenic permeability factors. Organoids cultured from cells of a patient with heterozygous NPHS2 mutations showed poor NPHS2 expression and aberrant NPHS1 localization, which was reversible after genetic correction. Repaired organoids displayed increased VEGFA pathway activity and transcription factor activity known to be essential for podocyte physiology, as shown by RNA sequencing. This study shows that organoids are the preferred model of choice to study idiopathic and congenital podocytopathies. Summary Statement Kidney organoid podocytes allow personalized nephrotic sydrome modeling,","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"36 6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75741151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-14DOI: 10.1101/2021.10.14.464356
Albert Tsai, Justin Crocker
An embryo experiences progressively complex spatial and temporal patterns of gene expression that guide the morphogenesis of its body plan as it matures. Using super-resolution fluorescence microscopy in Drosophila melanogaster embryos, we observed a similar increase in complexity in the nucleus: the spatial distributions of transcription factors became increasingly heterogeneous as the embryo matured. We also observed a similar trend in chromatin conformation with the establishment of specific histone modification patterns. However, transcription sites of specific genes had distinct local preferences for histone marks separate from the average nuclear trend, depending on the time and location of their expression. These results suggest that reconfiguring the nuclear environment is an integral part of embryogenesis and that the physical organization of the nucleus is a key element in developmental gene regulation. Summary statement We observed spatial rearrangements in the nucleus during embryo development, progressively forming a heterogeneous nuclear environment, paralleling the increasing complexity of the embryo body as morphogenesis progresses.
{"title":"Nuclear morphogenesis: forming a heterogeneous nucleus during embryogenesis","authors":"Albert Tsai, Justin Crocker","doi":"10.1101/2021.10.14.464356","DOIUrl":"https://doi.org/10.1101/2021.10.14.464356","url":null,"abstract":"An embryo experiences progressively complex spatial and temporal patterns of gene expression that guide the morphogenesis of its body plan as it matures. Using super-resolution fluorescence microscopy in Drosophila melanogaster embryos, we observed a similar increase in complexity in the nucleus: the spatial distributions of transcription factors became increasingly heterogeneous as the embryo matured. We also observed a similar trend in chromatin conformation with the establishment of specific histone modification patterns. However, transcription sites of specific genes had distinct local preferences for histone marks separate from the average nuclear trend, depending on the time and location of their expression. These results suggest that reconfiguring the nuclear environment is an integral part of embryogenesis and that the physical organization of the nucleus is a key element in developmental gene regulation. Summary statement We observed spatial rearrangements in the nucleus during embryo development, progressively forming a heterogeneous nuclear environment, paralleling the increasing complexity of the embryo body as morphogenesis progresses.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"70 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77253835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-24DOI: 10.1101/2021.09.24.461672
Mattias Malaguti, R. P. Migueles, Jennifer Annoh, Daina Sadurska, G. Blin, S. Lowell
Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here we introduce SyNPL: clonal pluripotent stem cell lines which employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered “sender” and “receiver” cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new tool which could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and which can be adapted to generate synthetic patterning of cell fate decisions. SUMMARY STATEMENT Optimised Synthetic Notch circuitry in mouse pluripotent stem cells provides a modular tool to monitor cell-cell interactions and program synthetic patterning of cell fates in culture and in embryos.
{"title":"SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo","authors":"Mattias Malaguti, R. P. Migueles, Jennifer Annoh, Daina Sadurska, G. Blin, S. Lowell","doi":"10.1101/2021.09.24.461672","DOIUrl":"https://doi.org/10.1101/2021.09.24.461672","url":null,"abstract":"Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here we introduce SyNPL: clonal pluripotent stem cell lines which employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered “sender” and “receiver” cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new tool which could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and which can be adapted to generate synthetic patterning of cell fate decisions. SUMMARY STATEMENT Optimised Synthetic Notch circuitry in mouse pluripotent stem cells provides a modular tool to monitor cell-cell interactions and program synthetic patterning of cell fates in culture and in embryos.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85460046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-14DOI: 10.1101/2021.09.13.460183
Oana Kubinyecz, Fátima Santos, D. Drage, W. Reik, M. Eckersley-Maslin
Zygotic Genome Activation (ZGA) represents the initiation of transcription following fertilisation. Despite its importance in shifting developmental control from primarily maternal stores in the oocyte to the embryo proper, we know little of the molecular events that initiate ZGA in vivo. Recent in vitro studies in mouse embryonic stem cells (ESCs) have revealed Developmental Pluripotency Associated 2 and 4 (Dppa2/4) as key regulators of ZGA-associated transcription. However, their roles in initiating ZGA in vivo remain unexplored. We reveal Dppa2/4 proteins are present in the nucleus at all stages of preimplantation development and associate with mitotic chromatin. We generated single and double maternal knockout mouse models to deplete maternal stores of Dppa2/4. Importantly, while fertile, Dppa2/4 maternal knockout mice had reduced litter sizes, indicating decreased offspring survival. Immunofluorescence and transcriptome analyses of 2-cell embryos revealed while ZGA took place there were subtle defects in embryos lacking maternal Dppa2/4. Strikingly, heterozygous offspring that inherited the null allele maternally had higher preweaning lethality than those that inherited the null allele paternally. Together our results show that while Dppa2/4 are dispensable for ZGA transcription, maternal stores have an important role in offspring survival, potentially via epigenetic priming of developmental genes.
{"title":"Maternal Dppa2 and Dppa4 are dispensable for zygotic genome activation but important for offspring survival","authors":"Oana Kubinyecz, Fátima Santos, D. Drage, W. Reik, M. Eckersley-Maslin","doi":"10.1101/2021.09.13.460183","DOIUrl":"https://doi.org/10.1101/2021.09.13.460183","url":null,"abstract":"Zygotic Genome Activation (ZGA) represents the initiation of transcription following fertilisation. Despite its importance in shifting developmental control from primarily maternal stores in the oocyte to the embryo proper, we know little of the molecular events that initiate ZGA in vivo. Recent in vitro studies in mouse embryonic stem cells (ESCs) have revealed Developmental Pluripotency Associated 2 and 4 (Dppa2/4) as key regulators of ZGA-associated transcription. However, their roles in initiating ZGA in vivo remain unexplored. We reveal Dppa2/4 proteins are present in the nucleus at all stages of preimplantation development and associate with mitotic chromatin. We generated single and double maternal knockout mouse models to deplete maternal stores of Dppa2/4. Importantly, while fertile, Dppa2/4 maternal knockout mice had reduced litter sizes, indicating decreased offspring survival. Immunofluorescence and transcriptome analyses of 2-cell embryos revealed while ZGA took place there were subtle defects in embryos lacking maternal Dppa2/4. Strikingly, heterozygous offspring that inherited the null allele maternally had higher preweaning lethality than those that inherited the null allele paternally. Together our results show that while Dppa2/4 are dispensable for ZGA transcription, maternal stores have an important role in offspring survival, potentially via epigenetic priming of developmental genes.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84485313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-09DOI: 10.1101/2021.09.09.459574
C. Hirschberger, Andrew Gillis
The pseudobranch is a gill-like epithelial elaboration that sits behind the jaw of most fishes. This structure was classically regarded as a vestige of the ancestral gill-arch like condition of the gnathostome jaw. However, more recently, hypotheses of jaw evolution by transformation of a gill arch have been challenged, and the pseudobranch has alternatively been considered a specialised derivative of the second (hyoid) pharyngeal arch. Here, we demonstrate by cell lineage tracing in a cartilaginous fish, the skate (Leucoraja erinacea), that the pseudobranch does, in fact, derive from the mandibular arch, and that it shares gene expression features and cell types with gills. We also show that the mandibular arch pseudobranch is supported by a spiracular cartilage that is patterned by a shh-expressing epithelial signalling centre. This closely parallels the condition seen in the gill arches, where cartilaginous appendages called branchial rays supporting the respiratory lamellae of the gills are patterned by a shh-expressing gill arch epithelial ridge (GAER). Taken together, these findings support serial homology of the pseudobranch and gills, and an ancestral origin of gill arch-like anatomical features from the gnathostome mandibular arch.
{"title":"The pseudobranch of jawed vertebrates is a mandibular arch-derived gill","authors":"C. Hirschberger, Andrew Gillis","doi":"10.1101/2021.09.09.459574","DOIUrl":"https://doi.org/10.1101/2021.09.09.459574","url":null,"abstract":"The pseudobranch is a gill-like epithelial elaboration that sits behind the jaw of most fishes. This structure was classically regarded as a vestige of the ancestral gill-arch like condition of the gnathostome jaw. However, more recently, hypotheses of jaw evolution by transformation of a gill arch have been challenged, and the pseudobranch has alternatively been considered a specialised derivative of the second (hyoid) pharyngeal arch. Here, we demonstrate by cell lineage tracing in a cartilaginous fish, the skate (Leucoraja erinacea), that the pseudobranch does, in fact, derive from the mandibular arch, and that it shares gene expression features and cell types with gills. We also show that the mandibular arch pseudobranch is supported by a spiracular cartilage that is patterned by a shh-expressing epithelial signalling centre. This closely parallels the condition seen in the gill arches, where cartilaginous appendages called branchial rays supporting the respiratory lamellae of the gills are patterned by a shh-expressing gill arch epithelial ridge (GAER). Taken together, these findings support serial homology of the pseudobranch and gills, and an ancestral origin of gill arch-like anatomical features from the gnathostome mandibular arch.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80711724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-08DOI: 10.1101/2021.09.07.459343
Teng Teng, Camilla Teng, V. Kaartinen, J. Bush
Tissue fusion is an oft-employed process in morphogenesis which often requires the removal of the epithelia intervening multiple distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion in this epithelial seam support their importance in its removal. However, by genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES, we find a complete loss of cell death and cell extrusion, but successful removal of the MES, indicating that developmental compensation enables fusion. Novel static and live imaging approaches reveal that the MES is removed through a unique form of collective epithelial cell migration in which epithelial trails and islands stream through the mesenchyme to reach the oral and nasal epithelial surfaces. These epithelial trails and islands begin to express periderm markers while retaining expression of the basal epithelial marker ΔNp63, suggesting their migration to the oral and nasal surface is concomitant with their differentiation to an epithelial intermediate. Live imaging reveals anisotropic actomyosin contractility within epithelial trails that drives their peristaltic movement, and genetic loss of non-muscle myosin IIA-mediated actomyosin contractility results in dispersion of epithelial collectives and dramatic failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis and reveal a crucial role for a unique form of collective epithelial migration during tissue fusion.
{"title":"A unique form of collective epithelial migration is crucial for tissue fusion in the secondary palate and can overcome loss of epithelial apoptosis","authors":"Teng Teng, Camilla Teng, V. Kaartinen, J. Bush","doi":"10.1101/2021.09.07.459343","DOIUrl":"https://doi.org/10.1101/2021.09.07.459343","url":null,"abstract":"Tissue fusion is an oft-employed process in morphogenesis which often requires the removal of the epithelia intervening multiple distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion in this epithelial seam support their importance in its removal. However, by genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES, we find a complete loss of cell death and cell extrusion, but successful removal of the MES, indicating that developmental compensation enables fusion. Novel static and live imaging approaches reveal that the MES is removed through a unique form of collective epithelial cell migration in which epithelial trails and islands stream through the mesenchyme to reach the oral and nasal epithelial surfaces. These epithelial trails and islands begin to express periderm markers while retaining expression of the basal epithelial marker ΔNp63, suggesting their migration to the oral and nasal surface is concomitant with their differentiation to an epithelial intermediate. Live imaging reveals anisotropic actomyosin contractility within epithelial trails that drives their peristaltic movement, and genetic loss of non-muscle myosin IIA-mediated actomyosin contractility results in dispersion of epithelial collectives and dramatic failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis and reveal a crucial role for a unique form of collective epithelial migration during tissue fusion.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"87 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81064429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-21DOI: 10.1101/2021.07.21.453081
Sarah E. Walker, K. Sabin, Micah D. Gearhart, Kenta Yamamoto, K. Echeverri
Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo lineage tracing allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3’UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced. Summary Statement After spinal cord injury, miR-200 fine-tunes expression levels brachyury and β-catenin to direct spinal cord stem into cells of the mesodermal or ectodermal lineage.
{"title":"Regulation of stem cell identity by miR-200a during spinal cord regeneration","authors":"Sarah E. Walker, K. Sabin, Micah D. Gearhart, Kenta Yamamoto, K. Echeverri","doi":"10.1101/2021.07.21.453081","DOIUrl":"https://doi.org/10.1101/2021.07.21.453081","url":null,"abstract":"Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo lineage tracing allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3’UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced. Summary Statement After spinal cord injury, miR-200 fine-tunes expression levels brachyury and β-catenin to direct spinal cord stem into cells of the mesodermal or ectodermal lineage.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82544694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-24DOI: 10.1101/2021.06.23.449683
Jennifer H. Kong, C. Young, G. Pusapati, F. H. Espinoza, Chandni B Patel, Francis Beckert, Sebastian Ho, Bhaven B. Patel, George C Gabriel, L. Aravind, J. Bazan, T. Gunn, C. Lo, R. Rohatgi
Birth defects result from interactions between genetic and environmental factors, but the mechanisms remain poorly understood. We find that mutations and teratogens interact in predictable ways to cause birth defects by changing target cell sensitivity to Hedgehog (Hh) ligands. These interactions converge on a membrane protein complex, the MMM complex, that promotes degradation of the Hh transducer Smoothened (SMO). Deficiency of the MMM component MOSMO results in elevated SMO and increased Hh signaling, causing multiple birth defects. In utero exposure to a teratogen that directly inhibits SMO reduces the penetrance and expressivity of birth defects in Mosmo-/- embryos. Additionally, tissues that develop normally in Mosmo-/- embryos are refractory to the teratogen. Thus, changes in the abundance of the protein target of a teratogen can change birth defect outcomes by quantitative shifts in Hh signaling. Consequently, small molecules that re-calibrate signaling strength could be harnessed to rescue structural birth defects.
{"title":"Gene-teratogen interactions influence the penetrance of birth defects by altering Hedgehog signaling strength","authors":"Jennifer H. Kong, C. Young, G. Pusapati, F. H. Espinoza, Chandni B Patel, Francis Beckert, Sebastian Ho, Bhaven B. Patel, George C Gabriel, L. Aravind, J. Bazan, T. Gunn, C. Lo, R. Rohatgi","doi":"10.1101/2021.06.23.449683","DOIUrl":"https://doi.org/10.1101/2021.06.23.449683","url":null,"abstract":"Birth defects result from interactions between genetic and environmental factors, but the mechanisms remain poorly understood. We find that mutations and teratogens interact in predictable ways to cause birth defects by changing target cell sensitivity to Hedgehog (Hh) ligands. These interactions converge on a membrane protein complex, the MMM complex, that promotes degradation of the Hh transducer Smoothened (SMO). Deficiency of the MMM component MOSMO results in elevated SMO and increased Hh signaling, causing multiple birth defects. In utero exposure to a teratogen that directly inhibits SMO reduces the penetrance and expressivity of birth defects in Mosmo-/- embryos. Additionally, tissues that develop normally in Mosmo-/- embryos are refractory to the teratogen. Thus, changes in the abundance of the protein target of a teratogen can change birth defect outcomes by quantitative shifts in Hh signaling. Consequently, small molecules that re-calibrate signaling strength could be harnessed to rescue structural birth defects.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79531782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-22DOI: 10.1101/2021.06.22.449256
A. Dubois, L. Vincenti, A. Chervova, S. Vandormael-Pournin, M. Cohen-Tannoudji, P. Navarro
Mouse Embryonic Stem (ES) cells have an inherent propensity to explore distinct gene-regulatory states associated with either self-renewal or differentiation. This property is largely dependent on ERK activity, which promotes silencing of pluripotency genes, most notably of the transcription factor Nanog. Here, we aimed at identifying repressive histone modifications that would mark the Nanog locus for inactivation in response to ERK activity. We found histone H3 lysine 9 tri-methylation (H3K9me3) focally enriched between the Nanog promoter and its −5kb enhancer. While in undifferentiated ES cells H3K9me3 at Nanog depends on ERK activity, in somatic cells it becomes ERK-independent. Moreover, upon deletion of the region harbouring H3K9me3, ES cells display reduced heterogeneity of NANOG expression, delayed commitment into differentiation and impaired ability to acquire a primitive endoderm fate. We suggest that establishment of irreversible H3K9me3 at specific master regulators allows the acquisition of particular cell fates during differentiation.
{"title":"H3K9 tri-methylation at Nanog times differentiation commitment and enables the acquisition of primitive endoderm fate","authors":"A. Dubois, L. Vincenti, A. Chervova, S. Vandormael-Pournin, M. Cohen-Tannoudji, P. Navarro","doi":"10.1101/2021.06.22.449256","DOIUrl":"https://doi.org/10.1101/2021.06.22.449256","url":null,"abstract":"Mouse Embryonic Stem (ES) cells have an inherent propensity to explore distinct gene-regulatory states associated with either self-renewal or differentiation. This property is largely dependent on ERK activity, which promotes silencing of pluripotency genes, most notably of the transcription factor Nanog. Here, we aimed at identifying repressive histone modifications that would mark the Nanog locus for inactivation in response to ERK activity. We found histone H3 lysine 9 tri-methylation (H3K9me3) focally enriched between the Nanog promoter and its −5kb enhancer. While in undifferentiated ES cells H3K9me3 at Nanog depends on ERK activity, in somatic cells it becomes ERK-independent. Moreover, upon deletion of the region harbouring H3K9me3, ES cells display reduced heterogeneity of NANOG expression, delayed commitment into differentiation and impaired ability to acquire a primitive endoderm fate. We suggest that establishment of irreversible H3K9me3 at specific master regulators allows the acquisition of particular cell fates during differentiation.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81117289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-18DOI: 10.1101/2021.06.18.448880
Yan Gong, Julien Alassimone, A. Muroyama, Gabriel O. Amador, Rachel Varnau, Ao Liu, D. Bergmann
In many land plants, asymmetric cell divisions (ACDs) create and pattern differentiated cell types on the leaf surface. In the Arabidopsis stomatal lineage, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) regulates multiple aspects of ACD including division plane placement and cell fate enforcement. Polarized subcellular localization of BASL is initiated before the ACD and persists for many hours after the division in one of the two daughters. Untangling the respective contributions of polarized BASL before and after division is essential to gain a better understanding of its roles in regulating stomatal lineage ACDs and to uncover the rules that guide leaf pattern. Here we combine quantitative imaging and lineage tracking with genetic tools that provide temporally-restricted BASL expression. We find that pre-division BASL is required for division orientation, whereas BASL polarity post-division ensures proper cell fate commitment. These genetic manipulations allowed us to uncouple daughter-cell size asymmetry from polarity crescent inheritance, revealing independent effects of these two asymmetries on subsequent cell behavior. Finally, we show that there is coordination between the division frequencies of sister cells produced by ACDs, and this coupling requires BASL as an effector of peptide signaling.
在许多陆地植物中,不对称细胞分裂(ACDs)在叶片表面产生分化的细胞类型。在拟南芥(Arabidopsis)气孔谱系中,气孔谱系中不对称断裂(BREAKING OF asymmetric In stomatal lineage, BASL)调控着ACD的多个方面,包括分裂面定位和细胞命运执行。BASL的极化亚细胞定位在ACD之前开始,并在两个子细胞中的一个分裂后持续数小时。解开分裂前后极化BASL各自的贡献对于更好地理解其在调节气孔谱系ACDs中的作用以及揭示指导叶片模式的规则至关重要。在这里,我们将定量成像和谱系追踪与提供暂时限制BASL表达的遗传工具结合起来。我们发现分裂前的BASL是分裂方向所必需的,而分裂后的BASL极性确保了适当的细胞命运承诺。这些基因操作使我们能够从极性新月遗传中分离出女儿细胞大小的不对称,揭示了这两种不对称对随后细胞行为的独立影响。最后,我们发现ACDs产生的姐妹细胞的分裂频率之间存在协调,这种耦合需要BASL作为肽信号的效应物。
{"title":"The Arabidopsis stomatal polarity protein BASL mediates distinct processes before and after cell division to coordinate cell size and fate asymmetries","authors":"Yan Gong, Julien Alassimone, A. Muroyama, Gabriel O. Amador, Rachel Varnau, Ao Liu, D. Bergmann","doi":"10.1101/2021.06.18.448880","DOIUrl":"https://doi.org/10.1101/2021.06.18.448880","url":null,"abstract":"In many land plants, asymmetric cell divisions (ACDs) create and pattern differentiated cell types on the leaf surface. In the Arabidopsis stomatal lineage, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) regulates multiple aspects of ACD including division plane placement and cell fate enforcement. Polarized subcellular localization of BASL is initiated before the ACD and persists for many hours after the division in one of the two daughters. Untangling the respective contributions of polarized BASL before and after division is essential to gain a better understanding of its roles in regulating stomatal lineage ACDs and to uncover the rules that guide leaf pattern. Here we combine quantitative imaging and lineage tracking with genetic tools that provide temporally-restricted BASL expression. We find that pre-division BASL is required for division orientation, whereas BASL polarity post-division ensures proper cell fate commitment. These genetic manipulations allowed us to uncouple daughter-cell size asymmetry from polarity crescent inheritance, revealing independent effects of these two asymmetries on subsequent cell behavior. Finally, we show that there is coordination between the division frequencies of sister cells produced by ACDs, and this coupling requires BASL as an effector of peptide signaling.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81210351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}