首页 > 最新文献

The European Physical Journal A最新文献

英文 中文
Mixture density network in evaluating incomplete fission mass yields 评估不完全裂变质量当量的混合物密度网络
IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Pub Date : 2024-09-12 DOI: 10.1140/epja/s10050-024-01409-0
Vasilis Tsioulos, Vaia Prassa

Accurately modeling fission product yields (FPY) is crucial yet challenging due to the complex quantum-mechanical nature of nuclear reactions. Traditional models face limitations in predictive power and handling evolving fission modes. Neural Networks (NNs) present a promising solution to these challenges by effectively modeling and predicting energy-dependent fission yields. Mixture Density Networks (MDNs) enable learning from available data, predicting unknowns, and quantifying uncertainties simultaneously. Machine learning algorithms like Gaussian Process Regression (GPR) can capture the distribution of single-fission yields and generate high-quality samples. These samples serve as valuable inputs for MDN networks. This study introduces an MDN approach for evaluating energy-dependent fission mass yields. The results indicate satisfactory accuracy in determining both the distribution positions and energy dependencies of FPYs, particularly in scenarios where experimental data are incomplete.

由于核反应具有复杂的量子力学性质,因此对裂变产物产量(FPY)进行精确建模至关重要,但也极具挑战性。传统模型在预测能力和处理不断变化的裂变模式方面存在局限性。神经网络(NN)通过有效建模和预测与能量相关的裂变产率,为应对这些挑战提供了一个前景广阔的解决方案。混合物密度网络(MDN)可以从可用数据中学习,预测未知因素,并同时量化不确定性。高斯过程回归(GPR)等机器学习算法可以捕捉单裂变产率的分布,并生成高质量的样本。这些样本是 MDN 网络的宝贵输入。本研究介绍了一种 MDN 方法,用于评估与能量相关的裂变质量产率。结果表明,在确定 FPY 的分布位置和能量依赖性方面,尤其是在实验数据不完整的情况下,其准确性令人满意。
{"title":"Mixture density network in evaluating incomplete fission mass yields","authors":"Vasilis Tsioulos,&nbsp;Vaia Prassa","doi":"10.1140/epja/s10050-024-01409-0","DOIUrl":"10.1140/epja/s10050-024-01409-0","url":null,"abstract":"<div><p>Accurately modeling fission product yields (FPY) is crucial yet challenging due to the complex quantum-mechanical nature of nuclear reactions. Traditional models face limitations in predictive power and handling evolving fission modes. Neural Networks (NNs) present a promising solution to these challenges by effectively modeling and predicting energy-dependent fission yields. Mixture Density Networks (MDNs) enable learning from available data, predicting unknowns, and quantifying uncertainties simultaneously. Machine learning algorithms like Gaussian Process Regression (GPR) can capture the distribution of single-fission yields and generate high-quality samples. These samples serve as valuable inputs for MDN networks. This study introduces an MDN approach for evaluating energy-dependent fission mass yields. The results indicate satisfactory accuracy in determining both the distribution positions and energy dependencies of FPYs, particularly in scenarios where experimental data are incomplete.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lifetimes of excited states in (^{16})C as a benchmark for ab initio developments 以 $$^{16}$ C 中激发态的寿命作为 ab initio 发展的基准
IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Pub Date : 2024-09-12 DOI: 10.1140/epja/s10050-024-01396-2
M. Mathy, M. Petri, R. Roth, L. Wagner, S. Heil, A. D. Ayangeakaa, S. Bottoni, M. P. Carpenter, H. L. Crawford, P. Fallon, J. Elson, J. Kinnison, T. Lauritsen, I.-Y. Lee, A. O. Macchiavelli, S. Paschalis, W. Reviol, D. G. Sarantites, I. Syndikus, S. L. Tabor, M. Wiedeking, S. Zhu

Lifetimes of higher-lying states ((2_2^+) and (4_1^+)) in (^{16})C have been measured, employing the Gammasphere and Microball detector arrays, as key observables to test and refine ab initio calculations based on interactions developed within chiral Effective Field Theory. The presented experimental constraints to these lifetimes of (tau ({2_2^+}) = [,244, 446],~textrm{fs}) and (tau ({4_1^+}) = [,1.8, 4],~textrm{ps}), combined with previous results on the lifetime of the (2_1^+) state of (^{16})C, provide a rather complete set of key observables to benchmark the theoretical developments. We present No-Core Shell-Model calculations using state-of-the-art chiral 2- (NN) and 3-nucleon (3N) interactions at next-to-next-to-next-to-leading order for both the NN and the 3N contributions and a generalized natural-orbital basis (instead of the conventional harmonic-oscillator single-particle basis) which reproduce, for the first time, the experimental findings remarkably well. The level of agreement of the new calculations as compared to the CD-Bonn meson-exchange NN interaction is notable and presents a critical benchmark for theory.

利用伽马斯球(Gammasphere)和微球(Microball)探测器阵列测量了(^{16})C 中较高基态((2_2^+)和(4_1^+))的寿命,作为测试和完善基于手性有效场理论中发展的相互作用的ab initio计算的关键观测指标。这些寿命的实验约束条件是:(tau ({2_2^+}) = [,244, 446],~textrm{fs}) 和(tau ({4_1^+}) = [,1.8,4](,~textrm{ps}),结合之前关于 (^{16})C 的 (2_1^+) 状态的寿命的结果,为理论发展提供了一套相当完整的关键观测指标。我们介绍了无核壳模型计算,该计算使用了最先进的手性2核(NN)和3核(3N)相互作用,对NN和3N的贡献都采用了次领先阶,并使用了广义的自然轨道基础(而不是传统的谐振子单粒子基础),首次很好地再现了实验结果。与 CD-Bonn 介子交换 NN 相互作用相比,新计算的一致程度非常显著,为理论提供了一个关键基准。
{"title":"Lifetimes of excited states in (^{16})C as a benchmark for ab initio developments","authors":"M. Mathy,&nbsp;M. Petri,&nbsp;R. Roth,&nbsp;L. Wagner,&nbsp;S. Heil,&nbsp;A. D. Ayangeakaa,&nbsp;S. Bottoni,&nbsp;M. P. Carpenter,&nbsp;H. L. Crawford,&nbsp;P. Fallon,&nbsp;J. Elson,&nbsp;J. Kinnison,&nbsp;T. Lauritsen,&nbsp;I.-Y. Lee,&nbsp;A. O. Macchiavelli,&nbsp;S. Paschalis,&nbsp;W. Reviol,&nbsp;D. G. Sarantites,&nbsp;I. Syndikus,&nbsp;S. L. Tabor,&nbsp;M. Wiedeking,&nbsp;S. Zhu","doi":"10.1140/epja/s10050-024-01396-2","DOIUrl":"10.1140/epja/s10050-024-01396-2","url":null,"abstract":"<div><p>Lifetimes of higher-lying states (<span>(2_2^+)</span> and <span>(4_1^+)</span>) in <span>(^{16})</span>C have been measured, employing the Gammasphere and Microball detector arrays, as key observables to test and refine ab initio calculations based on interactions developed within chiral Effective Field Theory. The presented experimental constraints to these lifetimes of <span>(tau ({2_2^+}) = [,244, 446],~textrm{fs})</span> and <span>(tau ({4_1^+}) = [,1.8, 4],~textrm{ps})</span>, combined with previous results on the lifetime of the <span>(2_1^+)</span> state of <span>(^{16})</span>C, provide a rather complete set of key observables to benchmark the theoretical developments. We present No-Core Shell-Model calculations using state-of-the-art chiral 2- (NN) and 3-nucleon (3N) interactions at next-to-next-to-next-to-leading order for both the NN and the 3N contributions and a generalized natural-orbital basis (instead of the conventional harmonic-oscillator single-particle basis) which reproduce, for the first time, the experimental findings remarkably well. The level of agreement of the new calculations as compared to the CD-Bonn meson-exchange NN interaction is notable and presents a critical benchmark for theory.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01396-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrophysical S-factors for complete fusion reactions (^{12,13}textrm{C},+,^{12,13})C 完全聚变反应的天体物理 S 因子 $$^{12,13}textrm{C},+,^{12,13}$$ C
IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Pub Date : 2024-09-11 DOI: 10.1140/epja/s10050-024-01406-3
V. V. Sargsyan, G. G. Adamian, N. V. Antonenko

Comparative analysis of the complete fusion reactions (^{12}textrm{C}, +, ^{12}textrm{C}, ^{12}textrm{C}, +, ^{13})C and (^{13}textrm{C}, +, ^{13})C at extremely low energies is performed using the Extended Quantum Diffusion Approach. The theoretical calculations are compared with the available experimental data, and the results are discussed for future experiments. The study reveals the presence of a maximum in the astrophysical S-factor for these reactions.

使用扩展量子扩散法对极低能量下的完全聚变反应(^{12}textrm{C}, +, ^{12}textrm{C}, ^{12}textrm{C}, +, ^{13})C 和(^{13}textrm{C}, +, ^{13})C 进行了比较分析。将理论计算结果与现有的实验数据进行了比较,并讨论了未来实验的结果。研究揭示了这些反应的天体物理 S 因子存在一个最大值。
{"title":"Astrophysical S-factors for complete fusion reactions (^{12,13}textrm{C},+,^{12,13})C","authors":"V. V. Sargsyan,&nbsp;G. G. Adamian,&nbsp;N. V. Antonenko","doi":"10.1140/epja/s10050-024-01406-3","DOIUrl":"10.1140/epja/s10050-024-01406-3","url":null,"abstract":"<div><p>Comparative analysis of the complete fusion reactions <span>(^{12}textrm{C}, +, ^{12}textrm{C}, ^{12}textrm{C}, +, ^{13})</span>C and <span>(^{13}textrm{C}, +, ^{13})</span>C at extremely low energies is performed using the Extended Quantum Diffusion Approach. The theoretical calculations are compared with the available experimental data, and the results are discussed for future experiments. The study reveals the presence of a maximum in the astrophysical <i>S</i>-factor for these reactions.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Possible structure of (T_{cbar{s}0}(2900)^{++}) $$T_{cbar{s}0}(2900)^{++}$$ 的可能结构
IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Pub Date : 2024-09-10 DOI: 10.1140/epja/s10050-024-01388-2
Bing-Dong Wan, Ya-Ru Wang

Recently, a hadronic state, named (T_{cbar{s}0}(2900)^{++}), about 2.92 GeV with (J^{P}=0^{+}) was observed in LHCb experiment. It is the first observation of a doubly charged open-charm tetraquark with minimal quark constant ([cbar{s}ubar{d}]), and hence has a peculiar importance. In this paper, we examine the diquark-antidiquark interpretation for the structure of (T_{cbar{s}0}(2900)^{++}) in the configurations of ([3_c]_{bar{s}bar{d}}otimes [bar{3}_c]_{cu}) in the framework of QCD sum rules up to dimension 8 condensate in the operator product expansion. Numerical results indicated that the observed (T_{cbar{s}0}(2900)^{++}) could be embedded into the ([3_c]_{bar{s}bar{d}}otimes [bar{3}_c]_{cu}) configuration. Furthermore, another doubly charged open-charm tetraquark in diquark-antidiquark configuration with mass about 3.13 GeV is also predicted, which are hopefully measurable in BESIII, BEllEII, and LHCb experiments.

最近,在LHCb实验中观测到了一个约2.92 GeV的强子态,它被命名为(T_{cbar{s}0}(2900)^{++}),具有(J^{P}=0^{+})。这是首次观测到具有最小夸克常数([cbar{s}ubar{d}])的双电荷开粲四夸克,因此具有特殊的重要性。在本文中,我们在QCD总和规则的框架下研究了在算子乘积展开的8维凝聚态中([3_c]_{bar{s}bar{d}}}otimes [bar{3}_c]_{cu})结构的二夸克-反二夸克解释。数值结果表明,观测到的(T_{cbar{s}0}(2900)^{++})可以嵌入到([3_c]_{bar{s}bar{d}}otimes [bar{3}_c]_{cu})构型中。此外,还预言了另一种质量约为3.13 GeV的二夸克-反夸克构型的双电荷开粲四夸克,它们有望在BESIII、BEllEII和LHCb实验中被测量到。
{"title":"Possible structure of (T_{cbar{s}0}(2900)^{++})","authors":"Bing-Dong Wan,&nbsp;Ya-Ru Wang","doi":"10.1140/epja/s10050-024-01388-2","DOIUrl":"10.1140/epja/s10050-024-01388-2","url":null,"abstract":"<div><p>Recently, a hadronic state, named <span>(T_{cbar{s}0}(2900)^{++})</span>, about 2.92 GeV with <span>(J^{P}=0^{+})</span> was observed in LHCb experiment. It is the first observation of a doubly charged open-charm tetraquark with minimal quark constant <span>([cbar{s}ubar{d}])</span>, and hence has a peculiar importance. In this paper, we examine the diquark-antidiquark interpretation for the structure of <span>(T_{cbar{s}0}(2900)^{++})</span> in the configurations of <span>([3_c]_{bar{s}bar{d}}otimes [bar{3}_c]_{cu})</span> in the framework of QCD sum rules up to dimension 8 condensate in the operator product expansion. Numerical results indicated that the observed <span>(T_{cbar{s}0}(2900)^{++})</span> could be embedded into the <span>([3_c]_{bar{s}bar{d}}otimes [bar{3}_c]_{cu})</span> configuration. Furthermore, another doubly charged open-charm tetraquark in diquark-antidiquark configuration with mass about 3.13 GeV is also predicted, which are hopefully measurable in BESIII, BEllEII, and LHCb experiments.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(U_A(1)) symmetry-breaking quark interactions from vacuum polarization 从真空极化看打破对称的 $$U_A(1)$$ 夸克相互作用
IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Pub Date : 2024-09-10 DOI: 10.1140/epja/s10050-024-01390-8
Fabio L. Braghin

By considering the one-loop background field method for a quark–antiquark interaction, mediated by one (non-perturbative) gluon exchange, sixth-order quark effective interactions are derived and investigated in the limit of zero momentum transfer for large quark and/or gluon effective masses. They extend fourth-order quark interactions worked out in previous works of the author. These interactions break (U_A(1)) symmetry and may be either momentum-independent or momentum-dependent. Some of these interactions vanish in the limit of massless quarks, and several others—involving vector and/or axial quark currents—survive. In the local limit of the resulting interactions, some phenomenological implications are presented, which correspond to corrections to the Nambu–Jona–Lasinio model. By means of the auxiliary field method, the local interactions give rise to three meson interactions whose values are compared to phenomenological values found in the literature. Contributions for meson-mixing parameters are calculated and compared to available results.

通过考虑以一次(非微扰)胶子交换为媒介的夸克-反夸克相互作用的一回路背景场方法,推导出六阶夸克有效相互作用,并在大夸克和/或胶子有效质量的零动量传递极限下对其进行了研究。它们扩展了作者以前研究的四阶夸克相互作用。这些相互作用打破了(U_A(1))对称性,可能与动量无关,也可能与动量有关。其中一些相互作用在无质量夸克的极限中消失了,而其他一些涉及矢量和/或轴向夸克电流的相互作用则继续存在。在由此产生的相互作用的局部极限中,提出了一些现象学意义,它们相当于对南布-若纳-拉西尼奥模型的修正。通过辅助场方法,局部相互作用产生了三种介子相互作用,其数值与文献中发现的现象学数值进行了比较。计算了介子混合参数的贡献,并与现有结果进行了比较。
{"title":"(U_A(1)) symmetry-breaking quark interactions from vacuum polarization","authors":"Fabio L. Braghin","doi":"10.1140/epja/s10050-024-01390-8","DOIUrl":"10.1140/epja/s10050-024-01390-8","url":null,"abstract":"<div><p>By considering the one-loop background field method for a quark–antiquark interaction, mediated by one (non-perturbative) gluon exchange, sixth-order quark effective interactions are derived and investigated in the limit of zero momentum transfer for large quark and/or gluon effective masses. They extend fourth-order quark interactions worked out in previous works of the author. These interactions break <span>(U_A(1))</span> symmetry and may be either momentum-independent or momentum-dependent. Some of these interactions vanish in the limit of massless quarks, and several others—involving vector and/or axial quark currents—survive. In the local limit of the resulting interactions, some phenomenological implications are presented, which correspond to corrections to the Nambu–Jona–Lasinio model. By means of the auxiliary field method, the local interactions give rise to three meson interactions whose values are compared to phenomenological values found in the literature. Contributions for meson-mixing parameters are calculated and compared to available results.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph algorithms with neutral atom quantum processors 使用中性原子量子处理器的图算法
IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Pub Date : 2024-09-06 DOI: 10.1140/epja/s10050-024-01385-5
Constantin Dalyac, Lucas Leclerc, Louis Vignoli, Mehdi Djellabi, Wesley da Silva Coelho, Bruno Ximenez, Alexandre Dareau, Davide Dreon, Vincent E. Elfving, Adrien Signoles, Louis-Paul Henry, Loïc Henriet

Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.

中性原子技术在理论和实验方面不断取得重大进展,已成为运行量子算法的领先平台。这项技术的一个独特优势在于,它能够在每次拍摄时重新配置量子位寄存器的几何形状。这一独特的功能使得在硬件层面嵌入图结构问题成为可能,从而对解决复杂的优化和机器学习任务产生深远影响。通过驱动量子比特,可以生成保留图复杂特性的处理过的量子态。这些状态可以直接用于解决问题,或作为混合量子-经典方案中的资源。在本文中,我们回顾了在中性原子量子处理单元(QPU)上运行的图问题量子算法的进展,并讨论了最近引入的嵌入和问题解决技术。此外,我们还阐明了硬件方面正在取得的进展,重点是提高中性原子量子处理单元的可扩展性、可控性和计算重复率。
{"title":"Graph algorithms with neutral atom quantum processors","authors":"Constantin Dalyac,&nbsp;Lucas Leclerc,&nbsp;Louis Vignoli,&nbsp;Mehdi Djellabi,&nbsp;Wesley da Silva Coelho,&nbsp;Bruno Ximenez,&nbsp;Alexandre Dareau,&nbsp;Davide Dreon,&nbsp;Vincent E. Elfving,&nbsp;Adrien Signoles,&nbsp;Louis-Paul Henry,&nbsp;Loïc Henriet","doi":"10.1140/epja/s10050-024-01385-5","DOIUrl":"10.1140/epja/s10050-024-01385-5","url":null,"abstract":"<div><p>Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-neutron adding on (^{34})S 在 $$^{34}$ S 上的单中子加法
IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Pub Date : 2024-09-05 DOI: 10.1140/epja/s10050-024-01399-z
A. N. Kuchera, C. R. Hoffman, G. Ryan, I. B. D’Amato, O. M. Guarinello, P. S. Kielb, R. Aggarwal, S. Ajayi, A. L. Conley, I. Conroy, P. D. Cottle, J. C. Esparza, S. Genty, K. Hanselman, M. Heinze, D. Houlihan, B. Kelly, M. I. Khawaja, E. Lopez-Saavedra, G. W. McCann, A. B. Morelock, L. A. Riley, A. Sandrik, V. Sitaraman, M. Spieker, E. Temanson, C. Wibisono, I. Wiedenhöver

Single-neutron adding data was collected in order to determine the distribution of the single-neutron strength of the (0f_{7/2}), (1p_{3/2}), (1p_{1/2}) and (0f_{5/2}) orbitals outside of (Z=16, N=18), (^{34})S. The (^{34})S(d,p)(^{35})S reaction has been measured at 8 MeV/u to investigate cross sections to excited states in (^{35})S. Outgoing proton yields and momenta were analyzed by the Super-Enge Split-Pole Spectrograph in conjunction with the CeBrA demonstrator located at the John D. Fox Laboratory at Florida State University. Angular distributions were compared with Distorted Wave Born Approximation calculations in order to extract single-neutron spectroscopic overlaps. Spectroscopic overlaps and strengths were determined for states in (^{35})S up through 6 MeV in excitation energy. Each orbital was observed to have fragmented strength where a single level carried the majority. The single-neutron centroids of the (0f_{7/2}), (1p_{3/2}), (1p_{1/2}) and (0f_{5/2}) orbitals were determined to be (2360^{+90}_{-40}) keV, (3280^{+80}_{-50}) keV, (4780^{+60}_{-40}) keV, and (gtrsim 7500) keV, respectively. A previous discrepancy in the literature with respect to the distribution of the neutron (1p_{1/2}) strength was resolved. The integration of the normalized spectroscopic strengths, up to 5.1 MeV in excitation energy, revealed fully-vacant occupancies for the (0f_{7/2}), (1p_{3/2}), and (1p_{1/2}) orbitals, as expected. The spacing in the single-neutron energies highlighted a reduction in the traditional (N=28) shell-gap, relative to both the 1p spin-orbit energy difference ((N=32)) and the lower limit on the (N=34) shell spacing.

为了确定 (Z=16, N=18),(^{34})S 轨道外的(0f_{7/2})、(1p_{3/2})、(1p_{1/2})和(0f_{5/2})轨道的单中子强度分布,收集了单中子添加数据。在 8 MeV/u 下测量了 (^{34})S(d,p)(^{35})S 反应,以研究 (^{35})S 中激发态的截面。通过位于佛罗里达州立大学约翰-D-福克斯实验室的超级-恩格分极摄谱仪和 CeBrA 演示器分析了传出质子的产率和矩。将角度分布与扭曲波玻恩近似计算进行比较,以提取单中子光谱重叠。确定了激发能量高达 6 MeV 的 (^{35})S 状态的光谱重叠和强度。观察到每个轨道都有碎裂强度,其中单级占大多数。确定了 (0f_{7/2}), (1p_{3/2}), (1p_{1/2}) 和 (0f_{5/2}) 轨道的单中子中心为 (2360^{+90}_{-40}) keV、(3280^{+80}_{-50})keV、(4780^{+60}_{-40})keV 和(gtrsim 7500) keV。解决了之前文献中关于中子(1p_{1/2})强度分布的差异问题。对激发能量高达 5.1 MeV 的归一化光谱强度的积分显示,(0f_{7/2})、(1p_{3/2})和(1p_{1/2})轨道完全空位,正如预期的那样。相对于 1p 自旋轨道能差((N=32))和(N=34)壳间距的下限,单中子能量的间距突显了传统(N=28)壳间隙的减小。
{"title":"Single-neutron adding on (^{34})S","authors":"A. N. Kuchera,&nbsp;C. R. Hoffman,&nbsp;G. Ryan,&nbsp;I. B. D’Amato,&nbsp;O. M. Guarinello,&nbsp;P. S. Kielb,&nbsp;R. Aggarwal,&nbsp;S. Ajayi,&nbsp;A. L. Conley,&nbsp;I. Conroy,&nbsp;P. D. Cottle,&nbsp;J. C. Esparza,&nbsp;S. Genty,&nbsp;K. Hanselman,&nbsp;M. Heinze,&nbsp;D. Houlihan,&nbsp;B. Kelly,&nbsp;M. I. Khawaja,&nbsp;E. Lopez-Saavedra,&nbsp;G. W. McCann,&nbsp;A. B. Morelock,&nbsp;L. A. Riley,&nbsp;A. Sandrik,&nbsp;V. Sitaraman,&nbsp;M. Spieker,&nbsp;E. Temanson,&nbsp;C. Wibisono,&nbsp;I. Wiedenhöver","doi":"10.1140/epja/s10050-024-01399-z","DOIUrl":"10.1140/epja/s10050-024-01399-z","url":null,"abstract":"<div><p>Single-neutron adding data was collected in order to determine the distribution of the single-neutron strength of the <span>(0f_{7/2})</span>, <span>(1p_{3/2})</span>, <span>(1p_{1/2})</span> and <span>(0f_{5/2})</span> orbitals outside of <span>(Z=16, N=18)</span>, <span>(^{34})</span>S. The <span>(^{34})</span>S(<i>d</i>,<i>p</i>)<span>(^{35})</span>S reaction has been measured at 8 MeV/u to investigate cross sections to excited states in <span>(^{35})</span>S. Outgoing proton yields and momenta were analyzed by the Super-Enge Split-Pole Spectrograph in conjunction with the CeBrA demonstrator located at the John D. Fox Laboratory at Florida State University. Angular distributions were compared with Distorted Wave Born Approximation calculations in order to extract single-neutron spectroscopic overlaps. Spectroscopic overlaps and strengths were determined for states in <span>(^{35})</span>S up through 6 MeV in excitation energy. Each orbital was observed to have fragmented strength where a single level carried the majority. The single-neutron centroids of the <span>(0f_{7/2})</span>, <span>(1p_{3/2})</span>, <span>(1p_{1/2})</span> and <span>(0f_{5/2})</span> orbitals were determined to be <span>(2360^{+90}_{-40})</span> keV, <span>(3280^{+80}_{-50})</span> keV, <span>(4780^{+60}_{-40})</span> keV, and <span>(gtrsim 7500)</span> keV, respectively. A previous discrepancy in the literature with respect to the distribution of the neutron <span>(1p_{1/2})</span> strength was resolved. The integration of the normalized spectroscopic strengths, up to 5.1 MeV in excitation energy, revealed fully-vacant occupancies for the <span>(0f_{7/2})</span>, <span>(1p_{3/2})</span>, and <span>(1p_{1/2})</span> orbitals, as expected. The spacing in the single-neutron energies highlighted a reduction in the traditional <span>(N=28)</span> shell-gap, relative to both the 1<i>p</i> spin-orbit energy difference (<span>(N=32)</span>) and the lower limit on the <span>(N=34)</span> shell spacing.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and astrophysical role of the neutron-rich (55 le Z le 92) isotopes: status and perspectives 富中子$55 le Z le 92$$同位素的结构和天体物理作用:现状与前景
IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Pub Date : 2024-09-05 DOI: 10.1140/epja/s10050-024-01389-1
Gábor Gyula Kiss, Zsolt Podolyák

Heavy neutron-rich nuclei are of great interest. Phenomena like shell evolution ((Nsim 126), (Zsim 82)), prolate–triaxial–oblate–spherical shape evolution ((Z=) 70–80), possible deformed shell closures or structure change in the rare-earth region are under intense scrutiny. This latter is closely linked to the rare-earth r-process peak, while the (N sim 126) nuclei are connected to the third r-process peak at (A sim 195). Recent technical developments (e.g. increasing beam intensities at fragmentation facilities, new detection systems) provided huge amount of new experimental data, published in the last decade, allowing to probe structure and astrophysical models. Experimental methods and recent results are reviewed and future opportunities discussed.

富中子重核引起了人们的极大兴趣。壳演化((N (sim 126))、(Z (sim 82))、增殖-三轴-卵形-球形形状演化((Z=)70-80)、可能的变形壳闭合或稀土区域的结构变化等现象正在受到密切关注。后者与稀土的r-过程峰密切相关,而(N)核则与位于(A)的第三个r-过程峰有关。最近的技术发展(如碎片设施的光束强度增加、新的探测系统)提供了大量新的实验数据,这些数据是在过去十年中发表的,可以探测结构和天体物理模型。本文回顾了实验方法和最新成果,并讨论了未来的机会。
{"title":"Structure and astrophysical role of the neutron-rich (55 le Z le 92) isotopes: status and perspectives","authors":"Gábor Gyula Kiss,&nbsp;Zsolt Podolyák","doi":"10.1140/epja/s10050-024-01389-1","DOIUrl":"10.1140/epja/s10050-024-01389-1","url":null,"abstract":"<div><p>Heavy neutron-rich nuclei are of great interest. Phenomena like shell evolution (<span>(Nsim 126)</span>, <span>(Zsim 82)</span>), prolate–triaxial–oblate–spherical shape evolution (<span>(Z=)</span> 70–80), possible deformed shell closures or structure change in the rare-earth region are under intense scrutiny. This latter is closely linked to the rare-earth <i>r</i>-process peak, while the <span>(N sim 126)</span> nuclei are connected to the third <i>r</i>-process peak at <span>(A sim 195)</span>. Recent technical developments (e.g. increasing beam intensities at fragmentation facilities, new detection systems) provided huge amount of new experimental data, published in the last decade, allowing to probe structure and astrophysical models. Experimental methods and recent results are reviewed and future opportunities discussed.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01389-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THSR wave function and non-localized clustering THSR 波函数和非定位聚类
IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Pub Date : 2024-09-05 DOI: 10.1140/epja/s10050-024-01319-1
Hisashi Horiuchi, David Blaschke

The main ideas to construct the THSR wave function are given, and the relation to other approaches such as the Brink-type cluster wave function approach is shown. The effect of the Pauli-forbidden states on the inter-cluster potential is described by the orthogonality condition model. The duality of the cluster structure and shell-model structure for nuclei in the ground state and in excited states is discussed. Future work on (n alpha ) condensate states in more complex nuclei and the formation of cluster structures in excited nuclei is outlined.

给出了构建 THSR 波函数的主要思路,并说明了与布林克型簇波函数方法等其他方法的关系。正交条件模型描述了保利禁止态对簇间势的影响。讨论了基态和激发态原子核的簇结构和壳模型结构的二重性。概述了未来关于更复杂原子核中的(n alpha )凝聚态以及激发态原子核中团簇结构形成的工作。
{"title":"THSR wave function and non-localized clustering","authors":"Hisashi Horiuchi,&nbsp;David Blaschke","doi":"10.1140/epja/s10050-024-01319-1","DOIUrl":"10.1140/epja/s10050-024-01319-1","url":null,"abstract":"<div><p>The main ideas to construct the THSR wave function are given, and the relation to other approaches such as the Brink-type cluster wave function approach is shown. The effect of the Pauli-forbidden states on the inter-cluster potential is described by the orthogonality condition model. The duality of the cluster structure and shell-model structure for nuclei in the ground state and in excited states is discussed. Future work on <span>(n alpha )</span> condensate states in more complex nuclei and the formation of cluster structures in excited nuclei is outlined.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01319-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab 杰斐逊实验室利用 22 GeV 电子在光度前沿开展强相互作用物理研究
IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Pub Date : 2024-09-04 DOI: 10.1140/epja/s10050-024-01282-x
A. Accardi, P. Achenbach, D. Adhikari, A. Afanasev, C. S. Akondi, N. Akopov, M. Albaladejo, H. Albataineh, M. Albrecht, B. Almeida-Zamora, M. Amaryan, D. Androić, W. Armstrong, D. S. Armstrong, M. Arratia, J. Arrington, A. Asaturyan, A. Austregesilo, H. Avakian, T. Averett, C. Ayerbe Gayoso, A. Bacchetta, A. B. Balantekin, N. Baltzell, L. Barion, P. C. Barry, A. Bashir, M. Battaglieri, V. Bellini, I. Belov, O. Benhar, B. Benkel, F. Benmokhtar, W. Bentz, V. Bertone, H. Bhatt, A. Bianconi, L. Bibrzycki, R. Bijker, D. Binosi, D. Biswas, M. Boër, W. Boeglin, S. A. Bogacz, M. Boglione, M. Bondí, E. E. Boos, P. Bosted, G. Bozzi, E. J. Brash, R. A. Briceño, P. D. Brindza, W. J. Briscoe, S. J. Brodsky, W. K. Brooks, V. D. Burkert, A. Camsonne, T. Cao, L. S. Cardman, D. S. Carman, M. Carpinelli, G. D. Cates, J. Caylor, A. Celentano, F. G. Celiberto, M. Cerutti, L. Chang, P. Chatagnon, C. Chen, J.-P. Chen, T. Chetry, A. Christopher, E. Christy, E. Chudakov, E. Cisbani, I. C. Cloët, J. J. Cobos-Martinez, E. O. Cohen, P. Colangelo, P. L. Cole, M. Constantinou, M. Contalbrigo, G. Costantini, W. Cosyn, C. Cotton, A. Courtoy, S. Covrig Dusa, V. Crede, Z.-F. Cui, A. D’Angelo, M. Döring, M. M. Dalton, I. Danilkin, M. Davydov, D. Day, F. De Fazio, M. De Napoli, R. De Vita, D. J. Dean, M. Defurne, W. de Paula, G. F. de Téramond, A. Deur, B. Devkota, S. Dhital, P. Di Nezza, M. Diefenthaler, S. Diehl, C. Dilks, M. Ding, C. Djalali, S. Dobbs, R. Dupré, D. Dutta, R. G. Edwards, H. Egiyan, L. Ehinger, G. Eichmann, M. Elaasar, L. Elouadrhiri, A. El Alaoui, L. El Fassi, A. Emmert, M. Engelhardt, R. Ent, D. J. Ernst, P. Eugenio, G. Evans, C. Fanelli, S. Fegan, C. Fernández-Ramírez, L. A. Fernandez, I. P. Fernando, A. Filippi, C. S. Fischer, C. Fogler, N. Fomin, L. Frankfurt, T. Frederico, A. Freese, Y. Fu, L. Gamberg, L. Gan, F. Gao, H. Garcia-Tecocoatzi, D. Gaskell, A. Gasparian, K. Gates, G. Gavalian, P. K. Ghoshal, A. Giachino, F. Giacosa, F. Giannuzzi, G.-P. Gilfoyle, F.-X. Girod, D. I. Glazier, C. Gleason, S. Godfrey, J. L. Goity, A. A. Golubenko, S. Gonzàlez-Solís, R. W. Gothe, Y. Gotra, K. Griffioen, O. Grocholski, B. Grube, P. Guèye, F.-K. Guo, Y. Guo, L. Guo, T. J. Hague, N. Hammoud, J.-O. Hansen, M. Hattawy, F. Hauenstein, T. Hayward, D. Heddle, N. Heinrich, O. Hen, D. W. Higinbotham, I. M. Higuera-Angulo, A. N. Hiller Blin, A. Hobart, T. Hobbs, D. E. Holmberg, T. Horn, P. Hoyer, G. M. Huber, P. Hurck, P. T. P. Hutauruk, Y. Ilieva, I. Illari, D. G. Ireland, E. L. Isupov, A. Italiano, I. Jaegle, N. S. Jarvis, D. J. Jenkins, S. Jeschonnek, C.-R. Ji, H. S. Jo, M. Jones, R. T. Jones, D. C. Jones, K. Joo, M. Junaid, T. Kageya, N. Kalantarians, A. Karki, G. Karyan, A. T. Katramatou, S. J. D. Kay, R. Kazimi, C. D. Keith, C. Keppel, A. Kerbizi, V. Khachatryan, A. Khanal, M. Khandaker, A. Kim, E. R. Kinney, M. Kohl, A. Kotzinian, B. T. Kriesten, V. Kubarovsky, B. Kubis, S. E. Kuhn, V. Kumar, T. Kutz, M. Leali, R. F. Lebed, P. Lenisa, L. Leskovec, S. Li, X. Li, J. Liao, H.-W. Lin, L. Liu, S. Liuti, N. Liyanage, Y. Lu, I. J. D. MacGregor, D. J. Mack, L. Maiani, K. A. Mamo, G. Mandaglio, C. Mariani, P. Markowitz, H. Marukyan, V. Mascagna, V. Mathieu, J. Maxwell, M. Mazouz, M. McCaughan, R. D. McKeown, B. McKinnon, D. Meekins, W. Melnitchouk, A. Metz, C. A. Meyer, Z.-E. Meziani, C. Mezrag, R. Michaels, G. A. Miller, T. Mineeva, A. S. Miramontes, M. Mirazita, K. Mizutani, A. Mkrtchyan, H. Mkrtchyan, B. Moffit, P. Mohanmurthy, V. I. Mokeev, P. Monaghan, G. Montaña, R. Montgomery, A. Moretti, J. M. Morgado Chàvez, U. Mosel, A. Movsisyan, P. Musico, S. A. Nadeeshani, P. M. Nadolsky, S. X. Nakamura, J. Nazeer, A. V. Nefediev, K. Neupane, D. Nguyen, S. Niccolai, I. Niculescu, G. Niculescu, E. R. Nocera, M. Nycz, F. I. Olness, P. G. Ortega, M. Osipenko, E. Pace, B. Pandey, P. Pandey, Z. Papandreou, J. Papavassiliou, L. L. Pappalardo, G. Paredes-Torres, R. Paremuzyan, S. Park, B. Parsamyan, K. D. Paschke, B. Pasquini, E. Passemar, E. Pasyuk, T. Patel, C. Paudel, S. J. Paul, J.-C. Peng, L. Pentchev, R. Perrino, R. J. Perry, K. Peters, G. G. Petratos, W. Phelps, E. Piasetzky, A. Pilloni, B. Pire, D. Pitonyak, M. L. Pitt, A. D. Polosa, M. Pospelov, A. C. Postuma, J. Poudel, L. Preet, S. Prelovsek, J. W. Price, A. Prokudin, A. J. R. Puckett, J. R. Pybus, S.-X. Qin, J.-W. Qiu, M. Radici, H. Rashidi, A. D. Rathnayake, B. A. Raue, T. Reed, P. E. Reimer, J. Reinhold, J.-M. Richard, M. Rinaldi, F. Ringer, M. Ripani, J. Ritman, J. Rittenhouse West, A. Rivero-Acosta, C. D. Roberts, A. Rodas, S. Rodini, J. Rodríguez-Quintero, T. C. Rogers, J. Rojo, P. Rossi, G. C. Rossi, G. Salmè, S. N. Santiesteban, E. Santopinto, M. Sargsian, N. Sato, S. Schadmand, A. Schmidt, S. M. Schmidt, G. Schnell, R. A. Schumacher, P. Schweitzer, I. Scimemi, K. C. Scott, D. A. Seay, J. Segovia, K. Semenov-Tian-Shansky, A. Seryi, A. S. Sharda, M. R. Shepherd, E. V. Shirokov, S. Shrestha, U. Shrestha, V. I. Shvedunov, A. Signori, K. J. Slifer, W. A. Smith, A. Somov, P. Souder, N. Sparveris, F. Spizzo, M. Spreafico, S. Stepanyan, J. R. Stevens, I. I. Strakovsky, S. Strauch, M. Strikman, S. Su, B. C. L. Sumner, E. Sun, M. Suresh, C. Sutera, E. S. Swanson, A. P. Szczepaniak, P. Sznajder, H. Szumila-Vance, L. Szymanowski, A.-S. Tadepalli, V. Tadevosyan, B. Tamang, V. V. Tarasov, A. Thiel, X.-B. Tong, R. Tyson, M. Ungaro, G. M. Urciuoli, A. Usman, A. Valcarce, S. Vallarino, C. A. Vaquera-Araujo, L. Venturelli, F. Vera, A. Vladimirov, A. Vossen, J. Wagner, X. Wei, L. B. Weinstein, C. Weiss, R. Williams, D. Winney, B. Wojtsekhowski, M. H. Wood, T. Xiao, S.-S. Xu, Z. Ye, C. Yero, C.-P. Yuan, M. Yurov, N. Zachariou, Z. Zhang, Y. Zhao, Z. W. Zhao, X. Zheng, X. Zhou, V. Ziegler, B. Zihlmann
{"title":"Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab","authors":"A. Accardi,&nbsp;P. Achenbach,&nbsp;D. Adhikari,&nbsp;A. Afanasev,&nbsp;C. S. Akondi,&nbsp;N. Akopov,&nbsp;M. Albaladejo,&nbsp;H. Albataineh,&nbsp;M. Albrecht,&nbsp;B. Almeida-Zamora,&nbsp;M. Amaryan,&nbsp;D. Androić,&nbsp;W. Armstrong,&nbsp;D. S. Armstrong,&nbsp;M. Arratia,&nbsp;J. Arrington,&nbsp;A. Asaturyan,&nbsp;A. Austregesilo,&nbsp;H. Avakian,&nbsp;T. Averett,&nbsp;C. Ayerbe Gayoso,&nbsp;A. Bacchetta,&nbsp;A. B. Balantekin,&nbsp;N. Baltzell,&nbsp;L. Barion,&nbsp;P. C. Barry,&nbsp;A. Bashir,&nbsp;M. Battaglieri,&nbsp;V. Bellini,&nbsp;I. Belov,&nbsp;O. Benhar,&nbsp;B. Benkel,&nbsp;F. Benmokhtar,&nbsp;W. Bentz,&nbsp;V. Bertone,&nbsp;H. Bhatt,&nbsp;A. Bianconi,&nbsp;L. Bibrzycki,&nbsp;R. Bijker,&nbsp;D. Binosi,&nbsp;D. Biswas,&nbsp;M. Boër,&nbsp;W. Boeglin,&nbsp;S. A. Bogacz,&nbsp;M. Boglione,&nbsp;M. Bondí,&nbsp;E. E. Boos,&nbsp;P. Bosted,&nbsp;G. Bozzi,&nbsp;E. J. Brash,&nbsp;R. A. Briceño,&nbsp;P. D. Brindza,&nbsp;W. J. Briscoe,&nbsp;S. J. Brodsky,&nbsp;W. K. Brooks,&nbsp;V. D. Burkert,&nbsp;A. Camsonne,&nbsp;T. Cao,&nbsp;L. S. Cardman,&nbsp;D. S. Carman,&nbsp;M. Carpinelli,&nbsp;G. D. Cates,&nbsp;J. Caylor,&nbsp;A. Celentano,&nbsp;F. G. Celiberto,&nbsp;M. Cerutti,&nbsp;L. Chang,&nbsp;P. Chatagnon,&nbsp;C. Chen,&nbsp;J.-P. Chen,&nbsp;T. Chetry,&nbsp;A. Christopher,&nbsp;E. Christy,&nbsp;E. Chudakov,&nbsp;E. Cisbani,&nbsp;I. C. Cloët,&nbsp;J. J. Cobos-Martinez,&nbsp;E. O. Cohen,&nbsp;P. Colangelo,&nbsp;P. L. Cole,&nbsp;M. Constantinou,&nbsp;M. Contalbrigo,&nbsp;G. Costantini,&nbsp;W. Cosyn,&nbsp;C. Cotton,&nbsp;A. Courtoy,&nbsp;S. Covrig Dusa,&nbsp;V. Crede,&nbsp;Z.-F. Cui,&nbsp;A. D’Angelo,&nbsp;M. Döring,&nbsp;M. M. Dalton,&nbsp;I. Danilkin,&nbsp;M. Davydov,&nbsp;D. Day,&nbsp;F. De Fazio,&nbsp;M. De Napoli,&nbsp;R. De Vita,&nbsp;D. J. Dean,&nbsp;M. Defurne,&nbsp;W. de Paula,&nbsp;G. F. de Téramond,&nbsp;A. Deur,&nbsp;B. Devkota,&nbsp;S. Dhital,&nbsp;P. Di Nezza,&nbsp;M. Diefenthaler,&nbsp;S. Diehl,&nbsp;C. Dilks,&nbsp;M. Ding,&nbsp;C. Djalali,&nbsp;S. Dobbs,&nbsp;R. Dupré,&nbsp;D. Dutta,&nbsp;R. G. Edwards,&nbsp;H. Egiyan,&nbsp;L. Ehinger,&nbsp;G. Eichmann,&nbsp;M. Elaasar,&nbsp;L. Elouadrhiri,&nbsp;A. El Alaoui,&nbsp;L. El Fassi,&nbsp;A. Emmert,&nbsp;M. Engelhardt,&nbsp;R. Ent,&nbsp;D. J. Ernst,&nbsp;P. Eugenio,&nbsp;G. Evans,&nbsp;C. Fanelli,&nbsp;S. Fegan,&nbsp;C. Fernández-Ramírez,&nbsp;L. A. Fernandez,&nbsp;I. P. Fernando,&nbsp;A. Filippi,&nbsp;C. S. Fischer,&nbsp;C. Fogler,&nbsp;N. Fomin,&nbsp;L. Frankfurt,&nbsp;T. Frederico,&nbsp;A. Freese,&nbsp;Y. Fu,&nbsp;L. Gamberg,&nbsp;L. Gan,&nbsp;F. Gao,&nbsp;H. Garcia-Tecocoatzi,&nbsp;D. Gaskell,&nbsp;A. Gasparian,&nbsp;K. Gates,&nbsp;G. Gavalian,&nbsp;P. K. Ghoshal,&nbsp;A. Giachino,&nbsp;F. Giacosa,&nbsp;F. Giannuzzi,&nbsp;G.-P. Gilfoyle,&nbsp;F.-X. Girod,&nbsp;D. I. Glazier,&nbsp;C. Gleason,&nbsp;S. Godfrey,&nbsp;J. L. Goity,&nbsp;A. A. Golubenko,&nbsp;S. Gonzàlez-Solís,&nbsp;R. W. Gothe,&nbsp;Y. Gotra,&nbsp;K. Griffioen,&nbsp;O. Grocholski,&nbsp;B. Grube,&nbsp;P. Guèye,&nbsp;F.-K. Guo,&nbsp;Y. Guo,&nbsp;L. Guo,&nbsp;T. J. Hague,&nbsp;N. Hammoud,&nbsp;J.-O. Hansen,&nbsp;M. Hattawy,&nbsp;F. Hauenstein,&nbsp;T. Hayward,&nbsp;D. Heddle,&nbsp;N. Heinrich,&nbsp;O. Hen,&nbsp;D. W. Higinbotham,&nbsp;I. M. Higuera-Angulo,&nbsp;A. N. Hiller Blin,&nbsp;A. Hobart,&nbsp;T. Hobbs,&nbsp;D. E. Holmberg,&nbsp;T. Horn,&nbsp;P. Hoyer,&nbsp;G. M. Huber,&nbsp;P. Hurck,&nbsp;P. T. P. Hutauruk,&nbsp;Y. Ilieva,&nbsp;I. Illari,&nbsp;D. G. Ireland,&nbsp;E. L. Isupov,&nbsp;A. Italiano,&nbsp;I. Jaegle,&nbsp;N. S. Jarvis,&nbsp;D. J. Jenkins,&nbsp;S. Jeschonnek,&nbsp;C.-R. Ji,&nbsp;H. S. Jo,&nbsp;M. Jones,&nbsp;R. T. Jones,&nbsp;D. C. Jones,&nbsp;K. Joo,&nbsp;M. Junaid,&nbsp;T. Kageya,&nbsp;N. Kalantarians,&nbsp;A. Karki,&nbsp;G. Karyan,&nbsp;A. T. Katramatou,&nbsp;S. J. D. Kay,&nbsp;R. Kazimi,&nbsp;C. D. Keith,&nbsp;C. Keppel,&nbsp;A. Kerbizi,&nbsp;V. Khachatryan,&nbsp;A. Khanal,&nbsp;M. Khandaker,&nbsp;A. Kim,&nbsp;E. R. Kinney,&nbsp;M. Kohl,&nbsp;A. Kotzinian,&nbsp;B. T. Kriesten,&nbsp;V. Kubarovsky,&nbsp;B. Kubis,&nbsp;S. E. Kuhn,&nbsp;V. Kumar,&nbsp;T. Kutz,&nbsp;M. Leali,&nbsp;R. F. Lebed,&nbsp;P. Lenisa,&nbsp;L. Leskovec,&nbsp;S. Li,&nbsp;X. Li,&nbsp;J. Liao,&nbsp;H.-W. Lin,&nbsp;L. Liu,&nbsp;S. Liuti,&nbsp;N. Liyanage,&nbsp;Y. Lu,&nbsp;I. J. D. MacGregor,&nbsp;D. J. Mack,&nbsp;L. Maiani,&nbsp;K. A. Mamo,&nbsp;G. Mandaglio,&nbsp;C. Mariani,&nbsp;P. Markowitz,&nbsp;H. Marukyan,&nbsp;V. Mascagna,&nbsp;V. Mathieu,&nbsp;J. Maxwell,&nbsp;M. Mazouz,&nbsp;M. McCaughan,&nbsp;R. D. McKeown,&nbsp;B. McKinnon,&nbsp;D. Meekins,&nbsp;W. Melnitchouk,&nbsp;A. Metz,&nbsp;C. A. Meyer,&nbsp;Z.-E. Meziani,&nbsp;C. Mezrag,&nbsp;R. Michaels,&nbsp;G. A. Miller,&nbsp;T. Mineeva,&nbsp;A. S. Miramontes,&nbsp;M. Mirazita,&nbsp;K. Mizutani,&nbsp;A. Mkrtchyan,&nbsp;H. Mkrtchyan,&nbsp;B. Moffit,&nbsp;P. Mohanmurthy,&nbsp;V. I. Mokeev,&nbsp;P. Monaghan,&nbsp;G. Montaña,&nbsp;R. Montgomery,&nbsp;A. Moretti,&nbsp;J. M. Morgado Chàvez,&nbsp;U. Mosel,&nbsp;A. Movsisyan,&nbsp;P. Musico,&nbsp;S. A. Nadeeshani,&nbsp;P. M. Nadolsky,&nbsp;S. X. Nakamura,&nbsp;J. Nazeer,&nbsp;A. V. Nefediev,&nbsp;K. Neupane,&nbsp;D. Nguyen,&nbsp;S. Niccolai,&nbsp;I. Niculescu,&nbsp;G. Niculescu,&nbsp;E. R. Nocera,&nbsp;M. Nycz,&nbsp;F. I. Olness,&nbsp;P. G. Ortega,&nbsp;M. Osipenko,&nbsp;E. Pace,&nbsp;B. Pandey,&nbsp;P. Pandey,&nbsp;Z. Papandreou,&nbsp;J. Papavassiliou,&nbsp;L. L. Pappalardo,&nbsp;G. Paredes-Torres,&nbsp;R. Paremuzyan,&nbsp;S. Park,&nbsp;B. Parsamyan,&nbsp;K. D. Paschke,&nbsp;B. Pasquini,&nbsp;E. Passemar,&nbsp;E. Pasyuk,&nbsp;T. Patel,&nbsp;C. Paudel,&nbsp;S. J. Paul,&nbsp;J.-C. Peng,&nbsp;L. Pentchev,&nbsp;R. Perrino,&nbsp;R. J. Perry,&nbsp;K. Peters,&nbsp;G. G. Petratos,&nbsp;W. Phelps,&nbsp;E. Piasetzky,&nbsp;A. Pilloni,&nbsp;B. Pire,&nbsp;D. Pitonyak,&nbsp;M. L. Pitt,&nbsp;A. D. Polosa,&nbsp;M. Pospelov,&nbsp;A. C. Postuma,&nbsp;J. Poudel,&nbsp;L. Preet,&nbsp;S. Prelovsek,&nbsp;J. W. Price,&nbsp;A. Prokudin,&nbsp;A. J. R. Puckett,&nbsp;J. R. Pybus,&nbsp;S.-X. Qin,&nbsp;J.-W. Qiu,&nbsp;M. Radici,&nbsp;H. Rashidi,&nbsp;A. D. Rathnayake,&nbsp;B. A. Raue,&nbsp;T. Reed,&nbsp;P. E. Reimer,&nbsp;J. Reinhold,&nbsp;J.-M. Richard,&nbsp;M. Rinaldi,&nbsp;F. Ringer,&nbsp;M. Ripani,&nbsp;J. Ritman,&nbsp;J. Rittenhouse West,&nbsp;A. Rivero-Acosta,&nbsp;C. D. Roberts,&nbsp;A. Rodas,&nbsp;S. Rodini,&nbsp;J. Rodríguez-Quintero,&nbsp;T. C. Rogers,&nbsp;J. Rojo,&nbsp;P. Rossi,&nbsp;G. C. Rossi,&nbsp;G. Salmè,&nbsp;S. N. Santiesteban,&nbsp;E. Santopinto,&nbsp;M. Sargsian,&nbsp;N. Sato,&nbsp;S. Schadmand,&nbsp;A. Schmidt,&nbsp;S. M. Schmidt,&nbsp;G. Schnell,&nbsp;R. A. Schumacher,&nbsp;P. Schweitzer,&nbsp;I. Scimemi,&nbsp;K. C. Scott,&nbsp;D. A. Seay,&nbsp;J. Segovia,&nbsp;K. Semenov-Tian-Shansky,&nbsp;A. Seryi,&nbsp;A. S. Sharda,&nbsp;M. R. Shepherd,&nbsp;E. V. Shirokov,&nbsp;S. Shrestha,&nbsp;U. Shrestha,&nbsp;V. I. Shvedunov,&nbsp;A. Signori,&nbsp;K. J. Slifer,&nbsp;W. A. Smith,&nbsp;A. Somov,&nbsp;P. Souder,&nbsp;N. Sparveris,&nbsp;F. Spizzo,&nbsp;M. Spreafico,&nbsp;S. Stepanyan,&nbsp;J. R. Stevens,&nbsp;I. I. Strakovsky,&nbsp;S. Strauch,&nbsp;M. Strikman,&nbsp;S. Su,&nbsp;B. C. L. Sumner,&nbsp;E. Sun,&nbsp;M. Suresh,&nbsp;C. Sutera,&nbsp;E. S. Swanson,&nbsp;A. P. Szczepaniak,&nbsp;P. Sznajder,&nbsp;H. Szumila-Vance,&nbsp;L. Szymanowski,&nbsp;A.-S. Tadepalli,&nbsp;V. Tadevosyan,&nbsp;B. Tamang,&nbsp;V. V. Tarasov,&nbsp;A. Thiel,&nbsp;X.-B. Tong,&nbsp;R. Tyson,&nbsp;M. Ungaro,&nbsp;G. M. Urciuoli,&nbsp;A. Usman,&nbsp;A. Valcarce,&nbsp;S. Vallarino,&nbsp;C. A. Vaquera-Araujo,&nbsp;L. Venturelli,&nbsp;F. Vera,&nbsp;A. Vladimirov,&nbsp;A. Vossen,&nbsp;J. Wagner,&nbsp;X. Wei,&nbsp;L. B. Weinstein,&nbsp;C. Weiss,&nbsp;R. Williams,&nbsp;D. Winney,&nbsp;B. Wojtsekhowski,&nbsp;M. H. Wood,&nbsp;T. Xiao,&nbsp;S.-S. Xu,&nbsp;Z. Ye,&nbsp;C. Yero,&nbsp;C.-P. Yuan,&nbsp;M. Yurov,&nbsp;N. Zachariou,&nbsp;Z. Zhang,&nbsp;Y. Zhao,&nbsp;Z. W. Zhao,&nbsp;X. Zheng,&nbsp;X. Zhou,&nbsp;V. Ziegler,&nbsp;B. Zihlmann","doi":"10.1140/epja/s10050-024-01282-x","DOIUrl":"10.1140/epja/s10050-024-01282-x","url":null,"abstract":"","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The European Physical Journal A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1