首页 > 最新文献

Integrative Biology最新文献

英文 中文
A systems framework for investigating the roles of multiple transporters and their impact on drug resistance. 研究多种转运体的作用及其对耐药性影响的系统框架。
IF 2.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae007
Manfredi di San Germano, J Krishnan

Efflux transporters are a fundamental component of both prokaryotic and eukaryotic cells, play a crucial role in maintaining cellular homeostasis, and represent a key bridge between single cell and population levels. From a biomedical perspective, they play a crucial role in drug resistance (and especially multi-drug resistance, MDR) in a range of systems spanning bacteria and human cancer cells. Typically, multiple efflux transporters are present in these cells, and the efflux transporters transport a range of substrates (with partially overlapping substrates between transporters). Furthermore, in the context of drug resistance, the levels of transporters may be elevated either due to extra or intracellular factors (feedforward regulation) or due to the drug itself (feedback regulation). As a consequence, there is a real need for a transparent systems-level understanding of the collective functioning of a set of transporters and their response to one or more drugs. We develop a systems framework for this purpose and examine the functioning of sets of transporters, their interplay with one or more drugs and their regulation (both feedforward and feedback). Using computational and analytical work, we obtain transparent insights into the systems level functioning of a set of transporters arising from the interplay between the multiplicity of drugs and transporters, different drug-transporter interaction parameters, sequestration and feedback and feedforward regulation. These insights transparently arising from the most basic consideration of a multiplicity of transporters have broad relevance in natural biology, biomedical engineering and synthetic biology. Insight, Innovation, Integration: Innovation: creating a structured systems framework for evaluating the impact of multiple transporters on drug efflux and drug resistance. Systematic analysis allows us to evaluate the effect of multiple transporters on one/more drugs, and dissect associated resistance mechanisms. Integration allows for elucidation of key cause-and-effect relationships and a transparent systems-level understanding of the collective functioning of transporters and their impact on resistance, revealing the interplay of key underlying factors. Systems-level insights include the essentially different behaviour of transporters as part of a group; unintuitive effects of influx; effects of elevated transporter-levels by feedforward and drug-induced mechanisms. Relevance: a systems understanding of efflux, their role in MDR, providing a framework/platform for use in designing treatment, and in synthetic biology design.

外排转运体是原核细胞和真核细胞的基本组成部分,在维持细胞平衡方面发挥着关键作用,是连接单细胞和群体水平的重要桥梁。从生物医学的角度来看,它们在细菌和人类癌细胞等一系列系统的耐药性(尤其是多重耐药性,MDR)中发挥着至关重要的作用。这些细胞中通常存在多个外排转运体,外排转运体转运一系列底物(转运体之间有部分底物重叠)。此外,在耐药性的情况下,转运体的水平可能会因细胞外或细胞内因素(前馈调节)或药物本身(反馈调节)而升高。因此,我们亟需从系统层面了解一组转运体的整体功能及其对一种或多种药物的反应。为此,我们开发了一个系统框架,研究了一组转运体的功能、它们与一种或多种药物的相互作用以及它们的调节(前馈和反馈)。通过计算和分析工作,我们从药物和转运体的多样性、不同药物与转运体的相互作用参数、螯合以及反馈和前馈调节之间的相互作用中,获得了对一组转运体的系统级功能的透彻见解。从对多种转运体的最基本考虑中得出的这些深刻见解,对自然生物学、生物医学工程和合成生物学具有广泛的意义。洞察、创新、整合:创新:创建结构化系统框架,评估多种转运体对药物外流和耐药性的影响。通过系统分析,我们可以评估多种转运体对一种/多种药物的影响,并剖析相关的耐药性机制。通过整合可以阐明关键的因果关系,并从系统层面透彻了解转运体的整体功能及其对耐药性的影响,揭示关键潜在因素的相互作用。系统层面的见解包括:作为群体一部分的转运体本质上的不同行为;流入的非直观影响;前馈和药物诱导机制对转运体水平升高的影响。相关性:对药物外流及其在 MDR 中作用的系统认识,为设计治疗方法和合成生物学设计提供框架/平台。
{"title":"A systems framework for investigating the roles of multiple transporters and their impact on drug resistance.","authors":"Manfredi di San Germano, J Krishnan","doi":"10.1093/intbio/zyae007","DOIUrl":"10.1093/intbio/zyae007","url":null,"abstract":"<p><p>Efflux transporters are a fundamental component of both prokaryotic and eukaryotic cells, play a crucial role in maintaining cellular homeostasis, and represent a key bridge between single cell and population levels. From a biomedical perspective, they play a crucial role in drug resistance (and especially multi-drug resistance, MDR) in a range of systems spanning bacteria and human cancer cells. Typically, multiple efflux transporters are present in these cells, and the efflux transporters transport a range of substrates (with partially overlapping substrates between transporters). Furthermore, in the context of drug resistance, the levels of transporters may be elevated either due to extra or intracellular factors (feedforward regulation) or due to the drug itself (feedback regulation). As a consequence, there is a real need for a transparent systems-level understanding of the collective functioning of a set of transporters and their response to one or more drugs. We develop a systems framework for this purpose and examine the functioning of sets of transporters, their interplay with one or more drugs and their regulation (both feedforward and feedback). Using computational and analytical work, we obtain transparent insights into the systems level functioning of a set of transporters arising from the interplay between the multiplicity of drugs and transporters, different drug-transporter interaction parameters, sequestration and feedback and feedforward regulation. These insights transparently arising from the most basic consideration of a multiplicity of transporters have broad relevance in natural biology, biomedical engineering and synthetic biology. Insight, Innovation, Integration: Innovation: creating a structured systems framework for evaluating the impact of multiple transporters on drug efflux and drug resistance. Systematic analysis allows us to evaluate the effect of multiple transporters on one/more drugs, and dissect associated resistance mechanisms. Integration allows for elucidation of key cause-and-effect relationships and a transparent systems-level understanding of the collective functioning of transporters and their impact on resistance, revealing the interplay of key underlying factors. Systems-level insights include the essentially different behaviour of transporters as part of a group; unintuitive effects of influx; effects of elevated transporter-levels by feedforward and drug-induced mechanisms. Relevance: a systems understanding of efflux, their role in MDR, providing a framework/platform for use in designing treatment, and in synthetic biology design.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network dynamics investigation of omics-data-driven circadian-hypoxia crosstalk logical model in gallbladder cancer reveals key therapeutic target combinations. 对胆囊癌中昼夜节律-缺氧串扰逻辑模型的组学数据驱动的网络动力学研究揭示了关键治疗靶点组合。
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae018
Aakansha Singh, Anjana Dwivedi

Recent findings in cancer research have pointed towards the bidirectional interaction between circadian and hypoxia pathways. However, little is known about their crosstalk mechanism. In this work, we aimed to investigate this crosstalk at a network level utilizing the omics information of gallbladder cancer. Differential gene expression and pathway enrichment analysis were used for selecting the crucial genes from both the pathways, followed by the construction of a logical crosstalk model using GINsim. Functional circuit identification and node perturbations were then performed. Significant node combinations were used to investigate the temporal behavior of the network through MaBoSS. Lastly, the model was validated using published in vitro experimentations. Four new positive circuits and a new axis viz. BMAL1/ HIF1αβ/ NANOG, responsible for stemness were identified. Through triple node perturbations viz.a. BMAL:CLOCK (KO or E1) + P53 (E1) + HIF1α (KO); b. P53 (E1) + HIF1α (KO) + MYC (E1); and c. HIF1α (KO) + MYC (E1) + EGFR (KO), the model was able to inhibit cancer growth and maintain a homeostatic condition. This work provides an architecture for drug simulation analysis to entrainment circadian rhythm and in vitro experiments for chronotherapy-related studies. Insight Box. Circadian rhythm and hypoxia are the key dysregulated processes which fuels-up the cancer growth. In the present work we have developed a gallbladder cancer (GBC) specific Boolean model, utilizing the RNASeq data from GBC dataset and tissue specific interactions. This work adequately models the bidirectional nature of interactions previously illustrated in experimental papers showing the effect of hypoxia on dysregulation of circadian rhythm and the influence of this disruption on progression towards metastasis. Through the dynamical study of the model and its response to different perturbations, we report novel triple node combinations that can be targeted to efficiently reduce GBC growth. This network can be used as a generalized framework to investigate different crosstalk pathways linked with cancer progression.

癌症研究的最新发现表明,昼夜节律和缺氧途径之间存在双向互动。然而,人们对它们之间的串扰机制知之甚少。在这项工作中,我们旨在利用胆囊癌的 omics 信息,在网络水平上研究这种串扰。我们利用差异基因表达和通路富集分析从两条通路中筛选出关键基因,然后利用 GINsim 构建了一个逻辑串扰模型。然后进行功能回路识别和节点扰动。重要的节点组合被用于通过 MaBoSS 研究网络的时间行为。最后,利用已发表的体外实验对模型进行了验证。确定了四个新的正向回路和一个新的轴,即负责干性的 BMAL1/ HIF1αβ/ NANOG。通过三重节点扰动,即 a. BMAL:CLOCK (KO 或 E1) + P53 (E1) + HIF1α (KO);b. P53 (E1) + HIF1α (KO) + MYC (E1);以及 c. HIF1α (KO) + MYC (E1) + EGFR (KO),该模型能够抑制癌症生长并保持平衡状态。这项工作为药物模拟分析提供了一个架构,以诱导昼夜节律和体外实验,进行与时间疗法相关的研究。洞察框。昼夜节律和缺氧是助长癌症生长的关键失调过程。在本研究中,我们利用来自胆囊癌数据集的 RNASeq 数据和组织特异性相互作用,开发了一个胆囊癌(GBC)特异性布尔模型。这项工作充分模拟了之前在实验论文中说明的相互作用的双向性,这些论文显示了缺氧对昼夜节律失调的影响,以及这种失调对转移进展的影响。通过对模型及其对不同扰动的响应进行动态研究,我们报告了新的三节点组合,可以有针对性地有效减少 GBC 的生长。该网络可用作研究与癌症进展相关的不同串扰途径的通用框架。
{"title":"Network dynamics investigation of omics-data-driven circadian-hypoxia crosstalk logical model in gallbladder cancer reveals key therapeutic target combinations.","authors":"Aakansha Singh, Anjana Dwivedi","doi":"10.1093/intbio/zyae018","DOIUrl":"https://doi.org/10.1093/intbio/zyae018","url":null,"abstract":"<p><p>Recent findings in cancer research have pointed towards the bidirectional interaction between circadian and hypoxia pathways. However, little is known about their crosstalk mechanism. In this work, we aimed to investigate this crosstalk at a network level utilizing the omics information of gallbladder cancer. Differential gene expression and pathway enrichment analysis were used for selecting the crucial genes from both the pathways, followed by the construction of a logical crosstalk model using GINsim. Functional circuit identification and node perturbations were then performed. Significant node combinations were used to investigate the temporal behavior of the network through MaBoSS. Lastly, the model was validated using published in vitro experimentations. Four new positive circuits and a new axis viz. BMAL1/ HIF1αβ/ NANOG, responsible for stemness were identified. Through triple node perturbations viz.a. BMAL:CLOCK (KO or E1) + P53 (E1) + HIF1α (KO); b. P53 (E1) + HIF1α (KO) + MYC (E1); and c. HIF1α (KO) + MYC (E1) + EGFR (KO), the model was able to inhibit cancer growth and maintain a homeostatic condition. This work provides an architecture for drug simulation analysis to entrainment circadian rhythm and in vitro experiments for chronotherapy-related studies. Insight Box. Circadian rhythm and hypoxia are the key dysregulated processes which fuels-up the cancer growth. In the present work we have developed a gallbladder cancer (GBC) specific Boolean model, utilizing the RNASeq data from GBC dataset and tissue specific interactions. This work adequately models the bidirectional nature of interactions previously illustrated in experimental papers showing the effect of hypoxia on dysregulation of circadian rhythm and the influence of this disruption on progression towards metastasis. Through the dynamical study of the model and its response to different perturbations, we report novel triple node combinations that can be targeted to efficiently reduce GBC growth. This network can be used as a generalized framework to investigate different crosstalk pathways linked with cancer progression.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delayed jamming-induced oscillatory migration patterns of epithelial collectives under long-range confinement. 长程限制下上皮细胞集体的延迟干扰诱导振荡迁移模式。
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae016
S Lohmann, F M Pramotton, A Taloni, A Ferrari, D Poulikakos, C Giampietro

Collective dynamics of cells in confined geometry regulate several biological processes including cell migration, proliferation, differentiation, and communication. In this work, combining simulation with experimental data, we studied the oscillatory motion of epithelial sheets in smaller areas of confinement, and we linked the monolayer maturation induced-jamming with the wave formation. We showed that epithelial cell populations with delayed jamming properties use the additional time available from this delay to coordinate their movement, generating wave motion in larger areas of confinement compared to control populations. Furthermore, the effects of combining geometric confinement with contact guiding micro-gratings on this wave formation were investigated. We demonstrated that collective migratory oscillations under large geometrical confinement depend on the jamming state of the cell monolayers. The early dynamical state of the experimental results obtained was simulated by self-propelled Voronoi computations, comparing cells with solid-like and fluid-like behavior. Together our model describes the wave formation under confinement and the nodal oscillatory dynamics of the early dynamic stage of the system. Insight Box: Collective behavior of cells in confined spaces impacts biological processes. Through experimental data combined with simulations, the oscillatory motion of epithelial sheets in small areas of confinement was described. A correlation between the level of cell jamming and the formation of waves was detected. Cell populations with delayed jamming presented wave motion in larger confinement areas. The effects of combining geometric confinement with substrate micro-gratings demonstrated that the collective migratory oscillations in large confinement areas rely on the jamming state of cells. The early dynamical state was simulated using self-propelled Voronoi computations that help to understand wave formation under confinement and the nodal oscillatory dynamics of early-stage systems.

细胞在封闭几何形状中的集体动力学调节着多个生物过程,包括细胞迁移、增殖、分化和交流。在这项工作中,我们结合模拟和实验数据,研究了上皮细胞片在较小的封闭区域内的振荡运动,并将单层成熟诱导的干扰与波的形成联系起来。我们发现,具有延迟干扰特性的上皮细胞群利用这种延迟带来的额外时间来协调它们的运动,与对照群相比,它们在更大的封闭区域内产生了波浪运动。此外,我们还研究了几何限制与接触引导微光栅相结合对这种波形成的影响。我们证明,大几何限制下的集体迁移振荡取决于细胞单层的干扰状态。我们通过自走式 Voronoi 计算模拟了实验结果的早期动力学状态,比较了具有类固体和类流体行为的细胞。我们的模型描述了在封闭条件下的波形成和系统早期动态阶段的节点振荡动力学。洞察框:细胞在密闭空间中的集体行为会影响生物过程。通过实验数据与模拟相结合,描述了上皮细胞片在小范围密闭空间中的振荡运动。研究发现了细胞干扰程度与波的形成之间的相关性。具有延迟干扰的细胞群在较大的封闭区域内呈现波浪运动。几何限制与基底微栅格相结合的效果表明,大限制区域内的集体迁移振荡依赖于细胞的干扰状态。利用自走式 Voronoi 计算模拟了早期动力学状态,这有助于理解禁闭下的波形成和早期系统的节点振荡动力学。
{"title":"Delayed jamming-induced oscillatory migration patterns of epithelial collectives under long-range confinement.","authors":"S Lohmann, F M Pramotton, A Taloni, A Ferrari, D Poulikakos, C Giampietro","doi":"10.1093/intbio/zyae016","DOIUrl":"https://doi.org/10.1093/intbio/zyae016","url":null,"abstract":"<p><p>Collective dynamics of cells in confined geometry regulate several biological processes including cell migration, proliferation, differentiation, and communication. In this work, combining simulation with experimental data, we studied the oscillatory motion of epithelial sheets in smaller areas of confinement, and we linked the monolayer maturation induced-jamming with the wave formation. We showed that epithelial cell populations with delayed jamming properties use the additional time available from this delay to coordinate their movement, generating wave motion in larger areas of confinement compared to control populations. Furthermore, the effects of combining geometric confinement with contact guiding micro-gratings on this wave formation were investigated. We demonstrated that collective migratory oscillations under large geometrical confinement depend on the jamming state of the cell monolayers. The early dynamical state of the experimental results obtained was simulated by self-propelled Voronoi computations, comparing cells with solid-like and fluid-like behavior. Together our model describes the wave formation under confinement and the nodal oscillatory dynamics of the early dynamic stage of the system. Insight Box: Collective behavior of cells in confined spaces impacts biological processes. Through experimental data combined with simulations, the oscillatory motion of epithelial sheets in small areas of confinement was described. A correlation between the level of cell jamming and the formation of waves was detected. Cell populations with delayed jamming presented wave motion in larger confinement areas. The effects of combining geometric confinement with substrate micro-gratings demonstrated that the collective migratory oscillations in large confinement areas rely on the jamming state of cells. The early dynamical state was simulated using self-propelled Voronoi computations that help to understand wave formation under confinement and the nodal oscillatory dynamics of early-stage systems.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hub genes, key miRNAs and interaction analyses in type 2 diabetes mellitus: an integrative in silico approach. 2 型糖尿病中的枢纽基因、关键 miRNA 和相互作用分析:一种综合的硅学方法。
IF 2.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae002
Zeinab Nematollahi, Shiva Karimian, Ali Taghavirashidizadeh, Mohammad Darvishi, SeyedAbbas Pakmehr, Amin Erfan, Mohammad Javad Teimoury, Neda Mansouri, Iraj Alipourfard

Diabetes is a rising global metabolic disorder and leads to long-term consequences. As a multifactorial disease, the gene-associated mechanisms are important to know. This study applied a bioinformatics approach to explore the molecular underpinning of type 2 diabetes mellitus through differential gene expression analysis. We used microarray datasets GSE16415 and GSE29226 to identify differentially expressed genes between type 2 diabetes and normal samples using R software. Following that, using the STRING database, the protein-protein interaction network was constructed and further analyzed by Cytoscape software. The EnrichR database was used for Gene Ontology and pathway enrichment analysis to explore key pathways and functional annotations of hub genes. We also used miRTarBase and TargetScan databases to predict miRNAs targeting hub genes. We identified 21 hub genes in type 2 diabetes, some showing more significant changes in the PPI network. Our results revealed that GLUL, SLC32A1, PC, MAPK10, MAPT, and POSTN genes are more important in the PPI network and can be experimentally investigated as therapeutic targets. Hsa-miR-492 and hsa-miR-16-5p are suggested for diagnosis and prognosis by targeting GLUL, SLC32A1, PC, MAPK10, and MAPT genes involved in the insulin signaling pathway. Insight: Type 2 diabetes, as a rising global and multifactorial disorder, is important to know the gene-associated mechanisms. In an integrative bioinformatics analysis, we integrated different finding datasets to put together and find valuable diagnostic and prognostic hub genes and miRNAs. In contrast, genes, RNAs, and enzymes interact systematically in pathways. Using multiple databases and software, we identified differential expression between hub genes of diabetes and normal samples. We explored different protein-protein interaction networks, gene ontology, key pathway analysis, and predicted miRNAs that target hub genes. This study reported 21 significant hub genes and some miRNAs in the insulin signaling pathway for innovative and potential diagnostic and therapeutic purposes.

糖尿病是一种日益严重的全球性代谢性疾病,会导致长期后果。作为一种多因素疾病,了解与基因相关的机制非常重要。本研究采用生物信息学方法,通过差异基因表达分析探索 2 型糖尿病的分子基础。我们使用微阵列数据集 GSE16415 和 GSE29226,利用 R 软件识别 2 型糖尿病样本与正常样本之间的差异表达基因。随后,我们利用 STRING 数据库构建了蛋白质-蛋白质相互作用网络,并通过 Cytoscape 软件进行了进一步分析。EnrichR 数据库用于基因本体论和通路富集分析,以探索关键通路和枢纽基因的功能注释。我们还利用 miRTarBase 和 TargetScan 数据库预测了靶向枢纽基因的 miRNA。我们在 2 型糖尿病中发现了 21 个枢纽基因,其中一些在 PPI 网络中显示出更显著的变化。我们的结果显示,GLUL、SLC32A1、PC、MAPK10、MAPT 和 POSTN 基因在 PPI 网络中更为重要,可作为治疗靶点进行实验研究。通过靶向参与胰岛素信号通路的 GLUL、SLC32A1、PC、MAPK10 和 MAPT 基因,建议将 Hsa-miR-492 和 hsa-miR-16-5p 用于诊断和预后。启示2 型糖尿病是一种不断上升的全球性多因素疾病,了解与之相关的基因机制非常重要。在一项综合生物信息学分析中,我们整合了不同的发现数据集,以汇总并找到有价值的诊断和预后枢纽基因和 miRNA。相反,基因、RNA 和酶在通路中系统地相互作用。利用多个数据库和软件,我们确定了糖尿病和正常样本中枢基因的差异表达。我们探索了不同的蛋白-蛋白相互作用网络、基因本体、关键通路分析,并预测了靶向枢纽基因的 miRNA。本研究报告了胰岛素信号通路中的 21 个重要枢纽基因和一些 miRNA,具有创新性和潜在的诊断和治疗用途。
{"title":"Hub genes, key miRNAs and interaction analyses in type 2 diabetes mellitus: an integrative in silico approach.","authors":"Zeinab Nematollahi, Shiva Karimian, Ali Taghavirashidizadeh, Mohammad Darvishi, SeyedAbbas Pakmehr, Amin Erfan, Mohammad Javad Teimoury, Neda Mansouri, Iraj Alipourfard","doi":"10.1093/intbio/zyae002","DOIUrl":"10.1093/intbio/zyae002","url":null,"abstract":"<p><p>Diabetes is a rising global metabolic disorder and leads to long-term consequences. As a multifactorial disease, the gene-associated mechanisms are important to know. This study applied a bioinformatics approach to explore the molecular underpinning of type 2 diabetes mellitus through differential gene expression analysis. We used microarray datasets GSE16415 and GSE29226 to identify differentially expressed genes between type 2 diabetes and normal samples using R software. Following that, using the STRING database, the protein-protein interaction network was constructed and further analyzed by Cytoscape software. The EnrichR database was used for Gene Ontology and pathway enrichment analysis to explore key pathways and functional annotations of hub genes. We also used miRTarBase and TargetScan databases to predict miRNAs targeting hub genes. We identified 21 hub genes in type 2 diabetes, some showing more significant changes in the PPI network. Our results revealed that GLUL, SLC32A1, PC, MAPK10, MAPT, and POSTN genes are more important in the PPI network and can be experimentally investigated as therapeutic targets. Hsa-miR-492 and hsa-miR-16-5p are suggested for diagnosis and prognosis by targeting GLUL, SLC32A1, PC, MAPK10, and MAPT genes involved in the insulin signaling pathway. Insight: Type 2 diabetes, as a rising global and multifactorial disorder, is important to know the gene-associated mechanisms. In an integrative bioinformatics analysis, we integrated different finding datasets to put together and find valuable diagnostic and prognostic hub genes and miRNAs. In contrast, genes, RNAs, and enzymes interact systematically in pathways. Using multiple databases and software, we identified differential expression between hub genes of diabetes and normal samples. We explored different protein-protein interaction networks, gene ontology, key pathway analysis, and predicted miRNAs that target hub genes. This study reported 21 significant hub genes and some miRNAs in the insulin signaling pathway for innovative and potential diagnostic and therapeutic purposes.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139897790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The USP35-CXCR3 Axis plays an oncogenic role in JeKo-1 mantle cell lymphoma cells. USP35-CXCR3 轴在 JeKo-1 套细胞淋巴瘤细胞中发挥致癌作用。
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae021
Zongkai Zou, Shumin Chen, Yonghe Wu, Siling Ji

In B cells, the chemokine receptor CXCR3 is expressed only by a subset of B cells. However, CXCR3 is highly expressed in a rare type of B-cell lymphoma known as Mantle Cell Lymphoma (MCL) and CXCR3 inhibitor impairs proliferation and induces apoptosis in the MCL cell line JeKo-1. Despite this, the mechanism responsible for maintaining high levels of CXCR3 in MCL cells remains unclear. In this study, we assessed CXCR3 expression and amplification in MCL samples and confirmed that CXCR3 is overexpressed in MCL tissues. We also observed that CXCR3 amplification is present in a small portion of MCL patients and is associated with MCL classification. We then screened ubiquitin-specific proteases (USPs) that might control the degradation of CXCR3 protein. Our investigation revealed that USP35 acts as a potent stabilizer of CXCR3 protein. Knockdown of USP35 substantially reduced the CXCR3 protein levels in JeKo-1 cells, resulting in reduced cell viability, cell cycle arrest, increased apoptosis, and mitigated migration and invasion in these cells. At the molecular level, USP35 deubiquitinates and stabilizes CXCR3. USP35 deficiency attenuated the activation of the JAK1/STAT1 pathway and reduced the expression of β-catenin and c-Myc in JeKo-1 cells. Furthermore, we observed that overexpression of CXCR3 rescued the impaired tumorigenicity of USP35-deficient JeKo-1 cells, and the mechanism may be related to the fact that USP35 promotes CXCR3 deubiquitination to stabilize its expression. These findings collectively demonstrate the oncogenic role of the USP35-CXCR3 axis in JeKo-1 MCL cells.

在 B 细胞中,只有一部分 B 细胞表达趋化因子受体 CXCR3。然而,CXCR3 在一种称为套细胞淋巴瘤(MCL)的罕见 B 细胞淋巴瘤中高度表达,而且 CXCR3 抑制剂会影响 MCL 细胞系 JeKo-1 的增殖并诱导其凋亡。尽管如此,MCL 细胞中 CXCR3 保持高水平的机制仍不清楚。在本研究中,我们评估了 MCL 样本中 CXCR3 的表达和扩增情况,证实 CXCR3 在 MCL 组织中过表达。我们还观察到,CXCR3 扩增存在于一小部分 MCL 患者中,并与 MCL 分类相关。我们随后筛选了可能控制 CXCR3 蛋白降解的泛素特异性蛋白酶(USP)。我们的研究发现,USP35 是 CXCR3 蛋白的强效稳定剂。敲除 USP35 能大幅降低 JeKo-1 细胞中的 CXCR3 蛋白水平,从而降低这些细胞的存活率、阻滞细胞周期、增加细胞凋亡并减轻其迁移和侵袭。在分子水平上,USP35 能去泛素并稳定 CXCR3。USP35 的缺乏会削弱 JAK1/STAT1 通路的激活,并降低 JeKo-1 细胞中 β-catenin 和 c-Myc 的表达。此外,我们还观察到,过表达 CXCR3 可挽救 USP35 缺陷 JeKo-1 细胞受损的致瘤性,其机制可能与 USP35 促进 CXCR3 去泛素化以稳定其表达有关。这些发现共同证明了 USP35-CXCR3 轴在 JeKo-1 MCL 细胞中的致癌作用。
{"title":"The USP35-CXCR3 Axis plays an oncogenic role in JeKo-1 mantle cell lymphoma cells.","authors":"Zongkai Zou, Shumin Chen, Yonghe Wu, Siling Ji","doi":"10.1093/intbio/zyae021","DOIUrl":"https://doi.org/10.1093/intbio/zyae021","url":null,"abstract":"<p><p>In B cells, the chemokine receptor CXCR3 is expressed only by a subset of B cells. However, CXCR3 is highly expressed in a rare type of B-cell lymphoma known as Mantle Cell Lymphoma (MCL) and CXCR3 inhibitor impairs proliferation and induces apoptosis in the MCL cell line JeKo-1. Despite this, the mechanism responsible for maintaining high levels of CXCR3 in MCL cells remains unclear. In this study, we assessed CXCR3 expression and amplification in MCL samples and confirmed that CXCR3 is overexpressed in MCL tissues. We also observed that CXCR3 amplification is present in a small portion of MCL patients and is associated with MCL classification. We then screened ubiquitin-specific proteases (USPs) that might control the degradation of CXCR3 protein. Our investigation revealed that USP35 acts as a potent stabilizer of CXCR3 protein. Knockdown of USP35 substantially reduced the CXCR3 protein levels in JeKo-1 cells, resulting in reduced cell viability, cell cycle arrest, increased apoptosis, and mitigated migration and invasion in these cells. At the molecular level, USP35 deubiquitinates and stabilizes CXCR3. USP35 deficiency attenuated the activation of the JAK1/STAT1 pathway and reduced the expression of β-catenin and c-Myc in JeKo-1 cells. Furthermore, we observed that overexpression of CXCR3 rescued the impaired tumorigenicity of USP35-deficient JeKo-1 cells, and the mechanism may be related to the fact that USP35 promotes CXCR3 deubiquitination to stabilize its expression. These findings collectively demonstrate the oncogenic role of the USP35-CXCR3 axis in JeKo-1 MCL cells.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing T-cell activation in nanoliter tumor co-cultures using membrane displacement trap arrays. 利用膜置换陷阱阵列探测纳升肿瘤共培养物中的 T 细胞活化。
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae014
Michael Yeh, Emanuel Salazar-Cavazos, Anagha Krishnan, Grégoire Altan-Bonnet, Don L DeVoe

Immune responses against cancer are inherently stochastic, with small numbers of individual T cells within a larger ensemble of lymphocytes initiating the molecular cascades that lead to tumor cytotoxicity. A potential source of this intra-tumor variability is the differential ability of immune cells to respond to tumor cells. Classical microwell co-cultures of T cells and tumor cells are inadequate for reliably culturing and analyzing low cell numbers needed to probe this variability, and have failed in recapitulating the heterogeneous small domains observed in tumors. Here we leverage a membrane displacement trap array technology that overcomes limitations of conventional microwell plates for immunodynamic studies. The microfluidic platform supports on-demand formation of dense nanowell cultures under continuous perfusion reflecting the tumor microenvironment, with real-time monitoring of T cell proliferation and activation within each nanowell. The system enables selective ejection of cells for profiling by fluorescence activated cell sorting, allowing observed on-chip variability in immune response to be correlated with off-chip quantification of T cell activation. The technology offers new potential for probing the molecular origins of T cell heterogeneity and identifying specific cell phenotypes responsible for initiating and propagating immune cascades within tumors. Insight Box Variability in T cell activation plays a critical role in the immune response against cancer. New tools are needed to unravel the mechanisms that drive successful anti-tumor immune response, and to support the development of novel immunotherapies utilizing rare T cell phenotypes that promote effective immune surveillance. To this end, we present a microfluidic cell culture platform capable of probing differential T cell activation in an array of nanoliter-scale wells coupled with off-chip cell analysis, enabling a high resolution view of variable immune response within tumor / T cell co-cultures containing cell ensembles orders of magnitude smaller than conventional well plate studies.

针对癌症的免疫反应本质上是随机的,在一个较大的淋巴细胞集合体中,少量的单个 T 细胞启动分子级联,导致肿瘤细胞毒性。这种肿瘤内变异性的一个潜在来源是免疫细胞对肿瘤细胞的不同反应能力。T细胞和肿瘤细胞的经典微孔共培养不足以可靠地培养和分析探究这种变异性所需的低细胞数,也无法再现在肿瘤中观察到的异质性小域。在这里,我们利用膜置换捕获阵列技术克服了传统微孔板在免疫动力学研究中的局限性。该微流体平台支持在连续灌流的情况下按需形成致密的纳米孔培养物,以反映肿瘤微环境,并实时监测每个纳米孔内 T 细胞的增殖和活化情况。该系统能选择性地排出细胞,通过荧光激活细胞分拣技术进行分析,从而将芯片上观察到的免疫反应变化与芯片外的 T 细胞活化定量联系起来。该技术为探究 T 细胞异质性的分子起源以及确定负责启动和传播肿瘤内免疫级联的特定细胞表型提供了新的可能性。启示盒 T细胞活化的差异性在抗癌免疫反应中起着关键作用。我们需要新的工具来揭示驱动成功的抗肿瘤免疫反应的机制,并支持利用促进有效免疫监视的罕见 T 细胞表型开发新型免疫疗法。为此,我们提出了一种微流体细胞培养平台,该平台能在纳升级孔阵列中探测不同的 T 细胞活化,并结合片外细胞分析,从而能高分辨率地观察肿瘤 / T 细胞共培养物内的可变免疫反应,其中包含的细胞组合比传统孔板研究小很多。
{"title":"Probing T-cell activation in nanoliter tumor co-cultures using membrane displacement trap arrays.","authors":"Michael Yeh, Emanuel Salazar-Cavazos, Anagha Krishnan, Grégoire Altan-Bonnet, Don L DeVoe","doi":"10.1093/intbio/zyae014","DOIUrl":"10.1093/intbio/zyae014","url":null,"abstract":"<p><p>Immune responses against cancer are inherently stochastic, with small numbers of individual T cells within a larger ensemble of lymphocytes initiating the molecular cascades that lead to tumor cytotoxicity. A potential source of this intra-tumor variability is the differential ability of immune cells to respond to tumor cells. Classical microwell co-cultures of T cells and tumor cells are inadequate for reliably culturing and analyzing low cell numbers needed to probe this variability, and have failed in recapitulating the heterogeneous small domains observed in tumors. Here we leverage a membrane displacement trap array technology that overcomes limitations of conventional microwell plates for immunodynamic studies. The microfluidic platform supports on-demand formation of dense nanowell cultures under continuous perfusion reflecting the tumor microenvironment, with real-time monitoring of T cell proliferation and activation within each nanowell. The system enables selective ejection of cells for profiling by fluorescence activated cell sorting, allowing observed on-chip variability in immune response to be correlated with off-chip quantification of T cell activation. The technology offers new potential for probing the molecular origins of T cell heterogeneity and identifying specific cell phenotypes responsible for initiating and propagating immune cascades within tumors. Insight Box Variability in T cell activation plays a critical role in the immune response against cancer. New tools are needed to unravel the mechanisms that drive successful anti-tumor immune response, and to support the development of novel immunotherapies utilizing rare T cell phenotypes that promote effective immune surveillance. To this end, we present a microfluidic cell culture platform capable of probing differential T cell activation in an array of nanoliter-scale wells coupled with off-chip cell analysis, enabling a high resolution view of variable immune response within tumor / T cell co-cultures containing cell ensembles orders of magnitude smaller than conventional well plate studies.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cellular zeta potential: cell electrophysiology beyond the membrane. 细胞泽塔电位:超越膜的细胞电生理学。
IF 2.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae003
Michael Pycraft Hughes

The standard model of the cell membrane potential Vm describes it as arising from diffusion currents across a membrane with a constant electric field, with zero electric field outside the cell membrane. However, the influence of Vm has been shown to extend into the extracellular space where it alters the cell's ζ-potential, the electrical potential measured a few nm from the cell surface which defines how the cell interacts with charged entities in its environment, including ions, molecules, and other cells. The paradigm arising from surface science is that the ζ-potential arises only from fixed membrane surface charge, and has consequently received little interest. However, if the ζ-potential can mechanistically and dynamically change by alteration of Vm, it allows the cell to dynamically alter cell-cell and cell-molecule interactions and may explain previously unexplained electrophysiological behaviours. Whilst the two potentials Vm and ζ are rarely reported together, they are occasionally described in different studies for the same cell type. By considering published data on these parameters across multiple cell types, as well as incidences of unexplained but seemingly functional Vm changes correlating with changes in cell behaviour, evidence is presented that this may play a functional role in the physiology of red blood cells, macrophages, platelets, sperm, ova, bacteria and cancer. Understanding how these properties will improve understanding of the role of electrical potentials and charges in the regulation of cell function and in the way in which cells interact with their environment. Insight  The zeta (ζ) potential is the electrical potential a few nm beyond the surface of any suspensoid in water. Whilst typically assumed to arise only from fixed charges on the cell surface, recent and historical evidence shows a strong link to the cell's membrane potential Vm, which the cell can alter mechanistically through the use of ion channels. Whilst these two potentials have rarely been studied simultaneously, this review collates data across multiple studies reporting Vm, ζ-potential, electrical properties of changes in cell behaviour. Collectively, this points to Vm-mediated ζ-potential playing a significant role in the physiology and activity of blood cells, immune response, developmental biology and egg fertilization, and cancer among others.

细胞膜电位 Vm 的标准模型将其描述为产生于恒定电场下的跨膜扩散电流,细胞膜外的电场为零。然而,Vm 的影响已被证明可延伸至细胞外空间,它改变了细胞的 ζ 电位,即在距离细胞表面几纳米处测得的电位,它决定了细胞如何与其环境中的带电实体(包括离子、分子和其他细胞)相互作用。表面科学的范式认为,ζ电位仅由固定的膜表面电荷产生,因此很少引起人们的兴趣。然而,如果ζ电位能通过改变 Vm 发生机械和动态的变化,就能使细胞动态地改变细胞-细胞和细胞-分子之间的相互作用,并能解释以前无法解释的电生理行为。虽然 Vm 和 ζ 这两个电位很少被同时报道,但它们偶尔会在针对同一细胞类型的不同研究中被描述。通过考虑已发表的有关多种细胞类型的这些参数的数据,以及无法解释但似乎具有功能性的 Vm 变化与细胞行为变化相关的事件,有证据表明这可能在红细胞、巨噬细胞、血小板、精子、卵子、细菌和癌症的生理学中发挥功能性作用。了解这些特性将有助于更好地理解电位和电荷在调节细胞功能以及细胞与环境相互作用方面的作用。洞察力 zeta (ζ)电位是指水中任何悬浮体表面外几纳米处的电位。虽然人们通常认为zeta电位仅来自细胞表面的固定电荷,但最近和历史上的证据表明,zeta电位与细胞的膜电位Vm有密切联系,细胞可通过使用离子通道从机制上改变膜电位Vm。虽然这两种电位很少被同时研究,但本综述整理了报告 Vm、ζ电位、细胞行为变化的电特性的多项研究数据。总体而言,这表明 Vm 介导的ζ电位在血细胞的生理和活动、免疫反应、发育生物学和卵子受精以及癌症等方面发挥着重要作用。
{"title":"The cellular zeta potential: cell electrophysiology beyond the membrane.","authors":"Michael Pycraft Hughes","doi":"10.1093/intbio/zyae003","DOIUrl":"10.1093/intbio/zyae003","url":null,"abstract":"<p><p>The standard model of the cell membrane potential Vm describes it as arising from diffusion currents across a membrane with a constant electric field, with zero electric field outside the cell membrane. However, the influence of Vm has been shown to extend into the extracellular space where it alters the cell's ζ-potential, the electrical potential measured a few nm from the cell surface which defines how the cell interacts with charged entities in its environment, including ions, molecules, and other cells. The paradigm arising from surface science is that the ζ-potential arises only from fixed membrane surface charge, and has consequently received little interest. However, if the ζ-potential can mechanistically and dynamically change by alteration of Vm, it allows the cell to dynamically alter cell-cell and cell-molecule interactions and may explain previously unexplained electrophysiological behaviours. Whilst the two potentials Vm and ζ are rarely reported together, they are occasionally described in different studies for the same cell type. By considering published data on these parameters across multiple cell types, as well as incidences of unexplained but seemingly functional Vm changes correlating with changes in cell behaviour, evidence is presented that this may play a functional role in the physiology of red blood cells, macrophages, platelets, sperm, ova, bacteria and cancer. Understanding how these properties will improve understanding of the role of electrical potentials and charges in the regulation of cell function and in the way in which cells interact with their environment. Insight  The zeta (ζ) potential is the electrical potential a few nm beyond the surface of any suspensoid in water. Whilst typically assumed to arise only from fixed charges on the cell surface, recent and historical evidence shows a strong link to the cell's membrane potential Vm, which the cell can alter mechanistically through the use of ion channels. Whilst these two potentials have rarely been studied simultaneously, this review collates data across multiple studies reporting Vm, ζ-potential, electrical properties of changes in cell behaviour. Collectively, this points to Vm-mediated ζ-potential playing a significant role in the physiology and activity of blood cells, immune response, developmental biology and egg fertilization, and cancer among others.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139641216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric response emerges between creation and disintegration of force-bearing subcellular structures as revealed by percolation analysis. 渗流分析显示,受力亚细胞结构的形成和解体之间出现了不对称反应。
IF 2.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae012
Yuika Ueda, Daiki Matsunaga, Shinji Deguchi
<p><p>Cells dynamically remodel their internal structures by modulating the arrangement of actin filaments (AFs). In this process, individual AFs exhibit stochastic behavior without knowing the macroscopic higher-order structures they are meant to create or disintegrate, but the mechanism allowing for such stochastic process-driven remodeling of subcellular structures remains incompletely understood. Here we employ percolation theory to explore how AFs interacting only with neighboring ones without recognizing the overall configuration can nonetheless create a substantial structure referred to as stress fibers (SFs) at particular locations. We determined the interaction probabilities of AFs undergoing cellular tensional homeostasis, a fundamental property maintaining intracellular tension. We showed that the duration required for the creation of SFs is shortened by the increased amount of preexisting actin meshwork, while the disintegration occurs independently of the presence of actin meshwork, suggesting that the coexistence of tension-bearing and non-bearing elements allows cells to promptly transition to new states in accordance with transient environmental changes. The origin of this asymmetry between creation and disintegration, consistently observed in actual cells, is elucidated through a minimal model analysis by examining the intrinsic nature of mechano-signal transmission. Specifically, unlike the symmetric case involving biochemical communication, physical communication to sense environmental changes is facilitated via AFs under tension, while other free AFs dissociated from tension-bearing structures exhibit stochastic behavior. Thus, both the numerical and minimal models demonstrate the essence of intracellular percolation, in which macroscopic asymmetry observed at the cellular level emerges not from microscopic asymmetry in the interaction probabilities of individual molecules, but rather only as a consequence of the manner of the mechano-signal transmission. These results provide novel insights into the role of the mutual interplay between distinct subcellular structures with and without tension-bearing capability. Insight: Cells continuously remodel their internal elements or structural proteins in response to environmental changes. Despite the stochastic behavior of individual structural proteins, which lack awareness of the larger subcellular structures they are meant to create or disintegrate, this self-assembly process somehow occurs to enable adaptation to the environment. Here we demonstrated through percolation simulations and minimal model analyses that there is an asymmetry in the response between the creation and disintegration of subcellular structures, which can aid environmental adaptation. This asymmetry inherently arises from the nature of mechano-signal transmission through structural proteins, namely tension-mediated information exchange within cells, despite the stochastic behavior of individual proteins lackin
细胞通过调节肌动蛋白丝(AF)的排列动态重塑其内部结构。在这一过程中,单个肌动蛋白丝表现出随机行为,而不知道它们要创建或瓦解的宏观高阶结构,但这种随机过程驱动亚细胞结构重塑的机制仍未完全清楚。在这里,我们运用渗滤理论来探讨仅与相邻AF相互作用而不识别整体构型的AF如何能在特定位置创建被称为应力纤维(SF)的实质性结构。我们确定了发生细胞张力平衡的 AFs 的相互作用概率,这是维持细胞内张力的基本特性。我们的研究表明,应力纤维的形成所需的时间会因预先存在的肌动蛋白网的增加而缩短,而应力纤维的解体则与肌动蛋白网的存在无关,这表明张力承载元素和非承载元素的共存使细胞能够根据瞬时的环境变化迅速过渡到新的状态。通过对机械信号传输的内在本质进行研究,我们通过最小模型分析阐明了在实际细胞中持续观察到的这种创造与解体之间不对称现象的起源。具体来说,与涉及生化通讯的对称情况不同,感知环境变化的物理通讯是通过受张力作用的 AF 促进的,而与受张力作用结构分离的其他自由 AF 则表现出随机行为。因此,数值模型和最小模型都证明了细胞内渗滤的本质,在细胞水平上观察到的宏观不对称性并非来自单个分子相互作用概率的微观不对称性,而仅仅是机械信号传输方式的结果。这些结果为了解具有和不具有张力承受能力的不同亚细胞结构之间相互影响的作用提供了新的视角。洞察力:细胞不断重塑其内部元素或结构蛋白,以应对环境变化。尽管单个结构蛋白的行为是随机的,它们对自己要创建或分解的更大的亚细胞结构缺乏认识,但这种自组装过程还是以某种方式发生了,从而实现了对环境的适应。在这里,我们通过渗流模拟和最小模型分析证明,亚细胞结构的创建和解体之间存在不对称反应,这有助于环境适应。尽管单个蛋白质的随机行为本身并不具有非对称特征,但这种非对称性本质上源于通过结构蛋白传递机械信号的性质,即细胞内张力介导的信息交流。
{"title":"Asymmetric response emerges between creation and disintegration of force-bearing subcellular structures as revealed by percolation analysis.","authors":"Yuika Ueda, Daiki Matsunaga, Shinji Deguchi","doi":"10.1093/intbio/zyae012","DOIUrl":"https://doi.org/10.1093/intbio/zyae012","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Cells dynamically remodel their internal structures by modulating the arrangement of actin filaments (AFs). In this process, individual AFs exhibit stochastic behavior without knowing the macroscopic higher-order structures they are meant to create or disintegrate, but the mechanism allowing for such stochastic process-driven remodeling of subcellular structures remains incompletely understood. Here we employ percolation theory to explore how AFs interacting only with neighboring ones without recognizing the overall configuration can nonetheless create a substantial structure referred to as stress fibers (SFs) at particular locations. We determined the interaction probabilities of AFs undergoing cellular tensional homeostasis, a fundamental property maintaining intracellular tension. We showed that the duration required for the creation of SFs is shortened by the increased amount of preexisting actin meshwork, while the disintegration occurs independently of the presence of actin meshwork, suggesting that the coexistence of tension-bearing and non-bearing elements allows cells to promptly transition to new states in accordance with transient environmental changes. The origin of this asymmetry between creation and disintegration, consistently observed in actual cells, is elucidated through a minimal model analysis by examining the intrinsic nature of mechano-signal transmission. Specifically, unlike the symmetric case involving biochemical communication, physical communication to sense environmental changes is facilitated via AFs under tension, while other free AFs dissociated from tension-bearing structures exhibit stochastic behavior. Thus, both the numerical and minimal models demonstrate the essence of intracellular percolation, in which macroscopic asymmetry observed at the cellular level emerges not from microscopic asymmetry in the interaction probabilities of individual molecules, but rather only as a consequence of the manner of the mechano-signal transmission. These results provide novel insights into the role of the mutual interplay between distinct subcellular structures with and without tension-bearing capability. Insight: Cells continuously remodel their internal elements or structural proteins in response to environmental changes. Despite the stochastic behavior of individual structural proteins, which lack awareness of the larger subcellular structures they are meant to create or disintegrate, this self-assembly process somehow occurs to enable adaptation to the environment. Here we demonstrated through percolation simulations and minimal model analyses that there is an asymmetry in the response between the creation and disintegration of subcellular structures, which can aid environmental adaptation. This asymmetry inherently arises from the nature of mechano-signal transmission through structural proteins, namely tension-mediated information exchange within cells, despite the stochastic behavior of individual proteins lackin","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: The cellular zeta potential: cell electrophysiology beyond the membrane. Correction to:细胞泽塔电位:超越膜的细胞电生理学。
IF 2.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae006
{"title":"Correction to: The cellular zeta potential: cell electrophysiology beyond the membrane.","authors":"","doi":"10.1093/intbio/zyae006","DOIUrl":"https://doi.org/10.1093/intbio/zyae006","url":null,"abstract":"","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional characterization of novel RbTI gene from ricebean and validation of its insecticidal properties in transgenic tobacco. 米豆新型 RbTI 基因的功能特征及其在转基因烟草中的杀虫特性验证。
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae017
Rajan Katoch, Sunil Kumar Singh, Kiran Raj, Sandeep Kumar, Neelam Thakur, Vipin Hallan, Sudesh Kumar

Plant protease inhibitors (PI's) inhibit the activity of gut proteases and thus provide resistance against insect attack. Previously we have published first report on cloning and characterization of a novel Bowman-Birk protease inhibitor gene (RbTI) from ricebean (Vigna umbellata). In this study, the RbTI gene was further characterized and validated as a potential candidate for transferring insect resistance in economically important crops. We have successfully generated transgenic tobacco plants expressing RbTI gene constitutively under CaMV35S promoter using Agrobacterium transformation. Genomic PCR and GUS analysis confirmed the successful integration of RbTI gene into tobacco plant genome. qRT-PCR analysis revealed highest RbTI gene expression in transformed tobacco leaves nearing maturity. Feeding of transformed tobacco leaf tissue showed prominent effect on larval mortality throughout the larval growth stages mainly during first three days of feeding. For functional analysis of RbTI gene, we estimated the inhibitory activity of protein extracts from normal and transformed tobacco plants against gut proteases of Spodoptera litura and H. armigera larval instars. Maximum inhibition of trypsin (82.42% and 73.25%) and chymotrypsin (69.50% and 60.64%) enzymes was recorded at early larval stages of both insects. The results of this study validated the future use of RbTI gene from ricebean legume as a potential candidate for transferring insect resistance in economically important crops. Insight, innovation, integration: Present study was conducted with the aim to utilize the state of art biotechnological techniques for transferring key pest resistant genes from underutilized promising crop ricebean. The tobacco plant has been utilized as modern plant for proof of concept where a protease inhibitor gene from Ricebean has been transferred to tobacco plant which induced larval mortality within first three days of feeding at all larval developmental stages. The biochemical assays on mid-gut total protein extract showed that the transgenic tobacco leaves have inhibiting effect on trypsin and chymotrypsin enzymes of insect which is otherwise required for digestion of food by them. Hence, we provide a novel gene that could be utilized for pest resistance in other crops different developmental stages.

植物蛋白酶抑制剂(PI)可抑制肠道蛋白酶的活性,从而抵御昆虫的攻击。在此之前,我们首次报道了从水稻(Vigna umbellata)中克隆出的新型鲍曼-伯克蛋白酶抑制剂基因(RbTI)及其特征。在本研究中,我们对 RbTI 基因进行了进一步的表征和验证,将其作为在重要经济作物中转移抗虫性的潜在候选基因。我们利用农杆菌转化法成功培育出了在 CaMV35S 启动子下组成型表达 RbTI 基因的转基因烟草植株。基因组 PCR 和 GUS 分析证实 RbTI 基因成功整合到了烟草植株基因组中。qRT-PCR 分析表明 RbTI 基因在接近成熟的转化烟草叶片中表达量最高。喂食转化烟草叶片组织对幼虫整个生长阶段的死亡率有显著影响,主要是在喂食的前三天。为了对 RbTI 基因进行功能分析,我们测定了正常烟草植株和转化烟草植株的蛋白提取物对 Spodoptera litura 和 H. armigera 幼虫的肠道蛋白酶的抑制活性。在两种昆虫的早期幼虫阶段,对胰蛋白酶(82.42% 和 73.25%)和糜蛋白酶(69.50% 和 60.64%)的抑制率最高。这项研究的结果验证了未来利用水稻豆科植物中的 RbTI 基因作为转移重要经济作物抗虫性的潜在候选基因的可能性。洞察、创新、整合:进行本研究的目的是利用最先进的生物技术从未获充分利用的有前途作物水稻中转移关键的抗虫害基因。烟草植物被用作概念验证的现代植物,将水稻中的蛋白酶抑制剂基因转移到烟草植物中,在幼虫取食的头三天内,诱导幼虫在所有发育阶段死亡。对中肠总蛋白提取物的生化检测表明,转基因烟草叶片对昆虫消化食物所需的胰蛋白酶和糜蛋白酶有抑制作用。因此,我们提供了一种新型基因,可用于其他作物不同发育阶段的害虫抗性研究。
{"title":"Functional characterization of novel RbTI gene from ricebean and validation of its insecticidal properties in transgenic tobacco.","authors":"Rajan Katoch, Sunil Kumar Singh, Kiran Raj, Sandeep Kumar, Neelam Thakur, Vipin Hallan, Sudesh Kumar","doi":"10.1093/intbio/zyae017","DOIUrl":"https://doi.org/10.1093/intbio/zyae017","url":null,"abstract":"<p><p>Plant protease inhibitors (PI's) inhibit the activity of gut proteases and thus provide resistance against insect attack. Previously we have published first report on cloning and characterization of a novel Bowman-Birk protease inhibitor gene (RbTI) from ricebean (Vigna umbellata). In this study, the RbTI gene was further characterized and validated as a potential candidate for transferring insect resistance in economically important crops. We have successfully generated transgenic tobacco plants expressing RbTI gene constitutively under CaMV35S promoter using Agrobacterium transformation. Genomic PCR and GUS analysis confirmed the successful integration of RbTI gene into tobacco plant genome. qRT-PCR analysis revealed highest RbTI gene expression in transformed tobacco leaves nearing maturity. Feeding of transformed tobacco leaf tissue showed prominent effect on larval mortality throughout the larval growth stages mainly during first three days of feeding. For functional analysis of RbTI gene, we estimated the inhibitory activity of protein extracts from normal and transformed tobacco plants against gut proteases of Spodoptera litura and H. armigera larval instars. Maximum inhibition of trypsin (82.42% and 73.25%) and chymotrypsin (69.50% and 60.64%) enzymes was recorded at early larval stages of both insects. The results of this study validated the future use of RbTI gene from ricebean legume as a potential candidate for transferring insect resistance in economically important crops. Insight, innovation, integration: Present study was conducted with the aim to utilize the state of art biotechnological techniques for transferring key pest resistant genes from underutilized promising crop ricebean. The tobacco plant has been utilized as modern plant for proof of concept where a protease inhibitor gene from Ricebean has been transferred to tobacco plant which induced larval mortality within first three days of feeding at all larval developmental stages. The biochemical assays on mid-gut total protein extract showed that the transgenic tobacco leaves have inhibiting effect on trypsin and chymotrypsin enzymes of insect which is otherwise required for digestion of food by them. Hence, we provide a novel gene that could be utilized for pest resistance in other crops different developmental stages.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Integrative Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1