Liangcheng Xu, Xin Song, Gwennyth Carroll, Lidan You
Osteocytes are the major mechanosensing cells in bone remodeling. Current in vitro bone mechanotransduction research use macroscale devices such as flow chambers; however, in vitro microfluidic devices provide an optimal tool to better understand this biological process with its flexible design, physiologically relevant dimensions and high-throughput capabilities. This project aims to design and fabricate a multi-shear stress, co-culture platform to study the interaction between osteocytes and other bone cells under varying flow conditions. Standard microfluidic design utilizing changing geometric parameters is used to induce different flow rates that are directly proportional to the levels of shear stress, with devices fabricated from standard polydimethylsiloxane (PDMS)-based softlithography processes. Each osteocyte channel (OCY) is connected to an adjacent osteoclast channel (OC) by 20-μm perfusion channels for cellular signaling molecule transport. Significant differences in RANKL levels are observed between channels with different shear stress levels, and we observed that pre-osteoclast differentiation was directly affected by adjacent flow-stimulated osteocytes. Significant decrease in the number of differentiating osteoclasts is observed in the OC channel adjacent to the 2-Pa shear stress OCY channel, while differentiation adjacent to the 0.5-Pa shear stress OCY channel is unaffected compared with no-flow controls. Addition of zoledronic acid showed a significant decrease in osteoclast differentiation, compounding to effect instigated by increasing fluid shear stress. Using this platform, we are able to mimic the interaction between osteocytes and osteoclasts in vitro under physiologically relevant bone interstitial fluid flow shear stress. Our novel microfluidic co-culture platform provides an optimal tool for bone cell mechanistic studies and provides a platform for the discovery of potential drug targets for clinical treatments of bone-related diseases.
{"title":"Novel in vitro microfluidic platform for osteocyte mechanotransduction studies.","authors":"Liangcheng Xu, Xin Song, Gwennyth Carroll, Lidan You","doi":"10.1093/intbio/zyaa025","DOIUrl":"https://doi.org/10.1093/intbio/zyaa025","url":null,"abstract":"<p><p>Osteocytes are the major mechanosensing cells in bone remodeling. Current in vitro bone mechanotransduction research use macroscale devices such as flow chambers; however, in vitro microfluidic devices provide an optimal tool to better understand this biological process with its flexible design, physiologically relevant dimensions and high-throughput capabilities. This project aims to design and fabricate a multi-shear stress, co-culture platform to study the interaction between osteocytes and other bone cells under varying flow conditions. Standard microfluidic design utilizing changing geometric parameters is used to induce different flow rates that are directly proportional to the levels of shear stress, with devices fabricated from standard polydimethylsiloxane (PDMS)-based softlithography processes. Each osteocyte channel (OCY) is connected to an adjacent osteoclast channel (OC) by 20-μm perfusion channels for cellular signaling molecule transport. Significant differences in RANKL levels are observed between channels with different shear stress levels, and we observed that pre-osteoclast differentiation was directly affected by adjacent flow-stimulated osteocytes. Significant decrease in the number of differentiating osteoclasts is observed in the OC channel adjacent to the 2-Pa shear stress OCY channel, while differentiation adjacent to the 0.5-Pa shear stress OCY channel is unaffected compared with no-flow controls. Addition of zoledronic acid showed a significant decrease in osteoclast differentiation, compounding to effect instigated by increasing fluid shear stress. Using this platform, we are able to mimic the interaction between osteocytes and osteoclasts in vitro under physiologically relevant bone interstitial fluid flow shear stress. Our novel microfluidic co-culture platform provides an optimal tool for bone cell mechanistic studies and provides a platform for the discovery of potential drug targets for clinical treatments of bone-related diseases.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 12","pages":"303-310"},"PeriodicalIF":2.5,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38800620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James Y Tan, Sida Wang, Gregory J Dick, Vincent B Young, David H Sherman, Mark A Burns, Xiaoxia N Lin
While the 'unculturable' majority of the bacterial world is accessible with culture-independent tools, the inability to study these bacteria using culture-dependent approaches has severely limited our understanding of their ecological roles and interactions. To circumvent cultivation barriers, we utilize microfluidic droplets as localized, nanoliter-size bioreactors to co-cultivate subsets of microbial communities. This co-localization can support ecological interactions between a reduced number of encapsulated cells. We demonstrated the utility of this approach in the encapsulation and co-cultivation of droplet sub-communities from a fecal sample collected from a healthy human subject. With the whole genome amplification and metagenomic shotgun sequencing of co-cultivated sub-communities from 22 droplets, we observed that this approach provides accessibility to uncharacterized gut commensals for study. The recovery of metagenome-assembled genomes from one droplet sub-community demonstrated the capability to dissect the sub-communities with high-genomic resolution. In particular, genomic characterization of one novel member of the family Neisseriaceae revealed implications regarding its participation in fatty acid degradation and production of atherogenic intermediates in the human gut. The demonstrated genomic resolution and accessibility to the microbial 'dark matter' with this methodology can be applied to study the interactions of rare or previously uncultivated members of microbial communities.
{"title":"Co-cultivation of microbial sub-communities in microfluidic droplets facilitates high-resolution genomic dissection of microbial 'dark matter'.","authors":"James Y Tan, Sida Wang, Gregory J Dick, Vincent B Young, David H Sherman, Mark A Burns, Xiaoxia N Lin","doi":"10.1093/intbio/zyaa021","DOIUrl":"10.1093/intbio/zyaa021","url":null,"abstract":"<p><p>While the 'unculturable' majority of the bacterial world is accessible with culture-independent tools, the inability to study these bacteria using culture-dependent approaches has severely limited our understanding of their ecological roles and interactions. To circumvent cultivation barriers, we utilize microfluidic droplets as localized, nanoliter-size bioreactors to co-cultivate subsets of microbial communities. This co-localization can support ecological interactions between a reduced number of encapsulated cells. We demonstrated the utility of this approach in the encapsulation and co-cultivation of droplet sub-communities from a fecal sample collected from a healthy human subject. With the whole genome amplification and metagenomic shotgun sequencing of co-cultivated sub-communities from 22 droplets, we observed that this approach provides accessibility to uncharacterized gut commensals for study. The recovery of metagenome-assembled genomes from one droplet sub-community demonstrated the capability to dissect the sub-communities with high-genomic resolution. In particular, genomic characterization of one novel member of the family Neisseriaceae revealed implications regarding its participation in fatty acid degradation and production of atherogenic intermediates in the human gut. The demonstrated genomic resolution and accessibility to the microbial 'dark matter' with this methodology can be applied to study the interactions of rare or previously uncultivated members of microbial communities.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 11","pages":"263-274"},"PeriodicalIF":2.5,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38516068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alec T Salminen, Jeffrey Tithof, Yara Izhiman, Elysia A Masters, Molly C McCloskey, Thomas R Gaborski, Douglas H Kelley, Anthony P Pietropaoli, Richard E Waugh, James L McGrath
Endothelial cells (ECs) are an active component of the immune system and interact directly with inflammatory cytokines. While ECs are known to be polarized cells, the potential role of apicobasal polarity in response to inflammatory mediators has been scarcely studied. Acute inflammation is vital in maintaining healthy tissue in response to infection; however, chronic inflammation can lead to the production of systemic inflammatory cytokines and deregulated leukocyte trafficking, even in the absence of a local infection. Elevated levels of cytokines in circulation underlie the pathogenesis of sepsis, the leading cause of intensive care death. Because ECs constitute a key barrier between circulation (luminal interface) and tissue (abluminal interface), we hypothesize that ECs respond differentially to inflammatory challenge originating in the tissue versus circulation as in local and systemic inflammation, respectively. To begin this investigation, we stimulated ECs abluminally and luminally with the inflammatory cytokine tumor necrosis factor alpha (TNF-α) to mimic a key feature of local and systemic inflammation, respectively, in a microvascular mimetic (μSiM-MVM). Polarized IL-8 secretion and polymorphonuclear neutrophil (PMN) transmigration were quantified to characterize the EC response to luminal versus abluminal TNF-α. We observed that ECs uniformly secrete IL-8 in response to abluminal TNF-α and is followed by PMN transmigration. The response to abluminal treatment was coupled with the formation of ICAM-1-rich membrane ruffles on the apical surface of ECs. In contrast, luminally stimulated ECs secreted five times more IL-8 into the luminal compartment than the abluminal compartment and sequestered PMNs on the apical EC surface. Our results identify clear differences in the response of ECs to TNF-α originating from the abluminal versus luminal side of a monolayer for the first time and may provide novel insight into future inflammatory disease intervention strategies.
{"title":"Endothelial cell apicobasal polarity coordinates distinct responses to luminally versus abluminally delivered TNF-α in a microvascular mimetic.","authors":"Alec T Salminen, Jeffrey Tithof, Yara Izhiman, Elysia A Masters, Molly C McCloskey, Thomas R Gaborski, Douglas H Kelley, Anthony P Pietropaoli, Richard E Waugh, James L McGrath","doi":"10.1093/intbio/zyaa022","DOIUrl":"https://doi.org/10.1093/intbio/zyaa022","url":null,"abstract":"<p><p>Endothelial cells (ECs) are an active component of the immune system and interact directly with inflammatory cytokines. While ECs are known to be polarized cells, the potential role of apicobasal polarity in response to inflammatory mediators has been scarcely studied. Acute inflammation is vital in maintaining healthy tissue in response to infection; however, chronic inflammation can lead to the production of systemic inflammatory cytokines and deregulated leukocyte trafficking, even in the absence of a local infection. Elevated levels of cytokines in circulation underlie the pathogenesis of sepsis, the leading cause of intensive care death. Because ECs constitute a key barrier between circulation (luminal interface) and tissue (abluminal interface), we hypothesize that ECs respond differentially to inflammatory challenge originating in the tissue versus circulation as in local and systemic inflammation, respectively. To begin this investigation, we stimulated ECs abluminally and luminally with the inflammatory cytokine tumor necrosis factor alpha (TNF-α) to mimic a key feature of local and systemic inflammation, respectively, in a microvascular mimetic (μSiM-MVM). Polarized IL-8 secretion and polymorphonuclear neutrophil (PMN) transmigration were quantified to characterize the EC response to luminal versus abluminal TNF-α. We observed that ECs uniformly secrete IL-8 in response to abluminal TNF-α and is followed by PMN transmigration. The response to abluminal treatment was coupled with the formation of ICAM-1-rich membrane ruffles on the apical surface of ECs. In contrast, luminally stimulated ECs secreted five times more IL-8 into the luminal compartment than the abluminal compartment and sequestered PMNs on the apical EC surface. Our results identify clear differences in the response of ECs to TNF-α originating from the abluminal versus luminal side of a monolayer for the first time and may provide novel insight into future inflammatory disease intervention strategies.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 11","pages":"275-289"},"PeriodicalIF":2.5,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38579721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheena C Kerr, Molly M Morgan, Amani A Gillette, Megan K Livingston, Karina M Lugo-Cintron, Peter F Favreau, Logan Florek, Brian P Johnson, Joshua M Lang, Melissa C Skala, David J Beebe
The prostate tumor microenvironment (TME) is strongly immunosuppressive; it is largely driven by alteration in cell phenotypes (i.e. tumor-associated macrophages and exhausted cytotoxic T cells) that result in pro-tumorigenic conditions and tumor growth. A greater understanding into how these altered immune cell phenotypes are developed and could potentially be reversed would provide important insights into improved treatment efficacy for prostate cancer. Here, we report a microfluidic model of the prostate TME that mimics prostate ducts across various stages of prostate cancer progression, with associated stroma and immune cells. Using this platform, we exposed immune cells to a benign prostate TME or a metastatic prostate TME and investigated their metabolism, gene and cytokine expression. Immune cells exposed to the metastatic TME showed metabolic differences with a higher redox ratio indicating a switch to a more glycolytic metabolic profile. These cells also increased expression of pro-tumor response cytokines that have been shown to increase cell migration and angiogenesis such as Interleukin-1 (IL-1) a and Granulocyte-macrophage colony-stimulating factor (GM-CSF). Lastly, we observed decreased TLR, STAT signaling and TRAIL expression, suggesting that phenotypes derived from exposure to the metastatic TME could have an impaired anti-tumor response. This platform could provide a valuable tool for studying immune cell phenotypes in in vitro tumor microenvironments.
{"title":"A bioengineered organotypic prostate model for the study of tumor microenvironment-induced immune cell activation.","authors":"Sheena C Kerr, Molly M Morgan, Amani A Gillette, Megan K Livingston, Karina M Lugo-Cintron, Peter F Favreau, Logan Florek, Brian P Johnson, Joshua M Lang, Melissa C Skala, David J Beebe","doi":"10.1093/intbio/zyaa020","DOIUrl":"10.1093/intbio/zyaa020","url":null,"abstract":"<p><p>The prostate tumor microenvironment (TME) is strongly immunosuppressive; it is largely driven by alteration in cell phenotypes (i.e. tumor-associated macrophages and exhausted cytotoxic T cells) that result in pro-tumorigenic conditions and tumor growth. A greater understanding into how these altered immune cell phenotypes are developed and could potentially be reversed would provide important insights into improved treatment efficacy for prostate cancer. Here, we report a microfluidic model of the prostate TME that mimics prostate ducts across various stages of prostate cancer progression, with associated stroma and immune cells. Using this platform, we exposed immune cells to a benign prostate TME or a metastatic prostate TME and investigated their metabolism, gene and cytokine expression. Immune cells exposed to the metastatic TME showed metabolic differences with a higher redox ratio indicating a switch to a more glycolytic metabolic profile. These cells also increased expression of pro-tumor response cytokines that have been shown to increase cell migration and angiogenesis such as Interleukin-1 (IL-1) a and Granulocyte-macrophage colony-stimulating factor (GM-CSF). Lastly, we observed decreased TLR, STAT signaling and TRAIL expression, suggesting that phenotypes derived from exposure to the metastatic TME could have an impaired anti-tumor response. This platform could provide a valuable tool for studying immune cell phenotypes in in vitro tumor microenvironments.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 10","pages":"250-262"},"PeriodicalIF":1.5,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9278191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ye Bi, Venktesh S Shirure, Ruiyang Liu, Cassandra Cunningham, Li Ding, J Mark Meacham, S Peter Goedegebuure, Steven C George, Ryan C Fields
Tumor-infiltrating leukocytes, in particular macrophages, play an important role in tumor behavior and clinical outcome. The spectrum of macrophage subtypes ranges from antitumor 'M1'-type to protumor 'M2'-type macrophages. Tumor-associated macrophages (TAMs) typically display phenotypic features of both M1 and M2, and the population distribution is thought to be dynamic and evolves as the tumor progresses. However, our understanding of how TAMs impact the tumor microenvironment remains limited by the lack of appropriate 3D in vitro models that can capture cell-cell dynamics at high spatial and temporal resolution. Using our recently developed microphysiological 'tumor-on-a-chip' (TOC) device, we present here our findings on the impact of defined macrophage subsets on tumor behavior. The TOC device design contains three adjacent and connected chambers in which both the upper and lower chambers are loaded with tumor cells, whereas the central chamber contains a dynamic, perfused, living microvascular network. Introduction of human pancreatic or colorectal cancer cells together with M1-polarized macrophages significantly inhibited tumor growth and tumor-induced angiogenesis. Protein analysis and antibody-based neutralization studies confirmed that these effects were mediated through production of C-X-C motif chemokines (CXCL9), CXCL10 and CXCL11. By contrast, M2-macrophages mediated increased tumor cell migration into the vascularized chamber and did not inhibit tumor growth or angiogenesis. In fact, single-cell RNA sequencing showed that M2 macrophages further segregated endothelial cells into two distinct subsets, corresponding to static cells in vessels versus active cells involved in angiogenesis. The impact of M2 macrophages was mediated mostly by production of matrix metalloproteinase 7 and angiopoietin 2. In summary, our data demonstrate the utility of the TOC device to mechanistically probe biological questions in a 3D in vitro microenvironment.
{"title":"Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression.","authors":"Ye Bi, Venktesh S Shirure, Ruiyang Liu, Cassandra Cunningham, Li Ding, J Mark Meacham, S Peter Goedegebuure, Steven C George, Ryan C Fields","doi":"10.1093/intbio/zyaa017","DOIUrl":"https://doi.org/10.1093/intbio/zyaa017","url":null,"abstract":"<p><p>Tumor-infiltrating leukocytes, in particular macrophages, play an important role in tumor behavior and clinical outcome. The spectrum of macrophage subtypes ranges from antitumor 'M1'-type to protumor 'M2'-type macrophages. Tumor-associated macrophages (TAMs) typically display phenotypic features of both M1 and M2, and the population distribution is thought to be dynamic and evolves as the tumor progresses. However, our understanding of how TAMs impact the tumor microenvironment remains limited by the lack of appropriate 3D in vitro models that can capture cell-cell dynamics at high spatial and temporal resolution. Using our recently developed microphysiological 'tumor-on-a-chip' (TOC) device, we present here our findings on the impact of defined macrophage subsets on tumor behavior. The TOC device design contains three adjacent and connected chambers in which both the upper and lower chambers are loaded with tumor cells, whereas the central chamber contains a dynamic, perfused, living microvascular network. Introduction of human pancreatic or colorectal cancer cells together with M1-polarized macrophages significantly inhibited tumor growth and tumor-induced angiogenesis. Protein analysis and antibody-based neutralization studies confirmed that these effects were mediated through production of C-X-C motif chemokines (CXCL9), CXCL10 and CXCL11. By contrast, M2-macrophages mediated increased tumor cell migration into the vascularized chamber and did not inhibit tumor growth or angiogenesis. In fact, single-cell RNA sequencing showed that M2 macrophages further segregated endothelial cells into two distinct subsets, corresponding to static cells in vessels versus active cells involved in angiogenesis. The impact of M2 macrophages was mediated mostly by production of matrix metalloproteinase 7 and angiopoietin 2. In summary, our data demonstrate the utility of the TOC device to mechanistically probe biological questions in a 3D in vitro microenvironment.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 9","pages":"221-232"},"PeriodicalIF":2.5,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38380702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advancements in the interpretation of variants of unknown significance are critical for improving clinical outcomes. In a recent study, massive parallel assays were used to experimentally quantify the effects of missense substitutions in the RING domain of BRCA1 on E3 ubiquitin ligase activity as well as BARD1 RING domain binding. These attributes were subsequently used for training a predictive model of homology-directed DNA repair levels for these BRCA1 variants relative to wild type, which is critical for tumor suppression. Here, relative structural changes characterizing BRCA1 variants were quantified by using an efficient and cost-free computational mutagenesis technique, and we show that these features lead to improvements in model performance. This work underscores the potential for bench researchers to gain valuable insights from computational tools, prior to implementing costly and time-consuming experiments.
{"title":"Functional analysis of BRCA1 RING domain variants: computationally derived structural data can improve upon experimental features for training predictive models.","authors":"Majid Masso","doi":"10.1093/intbio/zyaa019","DOIUrl":"https://doi.org/10.1093/intbio/zyaa019","url":null,"abstract":"<p><p>Advancements in the interpretation of variants of unknown significance are critical for improving clinical outcomes. In a recent study, massive parallel assays were used to experimentally quantify the effects of missense substitutions in the RING domain of BRCA1 on E3 ubiquitin ligase activity as well as BARD1 RING domain binding. These attributes were subsequently used for training a predictive model of homology-directed DNA repair levels for these BRCA1 variants relative to wild type, which is critical for tumor suppression. Here, relative structural changes characterizing BRCA1 variants were quantified by using an efficient and cost-free computational mutagenesis technique, and we show that these features lead to improvements in model performance. This work underscores the potential for bench researchers to gain valuable insights from computational tools, prior to implementing costly and time-consuming experiments.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 9","pages":"233-239"},"PeriodicalIF":2.5,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38426639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Developing methods to study tissue mechanics and myofibroblast activation may lead to new targets for therapeutic treatments that are urgently needed for fibrotic disease. Microtissue arrays are a promising approach to conduct relatively high-throughput research into fibrosis as they recapitulate key biomechanical aspects of the disease through a relevant 3D extracellular environment. In early work, our group developed a device called the MVAS-force to stretch microtissues while enabling simultaneous assessment of their dynamic mechanical behavior. Here, we investigated TGF-β1-induced fibroblast to myofibroblast differentiation in microtissue cultures using our MVAS-force device through assessing α-SMA expression, contractility and stiffness. In doing so, we linked cell-level phenotypic changes to functional changes that characterize the clinical manifestation of fibrotic disease. As expected, TGF-β1 treatment promoted a myofibroblastic phenotype and microtissues became stiffer and possessed increased contractility. These changes were partially reversible upon TGF-β1 withdrawal under a static condition, while, in contrast, long-term cyclic stretching maintained myofibroblast activation. This pro-fibrotic effect of mechanical stretching was absent when TGF-β1 receptors were inhibited. Furthermore, stretching promoted myofibroblast differentiation when microtissues were given latent TGF-β1. Altogether, these results suggest that external mechanical stretch may activate latent TGF-β1 and, accordingly, might be a powerful stimulus for continued myofibroblast activation to progress fibrosis. Further exploration of this pathway with our approach may yield new insights into myofibroblast activation and more effective therapeutic treatments for fibrosis.
{"title":"Mechanical stretch sustains myofibroblast phenotype and function in microtissues through latent TGF-β1 activation.","authors":"Matthew Walker, Michel Godin, Andrew E Pelling","doi":"10.1093/intbio/zyaa015","DOIUrl":"https://doi.org/10.1093/intbio/zyaa015","url":null,"abstract":"<p><p>Developing methods to study tissue mechanics and myofibroblast activation may lead to new targets for therapeutic treatments that are urgently needed for fibrotic disease. Microtissue arrays are a promising approach to conduct relatively high-throughput research into fibrosis as they recapitulate key biomechanical aspects of the disease through a relevant 3D extracellular environment. In early work, our group developed a device called the MVAS-force to stretch microtissues while enabling simultaneous assessment of their dynamic mechanical behavior. Here, we investigated TGF-β1-induced fibroblast to myofibroblast differentiation in microtissue cultures using our MVAS-force device through assessing α-SMA expression, contractility and stiffness. In doing so, we linked cell-level phenotypic changes to functional changes that characterize the clinical manifestation of fibrotic disease. As expected, TGF-β1 treatment promoted a myofibroblastic phenotype and microtissues became stiffer and possessed increased contractility. These changes were partially reversible upon TGF-β1 withdrawal under a static condition, while, in contrast, long-term cyclic stretching maintained myofibroblast activation. This pro-fibrotic effect of mechanical stretching was absent when TGF-β1 receptors were inhibited. Furthermore, stretching promoted myofibroblast differentiation when microtissues were given latent TGF-β1. Altogether, these results suggest that external mechanical stretch may activate latent TGF-β1 and, accordingly, might be a powerful stimulus for continued myofibroblast activation to progress fibrosis. Further exploration of this pathway with our approach may yield new insights into myofibroblast activation and more effective therapeutic treatments for fibrosis.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 8","pages":"199-210"},"PeriodicalIF":2.5,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38338866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arezoo Khalili, Ellen van Wijngaarden, Georg R Zoidl, Pouya Rezai
Multi-phenotypic screening of zebrafish larvae, such as monitoring the heart and tail activities, is important in biological assays. Microfluidic devices have been developed for zebrafish phenotypic assays, but simultaneous lateral-dorsal screening of the same larva in a single chip is yet to be achieved. We present a multi-phenotypic microfluidic device for monitoring of tail movement and heart rate (HR) of 5-7-day postfertilization zebrafish larvae. Tail movements were stimulated using electric current and quantified in terms of response duration (RD) and tail beat frequency (TBF). The positioning of a right-angle prism provided a lateral view of the larvae and enabled HR monitoring. Investigations were performed on zebrafish larvae exposed to 3% ethanol, 250 μM 6-hydroxydopamine (6-OHDA) or 1 mM levodopa. Larvae exposed to ethanol showed a significant drop in HR, whereas electric stimulation increased the HR temporarily. Larvae experienced a significant drop in RD, TBF and HR when exposed to 6-OHDA. HR was not affected by levodopa post-treatment, whereas RD and TBF were restored to normal levels. The results showed potential for applications that involve monitoring of cardiac and behavioral parameters in zebrafish larvae. Tests can be done using the same chip, without changing the larvae's orientation. This eliminates undue stress caused by reorientation, which may affect their behavior, and the use of separate devices to obtain dorsal and lateral views. The device can be implemented to improve multi-phenotypic and quantitative screening of zebrafish larvae in response to chemical and physical stimuli in different zebrafish disease models.
{"title":"Multi-phenotypic and bi-directional behavioral screening of zebrafish larvae.","authors":"Arezoo Khalili, Ellen van Wijngaarden, Georg R Zoidl, Pouya Rezai","doi":"10.1093/intbio/zyaa016","DOIUrl":"https://doi.org/10.1093/intbio/zyaa016","url":null,"abstract":"<p><p>Multi-phenotypic screening of zebrafish larvae, such as monitoring the heart and tail activities, is important in biological assays. Microfluidic devices have been developed for zebrafish phenotypic assays, but simultaneous lateral-dorsal screening of the same larva in a single chip is yet to be achieved. We present a multi-phenotypic microfluidic device for monitoring of tail movement and heart rate (HR) of 5-7-day postfertilization zebrafish larvae. Tail movements were stimulated using electric current and quantified in terms of response duration (RD) and tail beat frequency (TBF). The positioning of a right-angle prism provided a lateral view of the larvae and enabled HR monitoring. Investigations were performed on zebrafish larvae exposed to 3% ethanol, 250 μM 6-hydroxydopamine (6-OHDA) or 1 mM levodopa. Larvae exposed to ethanol showed a significant drop in HR, whereas electric stimulation increased the HR temporarily. Larvae experienced a significant drop in RD, TBF and HR when exposed to 6-OHDA. HR was not affected by levodopa post-treatment, whereas RD and TBF were restored to normal levels. The results showed potential for applications that involve monitoring of cardiac and behavioral parameters in zebrafish larvae. Tests can be done using the same chip, without changing the larvae's orientation. This eliminates undue stress caused by reorientation, which may affect their behavior, and the use of separate devices to obtain dorsal and lateral views. The device can be implemented to improve multi-phenotypic and quantitative screening of zebrafish larvae in response to chemical and physical stimuli in different zebrafish disease models.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 8","pages":"211-220"},"PeriodicalIF":2.5,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38338864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hamidreza Aboulkheyr Es, Sareh Zhand, Jean Paul Thiery, Majid Ebrahimi Warkiani
Various factors in the tumor microenvironment (TME) regulate the expression of PD-L1 in carcinoma cells. The cancer-associated fibroblasts (CAFs) play a crucial role in regulating and rewiring TME to enhance their immune suppressive function and to favor the invasion of the malignant cells. Tumor progression may be retarded by targeting CAFs in the TME. Various studies highlighted the ability of targeting CAF with pirfenidone (PFD), leading to increased efficacy of chemotherapy. However, its potential for the reduction of immune-suppression capacity of CAFs remains to be elusive. Here, we assessed the effect of PFD on the expression of PD-L1 on CAF cells. Besides migration inhibitory effects of PFD on CAFs, the expression level of PD-L1 reduced in CAFs after treatment with PFD. The downstream analysis of released cytokines from CAFs showed that PFD significantly dropped the secretion of CCL17 and TNF-β, where a positive association between PFD-targeted proteins and PD-L1 was observed. These data suggest that the treatment of CAF within TME through the PFD may reduce the acquisition of CAF-mediated invasive and immune-suppressive capacity of breast carcinoma cells.
{"title":"Pirfenidone reduces immune-suppressive capacity of cancer-associated fibroblasts through targeting CCL17 and TNF-beta.","authors":"Hamidreza Aboulkheyr Es, Sareh Zhand, Jean Paul Thiery, Majid Ebrahimi Warkiani","doi":"10.1093/intbio/zyaa014","DOIUrl":"https://doi.org/10.1093/intbio/zyaa014","url":null,"abstract":"<p><p>Various factors in the tumor microenvironment (TME) regulate the expression of PD-L1 in carcinoma cells. The cancer-associated fibroblasts (CAFs) play a crucial role in regulating and rewiring TME to enhance their immune suppressive function and to favor the invasion of the malignant cells. Tumor progression may be retarded by targeting CAFs in the TME. Various studies highlighted the ability of targeting CAF with pirfenidone (PFD), leading to increased efficacy of chemotherapy. However, its potential for the reduction of immune-suppression capacity of CAFs remains to be elusive. Here, we assessed the effect of PFD on the expression of PD-L1 on CAF cells. Besides migration inhibitory effects of PFD on CAFs, the expression level of PD-L1 reduced in CAFs after treatment with PFD. The downstream analysis of released cytokines from CAFs showed that PFD significantly dropped the secretion of CCL17 and TNF-β, where a positive association between PFD-targeted proteins and PD-L1 was observed. These data suggest that the treatment of CAF within TME through the PFD may reduce the acquisition of CAF-mediated invasive and immune-suppressive capacity of breast carcinoma cells.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 7","pages":"188-197"},"PeriodicalIF":2.5,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38129796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hematopoietic stem cells (HSCs) primarily reside in the bone marrow, where they receive external cues from their local microenvironment. The complex milieu of biophysical cues, cellular components and cell-secreted factors regulates the process by which HSC produce the blood and immune system. We previously showed direct coculture of primary murine hematopoietic stem and progenitor cells with a population of marrow-derived mesenchymal stromal and progenitor cells (MSPCs) in a methacrylamide-functionalized gelatin (GelMA) hydrogel improves hematopoietic progenitor maintenance. However, the mechanism by which MSPCs influenced HSC fate decisions remained unknown. Herein, we report the use of proteomic analysis to correlate HSC phenotype to a broad candidate pool of 200 soluble factors produced by combined mesenchymal and hematopoietic progeny. Partial least squares regression (PLSR), along with an iterative filter method, identified TGFβ-1, MMP-3, c-RP and TROY as positively correlated with HSC maintenance. Experimentally, we then observe exogenous stimulation of HSC monocultures in GelMA hydrogels with these combined cytokines increases the ratio of hematopoietic progenitors to committed progeny after a 7-day culture 7.52 ± 3.65-fold compared to non-stimulated monocultures. Findings suggest a cocktail of the downselected cytokines amplifies hematopoietic maintenance potential of HSCs beyond that of MSPC-secreted factors alone. This work integrates empirical and computation methods to identify cytokine combinations to improve HSC maintenance within an engineered HSC niche, suggesting a route toward identifying feeder-free culture platforms for HSC expansion. Insight Hematopoietic stem cells within an artificial niche receive maintenance cues in the form of soluble factors from hematopoietic and mesenchymal progeny. Applying a proteomic regression analysis, we identify a reduced set of soluble factors correlated to maintenance of a hematopoietic phenotype during culture in a biomaterial model of the bone marrow niche. We identify a minimum factor cocktail that promotes hematopoietic maintenance potential in a gelatin-based culture, regardless of the presence of mesenchymal feeder cells. By combining empirical and computational methods, we report an experimentally feasible number of factors from a large dataset, enabling exogenous integration of soluble factors into an engineered hematopoietic stem cell for enhanced maintenance potential of a quiescent stem cell population.
{"title":"Connecting secretome to hematopoietic stem cell phenotype shifts in an engineered bone marrow niche.","authors":"Aidan E Gilchrist, Brendan A C Harley","doi":"10.1093/intbio/zyaa013","DOIUrl":"10.1093/intbio/zyaa013","url":null,"abstract":"<p><p>Hematopoietic stem cells (HSCs) primarily reside in the bone marrow, where they receive external cues from their local microenvironment. The complex milieu of biophysical cues, cellular components and cell-secreted factors regulates the process by which HSC produce the blood and immune system. We previously showed direct coculture of primary murine hematopoietic stem and progenitor cells with a population of marrow-derived mesenchymal stromal and progenitor cells (MSPCs) in a methacrylamide-functionalized gelatin (GelMA) hydrogel improves hematopoietic progenitor maintenance. However, the mechanism by which MSPCs influenced HSC fate decisions remained unknown. Herein, we report the use of proteomic analysis to correlate HSC phenotype to a broad candidate pool of 200 soluble factors produced by combined mesenchymal and hematopoietic progeny. Partial least squares regression (PLSR), along with an iterative filter method, identified TGFβ-1, MMP-3, c-RP and TROY as positively correlated with HSC maintenance. Experimentally, we then observe exogenous stimulation of HSC monocultures in GelMA hydrogels with these combined cytokines increases the ratio of hematopoietic progenitors to committed progeny after a 7-day culture 7.52 ± 3.65-fold compared to non-stimulated monocultures. Findings suggest a cocktail of the downselected cytokines amplifies hematopoietic maintenance potential of HSCs beyond that of MSPC-secreted factors alone. This work integrates empirical and computation methods to identify cytokine combinations to improve HSC maintenance within an engineered HSC niche, suggesting a route toward identifying feeder-free culture platforms for HSC expansion. Insight Hematopoietic stem cells within an artificial niche receive maintenance cues in the form of soluble factors from hematopoietic and mesenchymal progeny. Applying a proteomic regression analysis, we identify a reduced set of soluble factors correlated to maintenance of a hematopoietic phenotype during culture in a biomaterial model of the bone marrow niche. We identify a minimum factor cocktail that promotes hematopoietic maintenance potential in a gelatin-based culture, regardless of the presence of mesenchymal feeder cells. By combining empirical and computational methods, we report an experimentally feasible number of factors from a large dataset, enabling exogenous integration of soluble factors into an engineered hematopoietic stem cell for enhanced maintenance potential of a quiescent stem cell population.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 7","pages":"175-187"},"PeriodicalIF":2.5,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384206/pdf/nihms-1611031.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38059890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}