Pub Date : 2023-01-23DOI: 10.1146/annurev-ento-120120-111607
Minghui Fei, Rieta Gols, Jeffrey A Harvey
Parasitoid wasps are important components of insect food chains and have played a central role in biological control programs for over a century. Although the vast majority of parasitoids exploit insect herbivores as hosts, others parasitize predatory insects and arthropods, such as ladybird beetles, hoverflies, lacewings, ground beetles, and spiders, or are hyperparasitoids. Much of the research on the biology and ecology of parasitoids of predators has focused on ladybird beetles, whose parasitoids may interfere with the control of insect pests like aphids by reducing ladybird abundance. Alternatively, parasitoids of the invasive ladybird Harmonia axyridis may reduce its harmful impact on native ladybird populations. Different life stages of predatory insects and spiders are susceptible to parasitism to different degrees. Many parasitoids of predators exhibit intricate physiological interrelationships with their hosts, adaptively manipulating host behavior, biology, and ecology in ways that increase parasitoid survival and fitness.
{"title":"The Biology and Ecology of Parasitoid Wasps of Predatory Arthropods.","authors":"Minghui Fei, Rieta Gols, Jeffrey A Harvey","doi":"10.1146/annurev-ento-120120-111607","DOIUrl":"https://doi.org/10.1146/annurev-ento-120120-111607","url":null,"abstract":"<p><p>Parasitoid wasps are important components of insect food chains and have played a central role in biological control programs for over a century. Although the vast majority of parasitoids exploit insect herbivores as hosts, others parasitize predatory insects and arthropods, such as ladybird beetles, hoverflies, lacewings, ground beetles, and spiders, or are hyperparasitoids. Much of the research on the biology and ecology of parasitoids of predators has focused on ladybird beetles, whose parasitoids may interfere with the control of insect pests like aphids by reducing ladybird abundance. Alternatively, parasitoids of the invasive ladybird <i>Harmonia axyridis</i> may reduce its harmful impact on native ladybird populations. Different life stages of predatory insects and spiders are susceptible to parasitism to different degrees. Many parasitoids of predators exhibit intricate physiological interrelationships with their hosts, adaptively manipulating host behavior, biology, and ecology in ways that increase parasitoid survival and fitness.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"68 ","pages":"109-128"},"PeriodicalIF":23.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10607024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.1146/annurev-ento-120220-105502
Aaron J Gassmann, Dominic D Reisig
Genetically engineered corn and cotton that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) have been used to manage insect pests in the United States and elsewhere. In some cases, this has led to regional suppression of pest populations and pest eradication within the United States, and these outcomes were associated with reductions in conventional insecticides and increased profits for farmers. In other instances, pests evolved resistance to multiple Bt traits, compromising the capacity of Bt crops to manage pests and leading to increased feeding injury to crops in the field. Several aspects of pest biology and pest-crop interactions were associated with cases where pests remained susceptible versus instances where pests evolved resistance. The viability of future transgenic traits can be improved by learning from these past outcomes. In particular, efforts should be made to delay resistance by increasing the prevalence of refuges and using integrated pest management.
{"title":"Management of Insect Pests with Bt Crops in the United States.","authors":"Aaron J Gassmann, Dominic D Reisig","doi":"10.1146/annurev-ento-120220-105502","DOIUrl":"https://doi.org/10.1146/annurev-ento-120220-105502","url":null,"abstract":"<p><p>Genetically engineered corn and cotton that produce insecticidal toxins derived from the bacterium <i>Bacillus thuringiensis</i> (Bt) have been used to manage insect pests in the United States and elsewhere. In some cases, this has led to regional suppression of pest populations and pest eradication within the United States, and these outcomes were associated with reductions in conventional insecticides and increased profits for farmers. In other instances, pests evolved resistance to multiple Bt traits, compromising the capacity of Bt crops to manage pests and leading to increased feeding injury to crops in the field. Several aspects of pest biology and pest-crop interactions were associated with cases where pests remained susceptible versus instances where pests evolved resistance. The viability of future transgenic traits can be improved by learning from these past outcomes. In particular, efforts should be made to delay resistance by increasing the prevalence of refuges and using integrated pest management.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"68 ","pages":"31-49"},"PeriodicalIF":23.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10609288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.1146/annurev-ento-120120-103938
David W Roubik
Stingless bees form perennial colonies of honey-making insects. The >600 species of stingless bees, mainly Neotropical, live throughout tropical latitudes. Foragers influence floral biology, plant reproduction, microbe dispersal, and diverse ecosystem functions. As tropical forest residents since the upper Cretaceous, they have had a long evolutionary history without competition from honey bees. Most stingless bees are smaller than any Apis species and recruit nest mates to resources, while their defense strategies exclude stinging behavior but incorporate biting. Stingless bees have diversified ecologically; excel in nesting site selection and mutualisms with plants, arthropods, and microbes; and display opportunism, including co-opting plant defenses. As their biology becomes better known, applications to human endeavors are imposing selective pressures from exploitation and approaches to conservation that entail colony extraction from wildlands. Although some meliponines can adjust to new conditions, their populations shall require tropical diversity for survival and reproduction.
{"title":"Stingless Bee (Apidae: Apinae: Meliponini) Ecology.","authors":"David W Roubik","doi":"10.1146/annurev-ento-120120-103938","DOIUrl":"https://doi.org/10.1146/annurev-ento-120120-103938","url":null,"abstract":"<p><p>Stingless bees form perennial colonies of honey-making insects. The >600 species of stingless bees, mainly Neotropical, live throughout tropical latitudes. Foragers influence floral biology, plant reproduction, microbe dispersal, and diverse ecosystem functions. As tropical forest residents since the upper Cretaceous, they have had a long evolutionary history without competition from honey bees. Most stingless bees are smaller than any <i>Apis</i> species and recruit nest mates to resources, while their defense strategies exclude stinging behavior but incorporate biting. Stingless bees have diversified ecologically; excel in nesting site selection and mutualisms with plants, arthropods, and microbes; and display opportunism, including co-opting plant defenses. As their biology becomes better known, applications to human endeavors are imposing selective pressures from exploitation and approaches to conservation that entail colony extraction from wildlands. Although some meliponines can adjust to new conditions, their populations shall require tropical diversity for survival and reproduction.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"68 ","pages":"231-256"},"PeriodicalIF":23.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10615378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.1146/annurev-ento-120220-113618
Diana Pérez-Staples, Solana Abraham
Mating produces profound changes in the behavior of female flies, such as an increase in oviposition, reduction in sexual receptivity, increase in feeding, and even excretion. Many of these changes are produced by copulation, sperm, and accessory gland products that males transfer to females during mating. Our knowledge on the function of the male ejaculate and its effect on female insects is still incipient. In this article, we review peri- and postcopulatory behaviors in tephritid flies. We address the effects of male copulatory behavior; copula duration; and the male ejaculate, sperm, and accessory gland products on female remating behavior. Many species from these families are pests of economic importance; thus, understanding male mating effects on female behavior contributes to both developing more effective environmentally friendly control methods and furthering our understanding of evolutionary implications of intersexual competition and sexual conflict.
{"title":"Postcopulatory Behavior of Tephritid Flies.","authors":"Diana Pérez-Staples, Solana Abraham","doi":"10.1146/annurev-ento-120220-113618","DOIUrl":"https://doi.org/10.1146/annurev-ento-120220-113618","url":null,"abstract":"<p><p>Mating produces profound changes in the behavior of female flies, such as an increase in oviposition, reduction in sexual receptivity, increase in feeding, and even excretion. Many of these changes are produced by copulation, sperm, and accessory gland products that males transfer to females during mating. Our knowledge on the function of the male ejaculate and its effect on female insects is still incipient. In this article, we review peri- and postcopulatory behaviors in tephritid flies. We address the effects of male copulatory behavior; copula duration; and the male ejaculate, sperm, and accessory gland products on female remating behavior. Many species from these families are pests of economic importance; thus, understanding male mating effects on female behavior contributes to both developing more effective environmentally friendly control methods and furthering our understanding of evolutionary implications of intersexual competition and sexual conflict.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"68 ","pages":"89-108"},"PeriodicalIF":23.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10615382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.1146/annurev-ento-120120-091609
Joshua B Benoit, Kevin E McCluney, Matthew J DeGennaro, Julian A T Dow
Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.
{"title":"Dehydration Dynamics in Terrestrial Arthropods: From Water Sensing to Trophic Interactions.","authors":"Joshua B Benoit, Kevin E McCluney, Matthew J DeGennaro, Julian A T Dow","doi":"10.1146/annurev-ento-120120-091609","DOIUrl":"https://doi.org/10.1146/annurev-ento-120120-091609","url":null,"abstract":"<p><p>Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"68 ","pages":"129-149"},"PeriodicalIF":23.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936378/pdf/nihms-1870653.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9856198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.1146/annurev-ento-120220-111140
Julie M Urban, Heather Leach
Spotted lanternfly, Lycorma delicatula (White), invaded the eastern United States in 2014 and has since caused economic and ecological disruption. In particular, spotted lanternfly has shown itself to be a significant pest of vineyards and ornamental plants and is likely to continue to spread to new areas. Factors that have contributed to its success as an invader include its wide host range and high mobility, which allow it to infest a wide range of habitats, including agricultural, urban, suburban, and managed and natural forested areas. Management is dependent on chemical use, although no single currently available control measure alone will be sufficient.
{"title":"Biology and Management of the Spotted Lanternfly, <i>Lycorma delicatula</i> (Hemiptera: Fulgoridae), in the United States.","authors":"Julie M Urban, Heather Leach","doi":"10.1146/annurev-ento-120220-111140","DOIUrl":"https://doi.org/10.1146/annurev-ento-120220-111140","url":null,"abstract":"<p><p>Spotted lanternfly, <i>Lycorma delicatula</i> (White), invaded the eastern United States in 2014 and has since caused economic and ecological disruption. In particular, spotted lanternfly has shown itself to be a significant pest of vineyards and ornamental plants and is likely to continue to spread to new areas. Factors that have contributed to its success as an invader include its wide host range and high mobility, which allow it to infest a wide range of habitats, including agricultural, urban, suburban, and managed and natural forested areas. Management is dependent on chemical use, although no single currently available control measure alone will be sufficient.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"68 ","pages":"151-167"},"PeriodicalIF":23.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10664011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.1146/annurev-ento-120220-112317
Zhaoyang Hu, Feifei Zhu, Keping Chen
Silkworm (Bombyx mori) is not only an economic insect but also a model organism for life science research. Bombyx mori nucleopolyhedrovirus (BmNPV) disease is a major infectious disease in the world's sericulture industry. The cocoon loss caused by this disease accounts for more than 60% of the total loss caused by all silkworm diseases. To date, there has been no effective solution for preventing and treating this disease. The most effective measure is to breed disease-resistant varieties. The quickest way to breed disease-resistant varieties is to apply genetic modification. However, this requires that we obtain disease resistance genes and know the mechanism of disease resistance. Since the discovery of disease-resistant resources in 1989, scholars in the sericulture industry around the world have been inspired to search for resistance genes. In the past two decades, with the help of multi-omics technologies, screening of resistance genes, gene localization, protein modification, virus-host interactions, etc., researchers have found some candidate genes that have been proposed to function at the cellular or individual level. Several disease-resistant varieties have been obtained and used in production through hybrid breeding, RNA interference, and genetic modification. This article summarizes and reviews the discovery of and research advances related to silkworm resistance to BmNPV. It is anticipated that the review will inspire scientific researchers to continue searching for disease resistance genes, clarify the molecular mechanism of silkworm disease resistance, and promote disease-resistant silkworm breeding.
{"title":"The Mechanisms of Silkworm Resistance to the Baculovirus and Antiviral Breeding.","authors":"Zhaoyang Hu, Feifei Zhu, Keping Chen","doi":"10.1146/annurev-ento-120220-112317","DOIUrl":"10.1146/annurev-ento-120220-112317","url":null,"abstract":"<p><p>Silkworm (<i>Bombyx mori</i>) is not only an economic insect but also a model organism for life science research. <i>Bombyx mori</i> nucleopolyhedrovirus (BmNPV) disease is a major infectious disease in the world's sericulture industry. The cocoon loss caused by this disease accounts for more than 60% of the total loss caused by all silkworm diseases. To date, there has been no effective solution for preventing and treating this disease. The most effective measure is to breed disease-resistant varieties. The quickest way to breed disease-resistant varieties is to apply genetic modification. However, this requires that we obtain disease resistance genes and know the mechanism of disease resistance. Since the discovery of disease-resistant resources in 1989, scholars in the sericulture industry around the world have been inspired to search for resistance genes. In the past two decades, with the help of multi-omics technologies, screening of resistance genes, gene localization, protein modification, virus-host interactions, etc., researchers have found some candidate genes that have been proposed to function at the cellular or individual level. Several disease-resistant varieties have been obtained and used in production through hybrid breeding, RNA interference, and genetic modification. This article summarizes and reviews the discovery of and research advances related to silkworm resistance to BmNPV. It is anticipated that the review will inspire scientific researchers to continue searching for disease resistance genes, clarify the molecular mechanism of silkworm disease resistance, and promote disease-resistant silkworm breeding.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"68 ","pages":"381-399"},"PeriodicalIF":23.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10619114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.1146/annurev-ento-120220-022637
Jakub Prokop, André Nel, Michael S Engel
While Mesozoic, Paleogene, and Neogene insect faunas greatly resemble the modern one, the Paleozoic fauna provides unique insights into key innovations in insect evolution, such as the origin of wings and modifications of postembryonic development including holometaboly. Deep-divergence estimates suggest that the majority of contemporary insect orders originated in the Late Paleozoic, but these estimates reflect divergences between stem groups of each lineage rather than the later appearance of the crown groups. The fossil record shows the initial radiations of the extant hyperdiverse clades during the Early Permian, as well as the specialized fauna present before the End Permian mass extinction. This review summarizes the recent discoveries related to the documented diversity of Paleozoic hexapods, as well as current knowledge about what has actually been verified from fossil evidence as it relates to postembryonic development and the morphology of different body parts.
{"title":"Diversity, Form, and Postembryonic Development of Paleozoic Insects.","authors":"Jakub Prokop, André Nel, Michael S Engel","doi":"10.1146/annurev-ento-120220-022637","DOIUrl":"10.1146/annurev-ento-120220-022637","url":null,"abstract":"<p><p>While Mesozoic, Paleogene, and Neogene insect faunas greatly resemble the modern one, the Paleozoic fauna provides unique insights into key innovations in insect evolution, such as the origin of wings and modifications of postembryonic development including holometaboly. Deep-divergence estimates suggest that the majority of contemporary insect orders originated in the Late Paleozoic, but these estimates reflect divergences between stem groups of each lineage rather than the later appearance of the crown groups. The fossil record shows the initial radiations of the extant hyperdiverse clades during the Early Permian, as well as the specialized fauna present before the End Permian mass extinction. This review summarizes the recent discoveries related to the documented diversity of Paleozoic hexapods, as well as current knowledge about what has actually been verified from fossil evidence as it relates to postembryonic development and the morphology of different body parts.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"68 ","pages":"401-429"},"PeriodicalIF":23.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10613312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.1146/annurev-ento-120220-124357
Stefano Colazza, Ezio Peri, Antonino Cusumano
Conservation biological control aims to enhance populations of natural enemies of insect pests in crop habitats, typically by intentional provision of flowering plants as food resources. Ideally, these flowering plants should be inherently attractive to natural enemies to ensure that they are frequently visited. We review the chemical ecology of floral resources in a conservation biological control context, with a focus on insect parasitoids. We highlight the role of floral volatiles as semiochemicals that attract parasitoids to the food resources. The discovery that nectar-inhabiting microbes can be hidden players in mediating parasitoid responses to flowering plants has highlighted the complexity of the interactions between plants and parasitoids. Furthermore, because food webs in agroecosystems do not generally stop at the third trophic level, we also consider responses of hyperparasitoids to floral resources. We thus provide an overview of floral compounds as semiochemicals from a multitrophic perspective, and we focus on the remaining questions that need to be addressed to move the field forward.
{"title":"Chemical Ecology of Floral Resources in Conservation Biological Control.","authors":"Stefano Colazza, Ezio Peri, Antonino Cusumano","doi":"10.1146/annurev-ento-120220-124357","DOIUrl":"https://doi.org/10.1146/annurev-ento-120220-124357","url":null,"abstract":"<p><p>Conservation biological control aims to enhance populations of natural enemies of insect pests in crop habitats, typically by intentional provision of flowering plants as food resources. Ideally, these flowering plants should be inherently attractive to natural enemies to ensure that they are frequently visited. We review the chemical ecology of floral resources in a conservation biological control context, with a focus on insect parasitoids. We highlight the role of floral volatiles as semiochemicals that attract parasitoids to the food resources. The discovery that nectar-inhabiting microbes can be hidden players in mediating parasitoid responses to flowering plants has highlighted the complexity of the interactions between plants and parasitoids. Furthermore, because food webs in agroecosystems do not generally stop at the third trophic level, we also consider responses of hyperparasitoids to floral resources. We thus provide an overview of floral compounds as semiochemicals from a multitrophic perspective, and we focus on the remaining questions that need to be addressed to move the field forward.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"68 ","pages":"13-29"},"PeriodicalIF":23.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10614461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.1146/annurev-ento-120220-102548
Wee Tek Tay, Robert L Meagher, Cecilia Czepak, Astrid T Groot
The fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera, Noctuidae), is a well-known agricultural pest in its native range, North and South America, and has become a major invasive pest around the globe in the past decade. In this review, we provide an overview to update what is known about S. frugiperda in its native geographic ranges. This is followed by discussion of studies from the invaded areas to gain insights into S. frugiperda's ecology, specifically its reproductive biology, host plant use, status of insecticide resistance alleles, and biocontrol methods in native and invasive regions. We show that reference to host strains is uninformative in the invasive populations because multidirectional introduction events likely underpinned its recent rapid spread. Given that recent genomic analyses show that FAW is much more diverse than was previously assumed, and natural selection forces likely differ geographically, region-specific approaches will be needed to control this global pest.
{"title":"<i>Spodoptera frugiperda</i>: Ecology, Evolution, and Management Options of an Invasive Species.","authors":"Wee Tek Tay, Robert L Meagher, Cecilia Czepak, Astrid T Groot","doi":"10.1146/annurev-ento-120220-102548","DOIUrl":"https://doi.org/10.1146/annurev-ento-120220-102548","url":null,"abstract":"<p><p>The fall armyworm (FAW), <i>Spodoptera frugiperda</i> (Lepidoptera, Noctuidae), is a well-known agricultural pest in its native range, North and South America, and has become a major invasive pest around the globe in the past decade. In this review, we provide an overview to update what is known about <i>S. frugiperda</i> in its native geographic ranges. This is followed by discussion of studies from the invaded areas to gain insights into <i>S. frugiperda</i>'s ecology, specifically its reproductive biology, host plant use, status of insecticide resistance alleles, and biocontrol methods in native and invasive regions. We show that reference to host strains is uninformative in the invasive populations because multidirectional introduction events likely underpinned its recent rapid spread. Given that recent genomic analyses show that FAW is much more diverse than was previously assumed, and natural selection forces likely differ geographically, region-specific approaches will be needed to control this global pest.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"68 ","pages":"299-317"},"PeriodicalIF":23.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10607022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}