Pub Date : 2025-01-17DOI: 10.1097/CAD.0000000000001683
Yingying Shen, Yan Jiang, Junyao Wu, Chenyu Wang, Jiao Bo Kun Huang, Jie Liu, Sen Chen
Small cell lung cancer (SCLC) is a highly aggressive form of lung cancer with limited therapeutic options and poor prognosis. In this study, we explored the therapeutic potential of BGJ398, a selective fibroblast growth factor receptor (FGFR) inhibitor, alone and in combination with standard chemotherapy (cisplatin and paclitaxel) in SCLC. High-throughput screening of kinase inhibitors was performed on three SCLC cell lines (NCI-H446, NCI-H69, and NCI-H182), identifying BGJ398 as one of the most potent and selective inhibitors. BGJ398 demonstrated significant synergy with cisplatin and paclitaxel in vitro, as indicated by combination index values below 1. In vivo, combination treatments significantly inhibited tumor growth and extended survival in SCLC xenograft models compared to monotherapies. Notably, the combination of BGJ398 with cisplatin exhibited the most pronounced tumor suppression and survival benefits. Immunohistochemistry analysis confirmed that BGJ398 effectively inhibited FGFR signaling pathways, reducing levels of phosphorylated FGFR, protein kinase B, signal transducer and activator of transcription 3, and extracellular signal-regulated kinase. These findings suggest that BGJ398, particularly in combination with chemotherapy, holds significant promise as a treatment strategy for SCLC, providing enhanced anti-tumor efficacy and improved survival outcomes.
{"title":"Preclinical evidence that fibroblast growth factor receptor pathway inhibition by BGJ398 enhances small cell lung cancer response to chemotherapy.","authors":"Yingying Shen, Yan Jiang, Junyao Wu, Chenyu Wang, Jiao Bo Kun Huang, Jie Liu, Sen Chen","doi":"10.1097/CAD.0000000000001683","DOIUrl":"https://doi.org/10.1097/CAD.0000000000001683","url":null,"abstract":"<p><p>Small cell lung cancer (SCLC) is a highly aggressive form of lung cancer with limited therapeutic options and poor prognosis. In this study, we explored the therapeutic potential of BGJ398, a selective fibroblast growth factor receptor (FGFR) inhibitor, alone and in combination with standard chemotherapy (cisplatin and paclitaxel) in SCLC. High-throughput screening of kinase inhibitors was performed on three SCLC cell lines (NCI-H446, NCI-H69, and NCI-H182), identifying BGJ398 as one of the most potent and selective inhibitors. BGJ398 demonstrated significant synergy with cisplatin and paclitaxel in vitro, as indicated by combination index values below 1. In vivo, combination treatments significantly inhibited tumor growth and extended survival in SCLC xenograft models compared to monotherapies. Notably, the combination of BGJ398 with cisplatin exhibited the most pronounced tumor suppression and survival benefits. Immunohistochemistry analysis confirmed that BGJ398 effectively inhibited FGFR signaling pathways, reducing levels of phosphorylated FGFR, protein kinase B, signal transducer and activator of transcription 3, and extracellular signal-regulated kinase. These findings suggest that BGJ398, particularly in combination with chemotherapy, holds significant promise as a treatment strategy for SCLC, providing enhanced anti-tumor efficacy and improved survival outcomes.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent studies have shown that Janus Kinase inhibitors can enhance the tumor therapeutic effect of immune checkpoint inhibitors. However, it remains to be studied whether TYK2 selective inhibitors can enhance the therapeutic effect of small molecule PD-L1 inhibitors in triple-negative breast cancer (TNBC). We verified the efficacy of the combination of the selective TYK2 inhibitor Deucravacitinib and the small molecule inhibitor of PD-L1, INCB086550, in two TNBC animal models: a syngeneic mouse model (4T1 with humanized PD-L1) and a peripheral blood mononuclear cell (PBMC)-humanized model (MDA-MB-231). Following that, we explored the regulation of immune cell activity in tumors by the combined treatment using flow cytometry. Finally, we validated the expression of genes related to the regulated immune cells through reverse transcription-PCR. Both animal models demonstrated that the addition of a TYK2 inhibitor to a PD-L1 inhibitor significantly enhanced the antitumor capabilities of mice with good safety profiles. The combined therapy significantly elevated the counts of T, B, and natural killer cells while concurrently diminishing myeloid-derived suppressor cells in the syngeneic model. Similarly, in the PBMC-humanized model, this therapy markedly augmented progenitor-like and proliferative precursor-like CD8 T cells, while effectively diminishing exhausted and terminally differentiated CD8 T cell populations. This enhanced antitumor effect is associated with the modulation of antitumor immune-related gene expression by the combined therapy. The combination of TYK2 inhibitors and immune checkpoint inhibitors is a potentially effective strategy for treating TNBC.
{"title":"Dual inhibition of TYK2 and PD-L1 boosts immune response in triple negative breast cancer.","authors":"Huali Xiang, Binfeng Tu, Xin Feng, Linjing Chen, Yajuan Huang","doi":"10.1097/CAD.0000000000001685","DOIUrl":"10.1097/CAD.0000000000001685","url":null,"abstract":"<p><p>Recent studies have shown that Janus Kinase inhibitors can enhance the tumor therapeutic effect of immune checkpoint inhibitors. However, it remains to be studied whether TYK2 selective inhibitors can enhance the therapeutic effect of small molecule PD-L1 inhibitors in triple-negative breast cancer (TNBC). We verified the efficacy of the combination of the selective TYK2 inhibitor Deucravacitinib and the small molecule inhibitor of PD-L1, INCB086550, in two TNBC animal models: a syngeneic mouse model (4T1 with humanized PD-L1) and a peripheral blood mononuclear cell (PBMC)-humanized model (MDA-MB-231). Following that, we explored the regulation of immune cell activity in tumors by the combined treatment using flow cytometry. Finally, we validated the expression of genes related to the regulated immune cells through reverse transcription-PCR. Both animal models demonstrated that the addition of a TYK2 inhibitor to a PD-L1 inhibitor significantly enhanced the antitumor capabilities of mice with good safety profiles. The combined therapy significantly elevated the counts of T, B, and natural killer cells while concurrently diminishing myeloid-derived suppressor cells in the syngeneic model. Similarly, in the PBMC-humanized model, this therapy markedly augmented progenitor-like and proliferative precursor-like CD8 T cells, while effectively diminishing exhausted and terminally differentiated CD8 T cell populations. This enhanced antitumor effect is associated with the modulation of antitumor immune-related gene expression by the combined therapy. The combination of TYK2 inhibitors and immune checkpoint inhibitors is a potentially effective strategy for treating TNBC.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The uncertain ferroptosis-related role of berberine in prostate cancer was explored using network pharmacology methodology. Integration of ferroptosis targets in prostate cancer from the Genecard database and berberine targets from the Traditional Chinese Medicine Systems Pharmacology and SwissTargetPrediction databases revealed 17 common targets. Among these, 10 hub genes, including CCNB1, CDK1, AURKA, AR, CDC42, ICAM1, TYMS, NTRK1, PTGS2, and SCD, were identified. Enrichment analyses yielded 799 Gene Ontology terms and 23 Kyoto Encyclopedia of Genes and Genomes pathways associated with berberine-related targets. Molecular docking simulations indicated berberine's binding capacity to all hub genes. In-vitro studies on LNCaP and PC3 cells demonstrated berberine's inhibition of cell proliferation and significant downregulation of TYMS, CCNB1, AURKA, CDK1, and SCD in both cell lines. Berberine exhibited cell line-specific effects by reducing AR expression in LNCaP cells and suppressing ICAM1 in PC3 cells. Overall, berberine shows promise in inhibiting prostate cancer progression through modulation of ferroptosis-related genes, including TYMS, AR, CCNB1, AURKA, CDK1, ICAM1, NTRK1, SCD, and CDC42.
{"title":"Berberine inhibits prostate cancer progression by inducing ferroptosis: evidence from network pharmacology.","authors":"Peiliang Zou, Shenghai Li, Qixiong He, Chixing Zheng","doi":"10.1097/CAD.0000000000001691","DOIUrl":"https://doi.org/10.1097/CAD.0000000000001691","url":null,"abstract":"<p><p>The uncertain ferroptosis-related role of berberine in prostate cancer was explored using network pharmacology methodology. Integration of ferroptosis targets in prostate cancer from the Genecard database and berberine targets from the Traditional Chinese Medicine Systems Pharmacology and SwissTargetPrediction databases revealed 17 common targets. Among these, 10 hub genes, including CCNB1, CDK1, AURKA, AR, CDC42, ICAM1, TYMS, NTRK1, PTGS2, and SCD, were identified. Enrichment analyses yielded 799 Gene Ontology terms and 23 Kyoto Encyclopedia of Genes and Genomes pathways associated with berberine-related targets. Molecular docking simulations indicated berberine's binding capacity to all hub genes. In-vitro studies on LNCaP and PC3 cells demonstrated berberine's inhibition of cell proliferation and significant downregulation of TYMS, CCNB1, AURKA, CDK1, and SCD in both cell lines. Berberine exhibited cell line-specific effects by reducing AR expression in LNCaP cells and suppressing ICAM1 in PC3 cells. Overall, berberine shows promise in inhibiting prostate cancer progression through modulation of ferroptosis-related genes, including TYMS, AR, CCNB1, AURKA, CDK1, ICAM1, NTRK1, SCD, and CDC42.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1097/CAD.0000000000001690
Benkai Wei, Huanhuan Yan, Fan Li, Jun Shen
This study aimed to evaluate the efficacy of pyrotinib, an orally administered small molecule tyrosine kinase inhibitor, combined with neoadjuvant chemotherapy in treating patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Pyrotinib works by inhibiting the HER2 signaling pathway, thereby preventing tumor cell growth. This single-arm clinical trial aimed to assess the total pathological complete response (tpCR; ypT0/is and ypN0) rate as the primary endpoint. A total of 27 patients were enrolled, each receiving 4-8 cycles of pyrotinib in combination with neoadjuvant chemotherapy. Pyrotinib combined with neoadjuvant chemotherapy demonstrated notable antitumor activity in patients with HER2-positive breast cancer. Among 26 patients, the tpCR rate was 26% (7/26), while the breast pathological complete response rate was 30% (8/26), indicating complete inhibition of the primary tumor in some cases. Notably, patients with HR-negative breast cancer demonstrated a higher tpCR rate compared with those with HR-positive breast cancer. The treatment regimen was well-tolerated. Diarrhea was the most common adverse event, occurring in 92.3% of patients, with 46.2% experiencing grade 3 or higher diarrhea. No severe adverse events or treatment-related fatalities were reported.
{"title":"Clinical efficacy of pyrotinib combined with chemotherapy for neoadjuvant treatment in HER2-positive breast cancer: a single-center study.","authors":"Benkai Wei, Huanhuan Yan, Fan Li, Jun Shen","doi":"10.1097/CAD.0000000000001690","DOIUrl":"https://doi.org/10.1097/CAD.0000000000001690","url":null,"abstract":"<p><p>This study aimed to evaluate the efficacy of pyrotinib, an orally administered small molecule tyrosine kinase inhibitor, combined with neoadjuvant chemotherapy in treating patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Pyrotinib works by inhibiting the HER2 signaling pathway, thereby preventing tumor cell growth. This single-arm clinical trial aimed to assess the total pathological complete response (tpCR; ypT0/is and ypN0) rate as the primary endpoint. A total of 27 patients were enrolled, each receiving 4-8 cycles of pyrotinib in combination with neoadjuvant chemotherapy. Pyrotinib combined with neoadjuvant chemotherapy demonstrated notable antitumor activity in patients with HER2-positive breast cancer. Among 26 patients, the tpCR rate was 26% (7/26), while the breast pathological complete response rate was 30% (8/26), indicating complete inhibition of the primary tumor in some cases. Notably, patients with HR-negative breast cancer demonstrated a higher tpCR rate compared with those with HR-positive breast cancer. The treatment regimen was well-tolerated. Diarrhea was the most common adverse event, occurring in 92.3% of patients, with 46.2% experiencing grade 3 or higher diarrhea. No severe adverse events or treatment-related fatalities were reported.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1097/CAD.0000000000001677
Kaihan Deng, Wei Zhao, Lin Dai, Zixuan Jing, Lixin Ma
A predictive model for long-term survival is needed, and mitochondrial dysfunction is a key feature of cancer metabolism, though its link to glioma is not well understood. The aim of this study was to identify the molecular characteristics associated with glioma prognosis and explore its potential function. We analyzed RNA-seq data from The Cancer Genome Atlas and identified differentially expressed mitochondrial long noncoding RNAs (lncRNAs) using R's 'limma' package. A prognostic model was developed using 10 selected lncRNAs and validated with Cox regression and least absolute shrinkage and selection operator algorithm. The model's efficacy was assessed using Kaplan-Meier and receiver operating characteristic curve analyses, and its correlation with immune cell profiles and drug sensitivity was explored. A 10-mitochondria-related LncRNA signature was generated. The median risk score values are used to classify glioma samples into low-risk and high-risk groups. In breast patients, the signature-based risk score demonstrated a more potent ability to predict survival than conventional clinicopathological features. Furthermore, we noted a substantial disparity in the number of immune cells, including B cells, CD8+T cells, and macrophages, between the two groups. In addition, the high-risk group exhibited lower half-maximal inhibitory concentration values for specific chemotherapy medications, including bortezomib, luminespib, rapamycin, and 5-fluorouracil. Our study elucidates the diagnostic and prognostic value of mitochondria-related-lncRNAs in the promotion, suppression, and treatment of glioma.
{"title":"Identification and validation of mitochondria-related LncRNA signatures as a novel prognostic model for glioma.","authors":"Kaihan Deng, Wei Zhao, Lin Dai, Zixuan Jing, Lixin Ma","doi":"10.1097/CAD.0000000000001677","DOIUrl":"https://doi.org/10.1097/CAD.0000000000001677","url":null,"abstract":"<p><p>A predictive model for long-term survival is needed, and mitochondrial dysfunction is a key feature of cancer metabolism, though its link to glioma is not well understood. The aim of this study was to identify the molecular characteristics associated with glioma prognosis and explore its potential function. We analyzed RNA-seq data from The Cancer Genome Atlas and identified differentially expressed mitochondrial long noncoding RNAs (lncRNAs) using R's 'limma' package. A prognostic model was developed using 10 selected lncRNAs and validated with Cox regression and least absolute shrinkage and selection operator algorithm. The model's efficacy was assessed using Kaplan-Meier and receiver operating characteristic curve analyses, and its correlation with immune cell profiles and drug sensitivity was explored. A 10-mitochondria-related LncRNA signature was generated. The median risk score values are used to classify glioma samples into low-risk and high-risk groups. In breast patients, the signature-based risk score demonstrated a more potent ability to predict survival than conventional clinicopathological features. Furthermore, we noted a substantial disparity in the number of immune cells, including B cells, CD8+T cells, and macrophages, between the two groups. In addition, the high-risk group exhibited lower half-maximal inhibitory concentration values for specific chemotherapy medications, including bortezomib, luminespib, rapamycin, and 5-fluorouracil. Our study elucidates the diagnostic and prognostic value of mitochondria-related-lncRNAs in the promotion, suppression, and treatment of glioma.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1097/CAD.0000000000001682
Xu Li, Yingwei Guo, Zecheng Qi, Yi Zheng
Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD. WD repeat domain 62 (WDR62) expression in LUAD tissues and in DDP-resistant or sensitive LUAD patients was analyzed bioinformatically, and a K-M plot was utilized to assess survival status. Real-time quantitative PCR was employed for WDR62 expression detection, cell-counting kit-8 assay for half maximal inhibitory concentration determination, flow cytometry for cell apoptosis detection, immunofluorescence for γ-H2AX expression analysis, and western blot for nonhomologous end joining repair and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway-related protein expression analysis. Poor prognosis was linked to WDR62, which was overexpressed in LUAD tissues and cells. Compared to sensitive cells, DDP-resistant cells had increased WDR62 expression. WDR62 knockdown may enhance DDP-induced cell apoptosis while reducing cell proliferation and DNA damage repair. Functional investigations verified that overexpressed WDR62's encouraging impact on DNA damage repair in A549/DDP cells could be reversed by MAPK inhibitors, increasing the cells' susceptibility to DDP. LUAD cells became less sensitive to DDP when WDR62 activated the MAPK/ERK pathway, which promoted DNA damage repair, indicating that DDP resistance might be reversed by treating LUAD with inhibitors of the MAPK pathway.
{"title":"WDR62 mediates MAPK/ERK pathway to stimulate DNA damage repair and attenuate cisplatin sensitivity in lung adenocarcinoma.","authors":"Xu Li, Yingwei Guo, Zecheng Qi, Yi Zheng","doi":"10.1097/CAD.0000000000001682","DOIUrl":"https://doi.org/10.1097/CAD.0000000000001682","url":null,"abstract":"<p><p>Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD. WD repeat domain 62 (WDR62) expression in LUAD tissues and in DDP-resistant or sensitive LUAD patients was analyzed bioinformatically, and a K-M plot was utilized to assess survival status. Real-time quantitative PCR was employed for WDR62 expression detection, cell-counting kit-8 assay for half maximal inhibitory concentration determination, flow cytometry for cell apoptosis detection, immunofluorescence for γ-H2AX expression analysis, and western blot for nonhomologous end joining repair and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway-related protein expression analysis. Poor prognosis was linked to WDR62, which was overexpressed in LUAD tissues and cells. Compared to sensitive cells, DDP-resistant cells had increased WDR62 expression. WDR62 knockdown may enhance DDP-induced cell apoptosis while reducing cell proliferation and DNA damage repair. Functional investigations verified that overexpressed WDR62's encouraging impact on DNA damage repair in A549/DDP cells could be reversed by MAPK inhibitors, increasing the cells' susceptibility to DDP. LUAD cells became less sensitive to DDP when WDR62 activated the MAPK/ERK pathway, which promoted DNA damage repair, indicating that DDP resistance might be reversed by treating LUAD with inhibitors of the MAPK pathway.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We aimed to investigate the role of large tumor suppressor kinase 2 (LATS2) in cisplatin (DDP) sensitivity in ovarian cancer. Bioinformatic analysis explored LATS2 expression, pathways, and regulators. Quantitative reverse transcription-PCR measured LATS2 and KLF4 mRNA levels. Dual-luciferase and chromatin immunoprecipitation assays confirmed their binding relationship. Cell viability, half maximal inhibitory concentration (IC 50 ) values, cell cycle, and DNA damage were assessed using CCK-8, flow cytometry, and comet assays. Western blot analyzed protein expression. The effect of LATS2 on the sensitivity of ovarian cancer to DDP was verified in vivo . LATS2 and KLF4 were downregulated in ovarian cancer, with LATS2 enriched in cell cycle, DNA replication, and mismatch repair pathways. KLF4, an upstream regulator of LATS2, bound to its promoter. Overexpressing LATS2 increased G1-phase cells, reduced cell viability and IC 50 values, and induced DNA damage. Silencing KLF4 alone showed the opposite effect on LATS2 overexpression. Knocking out LATS2 reversed the effects of KLF4 overexpression on cell viability, cell cycle, IC 50 values, and DNA damage in ovarian cancer cells. Inhibiting LATS2 inactivated the Hippo-YAP signaling pathway. In vivo experiments showed that overexpression of LATS2 enhanced the sensitivity of ovarian cancer to DDP. KLF4 activates LATS2 via DNA damage to enhance DDP sensitivity in ovarian cancer, providing a potential target for improving treatment outcomes.
{"title":"KLF4 activates LATS2 to promote cisplatin sensitivity in ovarian cancer through DNA damage.","authors":"Ling Ma, Xiaoting Zhao, Xiang Lu, Jiahui Shen, Jiankang Huang","doi":"10.1097/CAD.0000000000001662","DOIUrl":"10.1097/CAD.0000000000001662","url":null,"abstract":"<p><p>We aimed to investigate the role of large tumor suppressor kinase 2 (LATS2) in cisplatin (DDP) sensitivity in ovarian cancer. Bioinformatic analysis explored LATS2 expression, pathways, and regulators. Quantitative reverse transcription-PCR measured LATS2 and KLF4 mRNA levels. Dual-luciferase and chromatin immunoprecipitation assays confirmed their binding relationship. Cell viability, half maximal inhibitory concentration (IC 50 ) values, cell cycle, and DNA damage were assessed using CCK-8, flow cytometry, and comet assays. Western blot analyzed protein expression. The effect of LATS2 on the sensitivity of ovarian cancer to DDP was verified in vivo . LATS2 and KLF4 were downregulated in ovarian cancer, with LATS2 enriched in cell cycle, DNA replication, and mismatch repair pathways. KLF4, an upstream regulator of LATS2, bound to its promoter. Overexpressing LATS2 increased G1-phase cells, reduced cell viability and IC 50 values, and induced DNA damage. Silencing KLF4 alone showed the opposite effect on LATS2 overexpression. Knocking out LATS2 reversed the effects of KLF4 overexpression on cell viability, cell cycle, IC 50 values, and DNA damage in ovarian cancer cells. Inhibiting LATS2 inactivated the Hippo-YAP signaling pathway. In vivo experiments showed that overexpression of LATS2 enhanced the sensitivity of ovarian cancer to DDP. KLF4 activates LATS2 via DNA damage to enhance DDP sensitivity in ovarian cancer, providing a potential target for improving treatment outcomes.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":"49-61"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-16DOI: 10.1097/CAD.0000000000001664
Qi Chen, Hong Zhang
The objective of this study is to observe the antitumor efficacy of the second mitochondria-derived activator of caspases (SMAC) mimetic bivalent smac mimetic (BV6) in combination with target of rapamycin (mTOR) inhibitor on DDP (cisplatin) sensitivity. Ovarian cancer cells were exposed to cisplatin, BV6, DDP + BV6, and DDP + BV6 + mTOR inhibitor Rapamycin. Using proteomics and bioinformatics, protein expression profiles in ovarian cancer were determined. Bagg Albino color nude mice were treated with DDP or BV6 alone or in combination, or BV6 + DDP + Rapamycin. The effects of different treatments on ovarian cancer cells and tumor growth were evaluated in vivo and in vitro . Proteomics and bioinformatics analysis revealed significant changes of protein kinase (AKT)/mTOR pathway. Consistently, western blot data indicated that AKT/mTOR axis was gradually activated in BV6-treated ovarian cancer cells and attenuated the cytotoxic effect of BV6. Functional assays showed that DDP or BV6 treatment alone significantly enhanced the sensitivity and inhibited the migration of ovarian cancer cells, but without any synergistic effects. In addition, combination with BV6 and mTOR inhibitor Rapamycin significantly decreased cell viability and inhibited migration of ovarian cancer cells exposed to DDP. Consistently, the xenograft model showed that co-treatment with Rapamycin with BV6 had significantly suppressed tumor growth and metastasis. Our study demonstrated that SMAC analogue BV6 exhibits a strong anticancer effect on ovarian cancer in vitro and in vivo . Combination with Rapamycin overcomes the activation of mTOR pathway by BV6 and increases the chemosensitivity to DDP. These data suggest a potential application of triple combination with DDP + BV6 + Rapamycin in clinical management of ovarian cancer.
{"title":"SMAC mimetic BV6 acts in synergy with mTOR inhibitor to increase cisplatin sensitivity in ovarian cancer.","authors":"Qi Chen, Hong Zhang","doi":"10.1097/CAD.0000000000001664","DOIUrl":"10.1097/CAD.0000000000001664","url":null,"abstract":"<p><p>The objective of this study is to observe the antitumor efficacy of the second mitochondria-derived activator of caspases (SMAC) mimetic bivalent smac mimetic (BV6) in combination with target of rapamycin (mTOR) inhibitor on DDP (cisplatin) sensitivity. Ovarian cancer cells were exposed to cisplatin, BV6, DDP + BV6, and DDP + BV6 + mTOR inhibitor Rapamycin. Using proteomics and bioinformatics, protein expression profiles in ovarian cancer were determined. Bagg Albino color nude mice were treated with DDP or BV6 alone or in combination, or BV6 + DDP + Rapamycin. The effects of different treatments on ovarian cancer cells and tumor growth were evaluated in vivo and in vitro . Proteomics and bioinformatics analysis revealed significant changes of protein kinase (AKT)/mTOR pathway. Consistently, western blot data indicated that AKT/mTOR axis was gradually activated in BV6-treated ovarian cancer cells and attenuated the cytotoxic effect of BV6. Functional assays showed that DDP or BV6 treatment alone significantly enhanced the sensitivity and inhibited the migration of ovarian cancer cells, but without any synergistic effects. In addition, combination with BV6 and mTOR inhibitor Rapamycin significantly decreased cell viability and inhibited migration of ovarian cancer cells exposed to DDP. Consistently, the xenograft model showed that co-treatment with Rapamycin with BV6 had significantly suppressed tumor growth and metastasis. Our study demonstrated that SMAC analogue BV6 exhibits a strong anticancer effect on ovarian cancer in vitro and in vivo . Combination with Rapamycin overcomes the activation of mTOR pathway by BV6 and increases the chemosensitivity to DDP. These data suggest a potential application of triple combination with DDP + BV6 + Rapamycin in clinical management of ovarian cancer.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":"62-71"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-21DOI: 10.1097/CAD.0000000000001658
Caroline H Rinderle, Christopher V Baker, Courtney B Lagarde, Khoa Nguyen, Sara Al-Ghadban, Margarite D Matossian, Van T Hoang, Elizabeth C Martin, Bridgette M Collins-Burow, Simak Ali, David H Drewry, Matthew E Burow, Bruce A Bunnell
Triple-negative breast cancer (TNBC) is a highly invasive breast cancer subtype that is challenging to treat due to inherent heterogeneity and absence of estrogen, progesterone, and human epidermal growth factor 2 receptors. Kinase signaling networks drive cancer growth and development, and kinase inhibitors are promising anti-cancer strategies in diverse cancer subtypes. Kinase inhibitor screens are an efficient, valuable means of identifying compounds that suppress cancer cell growth in vitro , facilitating the identification of kinase vulnerabilities to target therapeutically. The Kinase Chemogenomic Set is a well-annotated library of 187 kinase inhibitor compounds that indexes 215 kinases of the 518 in the known human kinome representing various kinase networks and signaling pathways, several of which are understudied. Our screen revealed 14 kinase inhibitor compounds effectively inhibited TNBC cell growth and proliferation. Upon further testing, three compounds, THZ531, THZ1, and PFE-PKIS 29, had the most significant and consistent effects across a range of TNBC cell lines. These cyclin-dependent kinase (CDK)12/CDK13, CDK7, and phosphoinositide 3-kinase inhibitors, respectively, decreased metabolic activity in TNBC cell lines and promote a gene expression profile consistent with the reversal of the epithelial-to-mesenchymal transition, indicating these kinase networks potentially mediate metastatic behavior. These data identified novel kinase targets and kinase signaling pathways that drive metastasis in TNBC.
{"title":"Screening of a kinase inhibitor library identified novel targetable kinase pathways in triple-negative breast cancer.","authors":"Caroline H Rinderle, Christopher V Baker, Courtney B Lagarde, Khoa Nguyen, Sara Al-Ghadban, Margarite D Matossian, Van T Hoang, Elizabeth C Martin, Bridgette M Collins-Burow, Simak Ali, David H Drewry, Matthew E Burow, Bruce A Bunnell","doi":"10.1097/CAD.0000000000001658","DOIUrl":"10.1097/CAD.0000000000001658","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is a highly invasive breast cancer subtype that is challenging to treat due to inherent heterogeneity and absence of estrogen, progesterone, and human epidermal growth factor 2 receptors. Kinase signaling networks drive cancer growth and development, and kinase inhibitors are promising anti-cancer strategies in diverse cancer subtypes. Kinase inhibitor screens are an efficient, valuable means of identifying compounds that suppress cancer cell growth in vitro , facilitating the identification of kinase vulnerabilities to target therapeutically. The Kinase Chemogenomic Set is a well-annotated library of 187 kinase inhibitor compounds that indexes 215 kinases of the 518 in the known human kinome representing various kinase networks and signaling pathways, several of which are understudied. Our screen revealed 14 kinase inhibitor compounds effectively inhibited TNBC cell growth and proliferation. Upon further testing, three compounds, THZ531, THZ1, and PFE-PKIS 29, had the most significant and consistent effects across a range of TNBC cell lines. These cyclin-dependent kinase (CDK)12/CDK13, CDK7, and phosphoinositide 3-kinase inhibitors, respectively, decreased metabolic activity in TNBC cell lines and promote a gene expression profile consistent with the reversal of the epithelial-to-mesenchymal transition, indicating these kinase networks potentially mediate metastatic behavior. These data identified novel kinase targets and kinase signaling pathways that drive metastasis in TNBC.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":"36 1","pages":"39-48"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634125/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To investigate whether blocking both programmed cell death protein and vascular endothelial growth factor receptor could offer superior anticancer activity in these patients without compromising safety. In this study, patients were administered oral anlotinib (12 mg/day) on days 1-14 and intravenous sintilimab (200 mg) on day 1 of a 3-weekly cycle. The primary endpoints included the objective response rate and disease control rate. The secondary endpoints included overall survival (OS) and safety. Ten eligible patients were enrolled between June 2019 and May 2022, and eight patients underwent radiographic assessments. The results showed an objective response rate of 50% (partial and complete response in four and zero patients, respectively) and a disease control rate of 100%; four patients demonstrated stable disease for at least 8 weeks. The median OS was 4.37 (in our study, the score was 7), and the OS rate at 12 months was 37.5%. The Kaplan-Meier survival curve showed that the group with high blood glucose levels had a significantly shorter duration of survival than those with normal blood glucose levels. Adverse events of grade 3 and higher occurred in 50% of patients, and the most common severe adverse events included tumor pain (50%), hypertension (37.5%), tumor hemorrhage (25%), and decreased appetite (25%). The combination of anlotinib and sintilimab showed promising efficacy in controlling tumor size. However, the disappointing OS rate suggests that anti-vascular endothelial growth factor receptor agents should be used cautiously after radical radiation therapy. The combination used in this study demonstrated a toxicity profile comparable to that of other agents used in this setting. These findings warrant further investigation into the potential clinical utility of this combination.
{"title":"Combination of anlotinib and sintilimab for the treatment of recurrent or metastatic head and neck squamous cell carcinoma: a single-arm prospective study.","authors":"Tianxiao Wang, Jiaxin Wang, Yabing Zhang, Yuntao Song, Guohui Xu, Bin Zhang","doi":"10.1097/CAD.0000000000001660","DOIUrl":"10.1097/CAD.0000000000001660","url":null,"abstract":"<p><p>To investigate whether blocking both programmed cell death protein and vascular endothelial growth factor receptor could offer superior anticancer activity in these patients without compromising safety. In this study, patients were administered oral anlotinib (12 mg/day) on days 1-14 and intravenous sintilimab (200 mg) on day 1 of a 3-weekly cycle. The primary endpoints included the objective response rate and disease control rate. The secondary endpoints included overall survival (OS) and safety. Ten eligible patients were enrolled between June 2019 and May 2022, and eight patients underwent radiographic assessments. The results showed an objective response rate of 50% (partial and complete response in four and zero patients, respectively) and a disease control rate of 100%; four patients demonstrated stable disease for at least 8 weeks. The median OS was 4.37 (in our study, the score was 7), and the OS rate at 12 months was 37.5%. The Kaplan-Meier survival curve showed that the group with high blood glucose levels had a significantly shorter duration of survival than those with normal blood glucose levels. Adverse events of grade 3 and higher occurred in 50% of patients, and the most common severe adverse events included tumor pain (50%), hypertension (37.5%), tumor hemorrhage (25%), and decreased appetite (25%). The combination of anlotinib and sintilimab showed promising efficacy in controlling tumor size. However, the disappointing OS rate suggests that anti-vascular endothelial growth factor receptor agents should be used cautiously after radical radiation therapy. The combination used in this study demonstrated a toxicity profile comparable to that of other agents used in this setting. These findings warrant further investigation into the potential clinical utility of this combination.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":"36 1","pages":"79-84"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}