Pub Date : 2024-09-12DOI: 10.1140/epja/s10050-024-01409-0
Vasilis Tsioulos, Vaia Prassa
Accurately modeling fission product yields (FPY) is crucial yet challenging due to the complex quantum-mechanical nature of nuclear reactions. Traditional models face limitations in predictive power and handling evolving fission modes. Neural Networks (NNs) present a promising solution to these challenges by effectively modeling and predicting energy-dependent fission yields. Mixture Density Networks (MDNs) enable learning from available data, predicting unknowns, and quantifying uncertainties simultaneously. Machine learning algorithms like Gaussian Process Regression (GPR) can capture the distribution of single-fission yields and generate high-quality samples. These samples serve as valuable inputs for MDN networks. This study introduces an MDN approach for evaluating energy-dependent fission mass yields. The results indicate satisfactory accuracy in determining both the distribution positions and energy dependencies of FPYs, particularly in scenarios where experimental data are incomplete.
{"title":"Mixture density network in evaluating incomplete fission mass yields","authors":"Vasilis Tsioulos, Vaia Prassa","doi":"10.1140/epja/s10050-024-01409-0","DOIUrl":"10.1140/epja/s10050-024-01409-0","url":null,"abstract":"<div><p>Accurately modeling fission product yields (FPY) is crucial yet challenging due to the complex quantum-mechanical nature of nuclear reactions. Traditional models face limitations in predictive power and handling evolving fission modes. Neural Networks (NNs) present a promising solution to these challenges by effectively modeling and predicting energy-dependent fission yields. Mixture Density Networks (MDNs) enable learning from available data, predicting unknowns, and quantifying uncertainties simultaneously. Machine learning algorithms like Gaussian Process Regression (GPR) can capture the distribution of single-fission yields and generate high-quality samples. These samples serve as valuable inputs for MDN networks. This study introduces an MDN approach for evaluating energy-dependent fission mass yields. The results indicate satisfactory accuracy in determining both the distribution positions and energy dependencies of FPYs, particularly in scenarios where experimental data are incomplete.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1140/epja/s10050-024-01396-2
M. Mathy, M. Petri, R. Roth, L. Wagner, S. Heil, A. D. Ayangeakaa, S. Bottoni, M. P. Carpenter, H. L. Crawford, P. Fallon, J. Elson, J. Kinnison, T. Lauritsen, I.-Y. Lee, A. O. Macchiavelli, S. Paschalis, W. Reviol, D. G. Sarantites, I. Syndikus, S. L. Tabor, M. Wiedeking, S. Zhu
Lifetimes of higher-lying states ((2_2^+) and (4_1^+)) in (^{16})C have been measured, employing the Gammasphere and Microball detector arrays, as key observables to test and refine ab initio calculations based on interactions developed within chiral Effective Field Theory. The presented experimental constraints to these lifetimes of (tau ({2_2^+}) = [,244, 446],~textrm{fs}) and (tau ({4_1^+}) = [,1.8, 4],~textrm{ps}), combined with previous results on the lifetime of the (2_1^+) state of (^{16})C, provide a rather complete set of key observables to benchmark the theoretical developments. We present No-Core Shell-Model calculations using state-of-the-art chiral 2- (NN) and 3-nucleon (3N) interactions at next-to-next-to-next-to-leading order for both the NN and the 3N contributions and a generalized natural-orbital basis (instead of the conventional harmonic-oscillator single-particle basis) which reproduce, for the first time, the experimental findings remarkably well. The level of agreement of the new calculations as compared to the CD-Bonn meson-exchange NN interaction is notable and presents a critical benchmark for theory.
{"title":"Lifetimes of excited states in (^{16})C as a benchmark for ab initio developments","authors":"M. Mathy, M. Petri, R. Roth, L. Wagner, S. Heil, A. D. Ayangeakaa, S. Bottoni, M. P. Carpenter, H. L. Crawford, P. Fallon, J. Elson, J. Kinnison, T. Lauritsen, I.-Y. Lee, A. O. Macchiavelli, S. Paschalis, W. Reviol, D. G. Sarantites, I. Syndikus, S. L. Tabor, M. Wiedeking, S. Zhu","doi":"10.1140/epja/s10050-024-01396-2","DOIUrl":"10.1140/epja/s10050-024-01396-2","url":null,"abstract":"<div><p>Lifetimes of higher-lying states (<span>(2_2^+)</span> and <span>(4_1^+)</span>) in <span>(^{16})</span>C have been measured, employing the Gammasphere and Microball detector arrays, as key observables to test and refine ab initio calculations based on interactions developed within chiral Effective Field Theory. The presented experimental constraints to these lifetimes of <span>(tau ({2_2^+}) = [,244, 446],~textrm{fs})</span> and <span>(tau ({4_1^+}) = [,1.8, 4],~textrm{ps})</span>, combined with previous results on the lifetime of the <span>(2_1^+)</span> state of <span>(^{16})</span>C, provide a rather complete set of key observables to benchmark the theoretical developments. We present No-Core Shell-Model calculations using state-of-the-art chiral 2- (NN) and 3-nucleon (3N) interactions at next-to-next-to-next-to-leading order for both the NN and the 3N contributions and a generalized natural-orbital basis (instead of the conventional harmonic-oscillator single-particle basis) which reproduce, for the first time, the experimental findings remarkably well. The level of agreement of the new calculations as compared to the CD-Bonn meson-exchange NN interaction is notable and presents a critical benchmark for theory.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01396-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1140/epja/s10050-024-01406-3
V. V. Sargsyan, G. G. Adamian, N. V. Antonenko
Comparative analysis of the complete fusion reactions (^{12}textrm{C}, +, ^{12}textrm{C}, ^{12}textrm{C}, +, ^{13})C and (^{13}textrm{C}, +, ^{13})C at extremely low energies is performed using the Extended Quantum Diffusion Approach. The theoretical calculations are compared with the available experimental data, and the results are discussed for future experiments. The study reveals the presence of a maximum in the astrophysical S-factor for these reactions.
{"title":"Astrophysical S-factors for complete fusion reactions (^{12,13}textrm{C},+,^{12,13})C","authors":"V. V. Sargsyan, G. G. Adamian, N. V. Antonenko","doi":"10.1140/epja/s10050-024-01406-3","DOIUrl":"10.1140/epja/s10050-024-01406-3","url":null,"abstract":"<div><p>Comparative analysis of the complete fusion reactions <span>(^{12}textrm{C}, +, ^{12}textrm{C}, ^{12}textrm{C}, +, ^{13})</span>C and <span>(^{13}textrm{C}, +, ^{13})</span>C at extremely low energies is performed using the Extended Quantum Diffusion Approach. The theoretical calculations are compared with the available experimental data, and the results are discussed for future experiments. The study reveals the presence of a maximum in the astrophysical <i>S</i>-factor for these reactions.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1140/epja/s10050-024-01388-2
Bing-Dong Wan, Ya-Ru Wang
Recently, a hadronic state, named (T_{cbar{s}0}(2900)^{++}), about 2.92 GeV with (J^{P}=0^{+}) was observed in LHCb experiment. It is the first observation of a doubly charged open-charm tetraquark with minimal quark constant ([cbar{s}ubar{d}]), and hence has a peculiar importance. In this paper, we examine the diquark-antidiquark interpretation for the structure of (T_{cbar{s}0}(2900)^{++}) in the configurations of ([3_c]_{bar{s}bar{d}}otimes [bar{3}_c]_{cu}) in the framework of QCD sum rules up to dimension 8 condensate in the operator product expansion. Numerical results indicated that the observed (T_{cbar{s}0}(2900)^{++}) could be embedded into the ([3_c]_{bar{s}bar{d}}otimes [bar{3}_c]_{cu}) configuration. Furthermore, another doubly charged open-charm tetraquark in diquark-antidiquark configuration with mass about 3.13 GeV is also predicted, which are hopefully measurable in BESIII, BEllEII, and LHCb experiments.
{"title":"Possible structure of (T_{cbar{s}0}(2900)^{++})","authors":"Bing-Dong Wan, Ya-Ru Wang","doi":"10.1140/epja/s10050-024-01388-2","DOIUrl":"10.1140/epja/s10050-024-01388-2","url":null,"abstract":"<div><p>Recently, a hadronic state, named <span>(T_{cbar{s}0}(2900)^{++})</span>, about 2.92 GeV with <span>(J^{P}=0^{+})</span> was observed in LHCb experiment. It is the first observation of a doubly charged open-charm tetraquark with minimal quark constant <span>([cbar{s}ubar{d}])</span>, and hence has a peculiar importance. In this paper, we examine the diquark-antidiquark interpretation for the structure of <span>(T_{cbar{s}0}(2900)^{++})</span> in the configurations of <span>([3_c]_{bar{s}bar{d}}otimes [bar{3}_c]_{cu})</span> in the framework of QCD sum rules up to dimension 8 condensate in the operator product expansion. Numerical results indicated that the observed <span>(T_{cbar{s}0}(2900)^{++})</span> could be embedded into the <span>([3_c]_{bar{s}bar{d}}otimes [bar{3}_c]_{cu})</span> configuration. Furthermore, another doubly charged open-charm tetraquark in diquark-antidiquark configuration with mass about 3.13 GeV is also predicted, which are hopefully measurable in BESIII, BEllEII, and LHCb experiments.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1140/epja/s10050-024-01390-8
Fabio L. Braghin
By considering the one-loop background field method for a quark–antiquark interaction, mediated by one (non-perturbative) gluon exchange, sixth-order quark effective interactions are derived and investigated in the limit of zero momentum transfer for large quark and/or gluon effective masses. They extend fourth-order quark interactions worked out in previous works of the author. These interactions break (U_A(1)) symmetry and may be either momentum-independent or momentum-dependent. Some of these interactions vanish in the limit of massless quarks, and several others—involving vector and/or axial quark currents—survive. In the local limit of the resulting interactions, some phenomenological implications are presented, which correspond to corrections to the Nambu–Jona–Lasinio model. By means of the auxiliary field method, the local interactions give rise to three meson interactions whose values are compared to phenomenological values found in the literature. Contributions for meson-mixing parameters are calculated and compared to available results.
{"title":"(U_A(1)) symmetry-breaking quark interactions from vacuum polarization","authors":"Fabio L. Braghin","doi":"10.1140/epja/s10050-024-01390-8","DOIUrl":"10.1140/epja/s10050-024-01390-8","url":null,"abstract":"<div><p>By considering the one-loop background field method for a quark–antiquark interaction, mediated by one (non-perturbative) gluon exchange, sixth-order quark effective interactions are derived and investigated in the limit of zero momentum transfer for large quark and/or gluon effective masses. They extend fourth-order quark interactions worked out in previous works of the author. These interactions break <span>(U_A(1))</span> symmetry and may be either momentum-independent or momentum-dependent. Some of these interactions vanish in the limit of massless quarks, and several others—involving vector and/or axial quark currents—survive. In the local limit of the resulting interactions, some phenomenological implications are presented, which correspond to corrections to the Nambu–Jona–Lasinio model. By means of the auxiliary field method, the local interactions give rise to three meson interactions whose values are compared to phenomenological values found in the literature. Contributions for meson-mixing parameters are calculated and compared to available results.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1140/epja/s10050-024-01385-5
Constantin Dalyac, Lucas Leclerc, Louis Vignoli, Mehdi Djellabi, Wesley da Silva Coelho, Bruno Ximenez, Alexandre Dareau, Davide Dreon, Vincent E. Elfving, Adrien Signoles, Louis-Paul Henry, Loïc Henriet
Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.
{"title":"Graph algorithms with neutral atom quantum processors","authors":"Constantin Dalyac, Lucas Leclerc, Louis Vignoli, Mehdi Djellabi, Wesley da Silva Coelho, Bruno Ximenez, Alexandre Dareau, Davide Dreon, Vincent E. Elfving, Adrien Signoles, Louis-Paul Henry, Loïc Henriet","doi":"10.1140/epja/s10050-024-01385-5","DOIUrl":"10.1140/epja/s10050-024-01385-5","url":null,"abstract":"<div><p>Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1140/epja/s10050-024-01399-z
A. N. Kuchera, C. R. Hoffman, G. Ryan, I. B. D’Amato, O. M. Guarinello, P. S. Kielb, R. Aggarwal, S. Ajayi, A. L. Conley, I. Conroy, P. D. Cottle, J. C. Esparza, S. Genty, K. Hanselman, M. Heinze, D. Houlihan, B. Kelly, M. I. Khawaja, E. Lopez-Saavedra, G. W. McCann, A. B. Morelock, L. A. Riley, A. Sandrik, V. Sitaraman, M. Spieker, E. Temanson, C. Wibisono, I. Wiedenhöver
Single-neutron adding data was collected in order to determine the distribution of the single-neutron strength of the (0f_{7/2}), (1p_{3/2}), (1p_{1/2}) and (0f_{5/2}) orbitals outside of (Z=16, N=18), (^{34})S. The (^{34})S(d,p)(^{35})S reaction has been measured at 8 MeV/u to investigate cross sections to excited states in (^{35})S. Outgoing proton yields and momenta were analyzed by the Super-Enge Split-Pole Spectrograph in conjunction with the CeBrA demonstrator located at the John D. Fox Laboratory at Florida State University. Angular distributions were compared with Distorted Wave Born Approximation calculations in order to extract single-neutron spectroscopic overlaps. Spectroscopic overlaps and strengths were determined for states in (^{35})S up through 6 MeV in excitation energy. Each orbital was observed to have fragmented strength where a single level carried the majority. The single-neutron centroids of the (0f_{7/2}), (1p_{3/2}), (1p_{1/2}) and (0f_{5/2}) orbitals were determined to be (2360^{+90}_{-40}) keV, (3280^{+80}_{-50}) keV, (4780^{+60}_{-40}) keV, and (gtrsim 7500) keV, respectively. A previous discrepancy in the literature with respect to the distribution of the neutron (1p_{1/2}) strength was resolved. The integration of the normalized spectroscopic strengths, up to 5.1 MeV in excitation energy, revealed fully-vacant occupancies for the (0f_{7/2}), (1p_{3/2}), and (1p_{1/2}) orbitals, as expected. The spacing in the single-neutron energies highlighted a reduction in the traditional (N=28) shell-gap, relative to both the 1p spin-orbit energy difference ((N=32)) and the lower limit on the (N=34) shell spacing.
{"title":"Single-neutron adding on (^{34})S","authors":"A. N. Kuchera, C. R. Hoffman, G. Ryan, I. B. D’Amato, O. M. Guarinello, P. S. Kielb, R. Aggarwal, S. Ajayi, A. L. Conley, I. Conroy, P. D. Cottle, J. C. Esparza, S. Genty, K. Hanselman, M. Heinze, D. Houlihan, B. Kelly, M. I. Khawaja, E. Lopez-Saavedra, G. W. McCann, A. B. Morelock, L. A. Riley, A. Sandrik, V. Sitaraman, M. Spieker, E. Temanson, C. Wibisono, I. Wiedenhöver","doi":"10.1140/epja/s10050-024-01399-z","DOIUrl":"10.1140/epja/s10050-024-01399-z","url":null,"abstract":"<div><p>Single-neutron adding data was collected in order to determine the distribution of the single-neutron strength of the <span>(0f_{7/2})</span>, <span>(1p_{3/2})</span>, <span>(1p_{1/2})</span> and <span>(0f_{5/2})</span> orbitals outside of <span>(Z=16, N=18)</span>, <span>(^{34})</span>S. The <span>(^{34})</span>S(<i>d</i>,<i>p</i>)<span>(^{35})</span>S reaction has been measured at 8 MeV/u to investigate cross sections to excited states in <span>(^{35})</span>S. Outgoing proton yields and momenta were analyzed by the Super-Enge Split-Pole Spectrograph in conjunction with the CeBrA demonstrator located at the John D. Fox Laboratory at Florida State University. Angular distributions were compared with Distorted Wave Born Approximation calculations in order to extract single-neutron spectroscopic overlaps. Spectroscopic overlaps and strengths were determined for states in <span>(^{35})</span>S up through 6 MeV in excitation energy. Each orbital was observed to have fragmented strength where a single level carried the majority. The single-neutron centroids of the <span>(0f_{7/2})</span>, <span>(1p_{3/2})</span>, <span>(1p_{1/2})</span> and <span>(0f_{5/2})</span> orbitals were determined to be <span>(2360^{+90}_{-40})</span> keV, <span>(3280^{+80}_{-50})</span> keV, <span>(4780^{+60}_{-40})</span> keV, and <span>(gtrsim 7500)</span> keV, respectively. A previous discrepancy in the literature with respect to the distribution of the neutron <span>(1p_{1/2})</span> strength was resolved. The integration of the normalized spectroscopic strengths, up to 5.1 MeV in excitation energy, revealed fully-vacant occupancies for the <span>(0f_{7/2})</span>, <span>(1p_{3/2})</span>, and <span>(1p_{1/2})</span> orbitals, as expected. The spacing in the single-neutron energies highlighted a reduction in the traditional <span>(N=28)</span> shell-gap, relative to both the 1<i>p</i> spin-orbit energy difference (<span>(N=32)</span>) and the lower limit on the <span>(N=34)</span> shell spacing.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1140/epja/s10050-024-01389-1
Gábor Gyula Kiss, Zsolt Podolyák
Heavy neutron-rich nuclei are of great interest. Phenomena like shell evolution ((Nsim 126), (Zsim 82)), prolate–triaxial–oblate–spherical shape evolution ((Z=) 70–80), possible deformed shell closures or structure change in the rare-earth region are under intense scrutiny. This latter is closely linked to the rare-earth r-process peak, while the (N sim 126) nuclei are connected to the third r-process peak at (A sim 195). Recent technical developments (e.g. increasing beam intensities at fragmentation facilities, new detection systems) provided huge amount of new experimental data, published in the last decade, allowing to probe structure and astrophysical models. Experimental methods and recent results are reviewed and future opportunities discussed.
{"title":"Structure and astrophysical role of the neutron-rich (55 le Z le 92) isotopes: status and perspectives","authors":"Gábor Gyula Kiss, Zsolt Podolyák","doi":"10.1140/epja/s10050-024-01389-1","DOIUrl":"10.1140/epja/s10050-024-01389-1","url":null,"abstract":"<div><p>Heavy neutron-rich nuclei are of great interest. Phenomena like shell evolution (<span>(Nsim 126)</span>, <span>(Zsim 82)</span>), prolate–triaxial–oblate–spherical shape evolution (<span>(Z=)</span> 70–80), possible deformed shell closures or structure change in the rare-earth region are under intense scrutiny. This latter is closely linked to the rare-earth <i>r</i>-process peak, while the <span>(N sim 126)</span> nuclei are connected to the third <i>r</i>-process peak at <span>(A sim 195)</span>. Recent technical developments (e.g. increasing beam intensities at fragmentation facilities, new detection systems) provided huge amount of new experimental data, published in the last decade, allowing to probe structure and astrophysical models. Experimental methods and recent results are reviewed and future opportunities discussed.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01389-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1140/epja/s10050-024-01319-1
Hisashi Horiuchi, David Blaschke
The main ideas to construct the THSR wave function are given, and the relation to other approaches such as the Brink-type cluster wave function approach is shown. The effect of the Pauli-forbidden states on the inter-cluster potential is described by the orthogonality condition model. The duality of the cluster structure and shell-model structure for nuclei in the ground state and in excited states is discussed. Future work on (n alpha ) condensate states in more complex nuclei and the formation of cluster structures in excited nuclei is outlined.
{"title":"THSR wave function and non-localized clustering","authors":"Hisashi Horiuchi, David Blaschke","doi":"10.1140/epja/s10050-024-01319-1","DOIUrl":"10.1140/epja/s10050-024-01319-1","url":null,"abstract":"<div><p>The main ideas to construct the THSR wave function are given, and the relation to other approaches such as the Brink-type cluster wave function approach is shown. The effect of the Pauli-forbidden states on the inter-cluster potential is described by the orthogonality condition model. The duality of the cluster structure and shell-model structure for nuclei in the ground state and in excited states is discussed. Future work on <span>(n alpha )</span> condensate states in more complex nuclei and the formation of cluster structures in excited nuclei is outlined.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01319-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1140/epja/s10050-024-01282-x
A. Accardi, P. Achenbach, D. Adhikari, A. Afanasev, C. S. Akondi, N. Akopov, M. Albaladejo, H. Albataineh, M. Albrecht, B. Almeida-Zamora, M. Amaryan, D. Androić, W. Armstrong, D. S. Armstrong, M. Arratia, J. Arrington, A. Asaturyan, A. Austregesilo, H. Avakian, T. Averett, C. Ayerbe Gayoso, A. Bacchetta, A. B. Balantekin, N. Baltzell, L. Barion, P. C. Barry, A. Bashir, M. Battaglieri, V. Bellini, I. Belov, O. Benhar, B. Benkel, F. Benmokhtar, W. Bentz, V. Bertone, H. Bhatt, A. Bianconi, L. Bibrzycki, R. Bijker, D. Binosi, D. Biswas, M. Boër, W. Boeglin, S. A. Bogacz, M. Boglione, M. Bondí, E. E. Boos, P. Bosted, G. Bozzi, E. J. Brash, R. A. Briceño, P. D. Brindza, W. J. Briscoe, S. J. Brodsky, W. K. Brooks, V. D. Burkert, A. Camsonne, T. Cao, L. S. Cardman, D. S. Carman, M. Carpinelli, G. D. Cates, J. Caylor, A. Celentano, F. G. Celiberto, M. Cerutti, L. Chang, P. Chatagnon, C. Chen, J.-P. Chen, T. Chetry, A. Christopher, E. Christy, E. Chudakov, E. Cisbani, I. C. Cloët, J. J. Cobos-Martinez, E. O. Cohen, P. Colangelo, P. L. Cole, M. Constantinou, M. Contalbrigo, G. Costantini, W. Cosyn, C. Cotton, A. Courtoy, S. Covrig Dusa, V. Crede, Z.-F. Cui, A. D’Angelo, M. Döring, M. M. Dalton, I. Danilkin, M. Davydov, D. Day, F. De Fazio, M. De Napoli, R. De Vita, D. J. Dean, M. Defurne, W. de Paula, G. F. de Téramond, A. Deur, B. Devkota, S. Dhital, P. Di Nezza, M. Diefenthaler, S. Diehl, C. Dilks, M. Ding, C. Djalali, S. Dobbs, R. Dupré, D. Dutta, R. G. Edwards, H. Egiyan, L. Ehinger, G. Eichmann, M. Elaasar, L. Elouadrhiri, A. El Alaoui, L. El Fassi, A. Emmert, M. Engelhardt, R. Ent, D. J. Ernst, P. Eugenio, G. Evans, C. Fanelli, S. Fegan, C. Fernández-Ramírez, L. A. Fernandez, I. P. Fernando, A. Filippi, C. S. Fischer, C. Fogler, N. Fomin, L. Frankfurt, T. Frederico, A. Freese, Y. Fu, L. Gamberg, L. Gan, F. Gao, H. Garcia-Tecocoatzi, D. Gaskell, A. Gasparian, K. Gates, G. Gavalian, P. K. Ghoshal, A. Giachino, F. Giacosa, F. Giannuzzi, G.-P. Gilfoyle, F.-X. Girod, D. I. Glazier, C. Gleason, S. Godfrey, J. L. Goity, A. A. Golubenko, S. Gonzàlez-Solís, R. W. Gothe, Y. Gotra, K. Griffioen, O. Grocholski, B. Grube, P. Guèye, F.-K. Guo, Y. Guo, L. Guo, T. J. Hague, N. Hammoud, J.-O. Hansen, M. Hattawy, F. Hauenstein, T. Hayward, D. Heddle, N. Heinrich, O. Hen, D. W. Higinbotham, I. M. Higuera-Angulo, A. N. Hiller Blin, A. Hobart, T. Hobbs, D. E. Holmberg, T. Horn, P. Hoyer, G. M. Huber, P. Hurck, P. T. P. Hutauruk, Y. Ilieva, I. Illari, D. G. Ireland, E. L. Isupov, A. Italiano, I. Jaegle, N. S. Jarvis, D. J. Jenkins, S. Jeschonnek, C.-R. Ji, H. S. Jo, M. Jones, R. T. Jones, D. C. Jones, K. Joo, M. Junaid, T. Kageya, N. Kalantarians, A. Karki, G. Karyan, A. T. Katramatou, S. J. D. Kay, R. Kazimi, C. D. Keith, C. Keppel, A. Kerbizi, V. Khachatryan, A. Khanal, M. Khandaker, A. Kim, E. R. Kinney, M. Kohl, A. Kotzinian, B. T. Kriesten, V. Kubarovsky, B. Kubis, S. E. Kuhn, V. Kumar, T. Kutz, M. Leali, R. F. Lebed, P. Lenisa, L. Leskovec, S. Li, X. Li, J. Liao, H.-W. Lin, L. Liu, S. Liuti, N. Liyanage, Y. Lu, I. J. D. MacGregor, D. J. Mack, L. Maiani, K. A. Mamo, G. Mandaglio, C. Mariani, P. Markowitz, H. Marukyan, V. Mascagna, V. Mathieu, J. Maxwell, M. Mazouz, M. McCaughan, R. D. McKeown, B. McKinnon, D. Meekins, W. Melnitchouk, A. Metz, C. A. Meyer, Z.-E. Meziani, C. Mezrag, R. Michaels, G. A. Miller, T. Mineeva, A. S. Miramontes, M. Mirazita, K. Mizutani, A. Mkrtchyan, H. Mkrtchyan, B. Moffit, P. Mohanmurthy, V. I. Mokeev, P. Monaghan, G. Montaña, R. Montgomery, A. Moretti, J. M. Morgado Chàvez, U. Mosel, A. Movsisyan, P. Musico, S. A. Nadeeshani, P. M. Nadolsky, S. X. Nakamura, J. Nazeer, A. V. Nefediev, K. Neupane, D. Nguyen, S. Niccolai, I. Niculescu, G. Niculescu, E. R. Nocera, M. Nycz, F. I. Olness, P. G. Ortega, M. Osipenko, E. Pace, B. Pandey, P. Pandey, Z. Papandreou, J. Papavassiliou, L. L. Pappalardo, G. Paredes-Torres, R. Paremuzyan, S. Park, B. Parsamyan, K. D. Paschke, B. Pasquini, E. Passemar, E. Pasyuk, T. Patel, C. Paudel, S. J. Paul, J.-C. Peng, L. Pentchev, R. Perrino, R. J. Perry, K. Peters, G. G. Petratos, W. Phelps, E. Piasetzky, A. Pilloni, B. Pire, D. Pitonyak, M. L. Pitt, A. D. Polosa, M. Pospelov, A. C. Postuma, J. Poudel, L. Preet, S. Prelovsek, J. W. Price, A. Prokudin, A. J. R. Puckett, J. R. Pybus, S.-X. Qin, J.-W. Qiu, M. Radici, H. Rashidi, A. D. Rathnayake, B. A. Raue, T. Reed, P. E. Reimer, J. Reinhold, J.-M. Richard, M. Rinaldi, F. Ringer, M. Ripani, J. Ritman, J. Rittenhouse West, A. Rivero-Acosta, C. D. Roberts, A. Rodas, S. Rodini, J. Rodríguez-Quintero, T. C. Rogers, J. Rojo, P. Rossi, G. C. Rossi, G. Salmè, S. N. Santiesteban, E. Santopinto, M. Sargsian, N. Sato, S. Schadmand, A. Schmidt, S. M. Schmidt, G. Schnell, R. A. Schumacher, P. Schweitzer, I. Scimemi, K. C. Scott, D. A. Seay, J. Segovia, K. Semenov-Tian-Shansky, A. Seryi, A. S. Sharda, M. R. Shepherd, E. V. Shirokov, S. Shrestha, U. Shrestha, V. I. Shvedunov, A. Signori, K. J. Slifer, W. A. Smith, A. Somov, P. Souder, N. Sparveris, F. Spizzo, M. Spreafico, S. Stepanyan, J. R. Stevens, I. I. Strakovsky, S. Strauch, M. Strikman, S. Su, B. C. L. Sumner, E. Sun, M. Suresh, C. Sutera, E. S. Swanson, A. P. Szczepaniak, P. Sznajder, H. Szumila-Vance, L. Szymanowski, A.-S. Tadepalli, V. Tadevosyan, B. Tamang, V. V. Tarasov, A. Thiel, X.-B. Tong, R. Tyson, M. Ungaro, G. M. Urciuoli, A. Usman, A. Valcarce, S. Vallarino, C. A. Vaquera-Araujo, L. Venturelli, F. Vera, A. Vladimirov, A. Vossen, J. Wagner, X. Wei, L. B. Weinstein, C. Weiss, R. Williams, D. Winney, B. Wojtsekhowski, M. H. Wood, T. Xiao, S.-S. Xu, Z. Ye, C. Yero, C.-P. Yuan, M. Yurov, N. Zachariou, Z. Zhang, Y. Zhao, Z. W. Zhao, X. Zheng, X. Zhou, V. Ziegler, B. Zihlmann
{"title":"Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab","authors":"A. Accardi, P. Achenbach, D. Adhikari, A. Afanasev, C. S. Akondi, N. Akopov, M. Albaladejo, H. Albataineh, M. Albrecht, B. Almeida-Zamora, M. Amaryan, D. Androić, W. Armstrong, D. S. Armstrong, M. Arratia, J. Arrington, A. Asaturyan, A. Austregesilo, H. Avakian, T. Averett, C. Ayerbe Gayoso, A. Bacchetta, A. B. Balantekin, N. Baltzell, L. Barion, P. C. Barry, A. Bashir, M. Battaglieri, V. Bellini, I. Belov, O. Benhar, B. Benkel, F. Benmokhtar, W. Bentz, V. Bertone, H. Bhatt, A. Bianconi, L. Bibrzycki, R. Bijker, D. Binosi, D. Biswas, M. Boër, W. Boeglin, S. A. Bogacz, M. Boglione, M. Bondí, E. E. Boos, P. Bosted, G. Bozzi, E. J. Brash, R. A. Briceño, P. D. Brindza, W. J. Briscoe, S. J. Brodsky, W. K. Brooks, V. D. Burkert, A. Camsonne, T. Cao, L. S. Cardman, D. S. Carman, M. Carpinelli, G. D. Cates, J. Caylor, A. Celentano, F. G. Celiberto, M. Cerutti, L. Chang, P. Chatagnon, C. Chen, J.-P. Chen, T. Chetry, A. Christopher, E. Christy, E. Chudakov, E. Cisbani, I. C. Cloët, J. J. Cobos-Martinez, E. O. Cohen, P. Colangelo, P. L. Cole, M. Constantinou, M. Contalbrigo, G. Costantini, W. Cosyn, C. Cotton, A. Courtoy, S. Covrig Dusa, V. Crede, Z.-F. Cui, A. D’Angelo, M. Döring, M. M. Dalton, I. Danilkin, M. Davydov, D. Day, F. De Fazio, M. De Napoli, R. De Vita, D. J. Dean, M. Defurne, W. de Paula, G. F. de Téramond, A. Deur, B. Devkota, S. Dhital, P. Di Nezza, M. Diefenthaler, S. Diehl, C. Dilks, M. Ding, C. Djalali, S. Dobbs, R. Dupré, D. Dutta, R. G. Edwards, H. Egiyan, L. Ehinger, G. Eichmann, M. Elaasar, L. Elouadrhiri, A. El Alaoui, L. El Fassi, A. Emmert, M. Engelhardt, R. Ent, D. J. Ernst, P. Eugenio, G. Evans, C. Fanelli, S. Fegan, C. Fernández-Ramírez, L. A. Fernandez, I. P. Fernando, A. Filippi, C. S. Fischer, C. Fogler, N. Fomin, L. Frankfurt, T. Frederico, A. Freese, Y. Fu, L. Gamberg, L. Gan, F. Gao, H. Garcia-Tecocoatzi, D. Gaskell, A. Gasparian, K. Gates, G. Gavalian, P. K. Ghoshal, A. Giachino, F. Giacosa, F. Giannuzzi, G.-P. Gilfoyle, F.-X. Girod, D. I. Glazier, C. Gleason, S. Godfrey, J. L. Goity, A. A. Golubenko, S. Gonzàlez-Solís, R. W. Gothe, Y. Gotra, K. Griffioen, O. Grocholski, B. Grube, P. Guèye, F.-K. Guo, Y. Guo, L. Guo, T. J. Hague, N. Hammoud, J.-O. Hansen, M. Hattawy, F. Hauenstein, T. Hayward, D. Heddle, N. Heinrich, O. Hen, D. W. Higinbotham, I. M. Higuera-Angulo, A. N. Hiller Blin, A. Hobart, T. Hobbs, D. E. Holmberg, T. Horn, P. Hoyer, G. M. Huber, P. Hurck, P. T. P. Hutauruk, Y. Ilieva, I. Illari, D. G. Ireland, E. L. Isupov, A. Italiano, I. Jaegle, N. S. Jarvis, D. J. Jenkins, S. Jeschonnek, C.-R. Ji, H. S. Jo, M. Jones, R. T. Jones, D. C. Jones, K. Joo, M. Junaid, T. Kageya, N. Kalantarians, A. Karki, G. Karyan, A. T. Katramatou, S. J. D. Kay, R. Kazimi, C. D. Keith, C. Keppel, A. Kerbizi, V. Khachatryan, A. Khanal, M. Khandaker, A. Kim, E. R. Kinney, M. Kohl, A. Kotzinian, B. T. Kriesten, V. Kubarovsky, B. Kubis, S. E. Kuhn, V. Kumar, T. Kutz, M. Leali, R. F. Lebed, P. Lenisa, L. Leskovec, S. Li, X. Li, J. Liao, H.-W. Lin, L. Liu, S. Liuti, N. Liyanage, Y. Lu, I. J. D. MacGregor, D. J. Mack, L. Maiani, K. A. Mamo, G. Mandaglio, C. Mariani, P. Markowitz, H. Marukyan, V. Mascagna, V. Mathieu, J. Maxwell, M. Mazouz, M. McCaughan, R. D. McKeown, B. McKinnon, D. Meekins, W. Melnitchouk, A. Metz, C. A. Meyer, Z.-E. Meziani, C. Mezrag, R. Michaels, G. A. Miller, T. Mineeva, A. S. Miramontes, M. Mirazita, K. Mizutani, A. Mkrtchyan, H. Mkrtchyan, B. Moffit, P. Mohanmurthy, V. I. Mokeev, P. Monaghan, G. Montaña, R. Montgomery, A. Moretti, J. M. Morgado Chàvez, U. Mosel, A. Movsisyan, P. Musico, S. A. Nadeeshani, P. M. Nadolsky, S. X. Nakamura, J. Nazeer, A. V. Nefediev, K. Neupane, D. Nguyen, S. Niccolai, I. Niculescu, G. Niculescu, E. R. Nocera, M. Nycz, F. I. Olness, P. G. Ortega, M. Osipenko, E. Pace, B. Pandey, P. Pandey, Z. Papandreou, J. Papavassiliou, L. L. Pappalardo, G. Paredes-Torres, R. Paremuzyan, S. Park, B. Parsamyan, K. D. Paschke, B. Pasquini, E. Passemar, E. Pasyuk, T. Patel, C. Paudel, S. J. Paul, J.-C. Peng, L. Pentchev, R. Perrino, R. J. Perry, K. Peters, G. G. Petratos, W. Phelps, E. Piasetzky, A. Pilloni, B. Pire, D. Pitonyak, M. L. Pitt, A. D. Polosa, M. Pospelov, A. C. Postuma, J. Poudel, L. Preet, S. Prelovsek, J. W. Price, A. Prokudin, A. J. R. Puckett, J. R. Pybus, S.-X. Qin, J.-W. Qiu, M. Radici, H. Rashidi, A. D. Rathnayake, B. A. Raue, T. Reed, P. E. Reimer, J. Reinhold, J.-M. Richard, M. Rinaldi, F. Ringer, M. Ripani, J. Ritman, J. Rittenhouse West, A. Rivero-Acosta, C. D. Roberts, A. Rodas, S. Rodini, J. Rodríguez-Quintero, T. C. Rogers, J. Rojo, P. Rossi, G. C. Rossi, G. Salmè, S. N. Santiesteban, E. Santopinto, M. Sargsian, N. Sato, S. Schadmand, A. Schmidt, S. M. Schmidt, G. Schnell, R. A. Schumacher, P. Schweitzer, I. Scimemi, K. C. Scott, D. A. Seay, J. Segovia, K. Semenov-Tian-Shansky, A. Seryi, A. S. Sharda, M. R. Shepherd, E. V. Shirokov, S. Shrestha, U. Shrestha, V. I. Shvedunov, A. Signori, K. J. Slifer, W. A. Smith, A. Somov, P. Souder, N. Sparveris, F. Spizzo, M. Spreafico, S. Stepanyan, J. R. Stevens, I. I. Strakovsky, S. Strauch, M. Strikman, S. Su, B. C. L. Sumner, E. Sun, M. Suresh, C. Sutera, E. S. Swanson, A. P. Szczepaniak, P. Sznajder, H. Szumila-Vance, L. Szymanowski, A.-S. Tadepalli, V. Tadevosyan, B. Tamang, V. V. Tarasov, A. Thiel, X.-B. Tong, R. Tyson, M. Ungaro, G. M. Urciuoli, A. Usman, A. Valcarce, S. Vallarino, C. A. Vaquera-Araujo, L. Venturelli, F. Vera, A. Vladimirov, A. Vossen, J. Wagner, X. Wei, L. B. Weinstein, C. Weiss, R. Williams, D. Winney, B. Wojtsekhowski, M. H. Wood, T. Xiao, S.-S. Xu, Z. Ye, C. Yero, C.-P. Yuan, M. Yurov, N. Zachariou, Z. Zhang, Y. Zhao, Z. W. Zhao, X. Zheng, X. Zhou, V. Ziegler, B. Zihlmann","doi":"10.1140/epja/s10050-024-01282-x","DOIUrl":"10.1140/epja/s10050-024-01282-x","url":null,"abstract":"","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}