首页 > 最新文献

Origins最新文献

英文 中文
Role of the Frontal and Temporal Lobes in Scanning Visual Features 额叶和颞叶在扫描视觉特征中的作用
Pub Date : 2018-10-24 DOI: 10.4324/9781315789347-38
{"title":"Role of the Frontal and Temporal Lobes in Scanning Visual Features","authors":"","doi":"10.4324/9781315789347-38","DOIUrl":"https://doi.org/10.4324/9781315789347-38","url":null,"abstract":"","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46394621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are Neural Spike Trains Deterministically Chaotic or Stochastic Processes? 神经尖峰序列是决定性的混沌过程还是随机过程?
Pub Date : 2018-10-24 DOI: 10.4324/9781315789347-17
M. Xie, K. Pribram, Joseph S. King
Before examining neural interspike intervals to see how they might encode information, an essential question that has first to be answered is whether, under the unstimulated condition, the apparent randomness of the neural firing paltern renects deterministic chaos or a stochastic process. Here, we use short term predictability and the structure of the prediction residual to determine the dynamic characteristics of interspike intervals. As demonstrated in given computer simulations, unlike stochastic processes, deterministic chaos is highly predictable in the short term by linear and I or nonlinear prediction techniques. interspike intervals recorded from somatosensory cortex and hippocampus were, thus, analyzed by using the same techniques. The results show that the neuml spontaneous interspike intervals are poorly predictable in the short term, and the models that best fit the interspike intenals are linear (AR or ARMA) stationary processes. Therefore, the pattern of neural spontaneous firing can be characterized as stochastic ratber tban deterministically chaotic.
在检查神经棘间期以了解它们如何编码信息之前,首先要回答的一个基本问题是,在未受刺激的条件下,神经放电周期的明显随机性是否会更新确定性混沌或随机过程。在这里,我们使用短期可预测性和预测残差的结构来确定棘间期的动态特征。正如给定的计算机模拟所证明的那样,与随机过程不同,确定性混沌在短期内通过线性和I或非线性预测技术是高度可预测的。因此,通过使用相同的技术来分析从体感皮层和海马体记录的棘间期。结果表明,短期内神经自发棘突间隔的可预测性较差,最符合棘突意图的模型是线性(AR或ARMA)平稳过程。因此,神经自发放电的模式可以被表征为随机ratber tban确定性混沌。
{"title":"Are Neural Spike Trains Deterministically Chaotic or Stochastic Processes?","authors":"M. Xie, K. Pribram, Joseph S. King","doi":"10.4324/9781315789347-17","DOIUrl":"https://doi.org/10.4324/9781315789347-17","url":null,"abstract":"Before examining neural interspike intervals to see how they might encode information, an essential question that has first to be answered is whether, under the unstimulated condition, the apparent randomness of the neural firing paltern renects deterministic chaos or a stochastic process. Here, we use short term predictability and the structure of the prediction residual to determine the dynamic characteristics of interspike intervals. As demonstrated in given computer simulations, unlike stochastic processes, deterministic chaos is highly predictable in the short term by linear and I or nonlinear prediction techniques. interspike intervals recorded from somatosensory cortex and hippocampus were, thus, analyzed by using the same techniques. The results show that the neuml spontaneous interspike intervals are poorly predictable in the short term, and the models that best fit the interspike intenals are linear (AR or ARMA) stationary processes. Therefore, the pattern of neural spontaneous firing can be characterized as stochastic ratber tban deterministically chaotic.","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44646172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Visually-triggered Neuronal Oscillations in the Pigeon: An Autocorrelation Study of Tectal Activity 鸽子的视觉触发神经元振荡:顶盖活动的自相关研究
Pub Date : 2018-10-24 DOI: 10.4324/9781315789347-29
{"title":"Visually-triggered Neuronal Oscillations in the Pigeon: An Autocorrelation Study of Tectal Activity","authors":"","doi":"10.4324/9781315789347-29","DOIUrl":"https://doi.org/10.4324/9781315789347-29","url":null,"abstract":"","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48097243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Organization: Reexamining the Basics 自我组织:重新审视基础
Pub Date : 2018-10-24 DOI: 10.4324/9781315789347-8
{"title":"Self-Organization: Reexamining the Basics","authors":"","doi":"10.4324/9781315789347-8","DOIUrl":"https://doi.org/10.4324/9781315789347-8","url":null,"abstract":"","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49487212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Auditory "Objects:" The Role of Motor Activity in Auditory Perception and Speech Perception 听觉“对象”:运动活动在听觉感知和言语感知中的作用
Pub Date : 2018-10-24 DOI: 10.4324/9781315789347-36
{"title":"Auditory \"Objects:\" The Role of Motor Activity in Auditory Perception and Speech Perception","authors":"","doi":"10.4324/9781315789347-36","DOIUrl":"https://doi.org/10.4324/9781315789347-36","url":null,"abstract":"","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48146686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bifurcation Model of Neuronal of Spike Train Patterns: A Nonlinear Dynamic Systems Approach 一种脉冲序列神经元的分岔模型:一种非线性动态系统方法
Pub Date : 2018-10-24 DOI: 10.4324/9781315789347-24
N. Farhat, M. Eldefrawy, S. Lin
{"title":"A Bifurcation Model of Neuronal of Spike Train Patterns: A Nonlinear Dynamic Systems Approach","authors":"N. Farhat, M. Eldefrawy, S. Lin","doi":"10.4324/9781315789347-24","DOIUrl":"https://doi.org/10.4324/9781315789347-24","url":null,"abstract":"","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43897717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Equilibrium Thermodynamics and the Brain 非平衡热力学与大脑
Pub Date : 2018-10-24 DOI: 10.4324/9781315789347-14
{"title":"Non-Equilibrium Thermodynamics and the Brain","authors":"","doi":"10.4324/9781315789347-14","DOIUrl":"https://doi.org/10.4324/9781315789347-14","url":null,"abstract":"","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47032486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Towards Simplicity: Noise and Cooperation in the ''Perfect Integrator" 走向简单:“完美积分器”中的噪声与协作
Pub Date : 2018-10-24 DOI: 10.4324/9781315789347-21
{"title":"Towards Simplicity: Noise and Cooperation in the ''Perfect Integrator\"","authors":"","doi":"10.4324/9781315789347-21","DOIUrl":"https://doi.org/10.4324/9781315789347-21","url":null,"abstract":"","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48540553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
As If Time Really Mattered: Temporal Strategies for Neural Coding of Sensory Information 好像时间真的很重要:感官信息的神经编码的时间策略
Pub Date : 2018-10-24 DOI: 10.4324/9781315789347-16
Eaton Peabody
Potential strategies for temporal neural processing in the brain and their implications for the design of artificial neural networks are considered. Current connectionist thinking holds that neurons send signals to each other by changes in their average rate of discharge. This implies that there is one output signal per neuron at any given time (scalar coding), and that all neuronal specificity is achieved solely by patterns of synaptic connections. However, information can be carried by temporal codes, in temporal patterns of neural discharges and by relative times of arrival of individual spikes. Temporal coding permits multiplexing of information in the time domain, which potentially increases the flexibility of neural networks. A broadcast model of information transmission is contrasted with the current notion of highly specific connectivity. Evidence for temporal coding in somatoception, audition, electroception, gustation, olfaction and vision is reviewed, and possible neural architectures for temporal information processing are discussed. 1. The role of timing in the brain The human brain is by far the most capable, the most versatile, and the most complex informationprocessing system known to science. For those concerned with problems of artificial intelligence there has long been the dream that once its functional principles are well understood, the design and construction of adaptive devices more powerful than any yet seen could follow in a straightforward manner. Despite great advances, the neurosciences are still far from understanding the nature of the "neural code" underlying the detailed workings of the brain. i.e. exactly which information-processing operations are involved. If we choose to view the brain in informational terms, as an adaptive signalling system embedded within an external environment, then the issue of which aspects of neural activity constitute the "signals" in the system is absolutely critical to understanding its functioning. It is a question which must be answered before all others, because all functional assumptions, interpretations, and models depend upon the appropriate choice of what processes neurons use to convey information. The role of the time patterns of neural discharges in the transmission and processing of information in the nervous system has been debated since the pulsatile nature of nervous transmission was recognized less than a century ago. Because external stimuli can be physically well-characterized and controlled, the encoding of sensory information has always played a pivotal role in more general conceptions of neural coding. 2. Coding by average discharge rate With the advent of single cell recording techniques in neurophysiology, it was generally assumed that neural information is encoded solely in the average neural discharge rates of neurons (Adrian 1928). This notion of a average discharge rate code, sometimes called the Frequency Coding principle1, has persisted and forms the basis
考虑了大脑中时间神经处理的潜在策略及其对人工神经网络设计的影响。当前的连接主义思想认为,神经元通过其平均放电速率的变化向彼此发送信号。这意味着每个神经元在任何给定的时间都有一个输出信号(标量编码),并且所有神经元的特异性都是通过突触连接的模式来实现的。然而,信息可以通过时间编码、神经放电的时间模式和单个峰值到达的相对时间来传递。时间编码允许信息在时域内进行多路复用,这可能会增加神经网络的灵活性。信息传输的广播模型与当前高度特定连接的概念形成对比。本文综述了体感觉、听觉、电感觉、味觉、嗅觉和视觉中时间编码的证据,并讨论了可能的时间信息处理神经结构。1. 时间在大脑中的作用到目前为止,人类的大脑是科学上已知的最能干、最多才多艺、最复杂的信息处理系统。对于那些关心人工智能问题的人来说,长期以来一直有这样一个梦想:一旦人们很好地理解了人工智能的功能原理,那么设计和建造比任何迄今为止看到的更强大的自适应设备就可以以一种直接的方式进行。尽管取得了巨大的进步,但神经科学仍远未理解隐藏在大脑详细运作之下的“神经密码”的本质。即具体涉及哪些信息处理操作。如果我们选择从信息的角度来看待大脑,将其视为嵌入外部环境中的自适应信号系统,那么神经活动的哪些方面构成了系统中的“信号”,这一问题对于理解其功能至关重要。这是一个必须首先回答的问题,因为所有的功能假设、解释和模型都取决于神经元用来传递信息的过程的适当选择。神经放电的时间模式在神经系统中信息的传递和处理中的作用,自不到一个世纪前神经传递的脉动性被认识以来一直存在争议。由于外部刺激可以在物理上很好地表征和控制,感觉信息的编码在更一般的神经编码概念中一直起着关键作用。2. 随着神经生理学中单细胞记录技术的出现,人们普遍认为神经信息只被编码在神经元的平均神经放电率中(Adrian 1928)。这种平均放电率编码的概念,有时被称为频率编码原则,一直存在并形成了几乎所有神经网络设计(Feldman 1990)和几乎所有与信息处理有关的神经科学研究(Barlow 1972)的基础。虽然在许多系统中积累了大量的实验证据来支持这一原则,但这并不一定意味着神经编码中只使用平均速率编码。从现代电生理学的出现开始,就一直有关于如何传递感官信息的其他概念(Troland 1921;托兰1929;Wever & Bray 1937;无聊的1942;威夫1949)。许多其他类型的编码产生与平均放电率共变的信号,这些其他编码方案实际上可能包含比平均放电率高得多的质量信息。例如,在听觉神经中,低于几千赫的刺激周期用脉冲间隔统计比放电率更精确地表示(Goldstein & Srulovicz 1977),但由于间隔模式和放电率模式都是一起观察的,因此很难直接确定哪种编码在功能上是有效的。然而,由于速率编码已经成为神经科学家的默认假设,举证的责任通常落在替代假设上。速率编码原理在神经网络(干湿两种)概念化的方式中有许多广泛的分支。平均速率代码需要一些时间窗口,在这个时间窗口上计算尖峰,根据系统的不同,这个窗口通常被认为是几十到几百毫秒或更多。“频率”有两个含义,一个与事件的频率有关,另一个与事件的特定周期性有关。频率编码暗示了前一种含义。刺激持续时间(例如,视速呈现的图像,音调爆发)。 当在一个整合窗口内只有少数尖峰放电时,平均放电率的有意义使用也会被拉伸,这通常发生在皮质神经元中。速率编码与“特定神经能量”学说密切相关,这是由m<e:1>勒和亥姆霍兹提出的(见《无聊1933》中的讨论;无聊的1942)。该原理断言,特定的感觉模式有特定类型的感觉受体。因此,通过与特定类型的受体的连接,特定神经元被解释为发送与特定质量相关的信号(与气味相反的视觉信号)。Helmholtz通过他对耳蜗的研究,将这一原则提升到也包括感觉模态中的质量差异。因此,在Helmholtz看来,由于特定的听觉神经纤维与耳蜗分区上特定位置的受体相连,因此具有不同的频率灵敏度,它们凭借其连通性发出不同的纯音音高。仅根据平均放电率进行编码就需要这种“标记线”或“位置”编码,因为在尖峰序列本身内部没有其他方法来传达它是什么类型的信号(例如,味道vs声音;消息的语义)。虽然特定神经能量学说并没有强制要求平均频率是编码在脉冲序列中的信号(例如,参见特兰的听觉共振频率理论(Boring 1942)的讨论),但人们普遍认为,感觉编码只能通过频率位置编码来完成。除非时间模式立即变得明显且无法忽视,否则神经科学家通常认为,在其他地方寻找编码替代方案是浪费精力。随着速率码的独家使用,通常假设在尖峰序列中没有可用的时间结构,即尖峰序列可以被功能地描述为具有一个独立参数(平均到达率)的泊松过程。因此,在许多高级神经网络模型中,峰值产生的时间动态被忽略,而倾向于平均速率或放电概率。这些高级功能描述的一个深远影响是,在任何给定时间段内的神经输出信号都被认为是一个标量。这有效地排除了信号在时域中的多路复用,这将需要更细粒度的时间表示和信号的不同(例如傅里叶)解释。由于每个神经单元只能发送一个输出信号,因此收敛于给定单元的多个输入信号必须转换为一个输出信号。可以做一个类比,一个电报网络从100个站点接收信息,但只能向所有的100个连接站点发送一条信息。每个附加信号必须在每个节点上与所有其他信号竞争。相比之下,一个有几个可用频带的电台可以在一个或两个频带中处理有意义的信息,而不加改变地转发其他信息。甚至所有突触后神经元接收相同信息的假设也可能受到质疑,因为轴突树不同分支的传导阻滞可以过滤到达各自突触的尖峰序列(Bittner 1968;Raymond & Lettvin 1978;维克斯曼1978;雷蒙德1979;沃瑟曼1992)。而不是一个信息被动输出线扇形向所有突触后元件发送相同的信号,一个分支结构被创建,按顺序过滤信号。因此,从标量到多维信号的转变以及轴突操作的包含可以极大地改变网络的功能拓扑结构,并随之改变信息处理的灵活性。很大程度上是因为皮层中视网膜异位、耳蜗异位和躯体异位的排列顺序,长期以来人们一直认为皮层是一个空间模式处理器。这种关于大脑皮层结构的观点在David Marr (Marr 1970;McNaughton & Nadel 1990;马尔1991)。在这些论文中,Marr提出了大脑中主要皮层结构的一般信息处理机制:大脑皮层、海马体(“皮质”)和小脑皮层。虽然空间有序的地图在功能上非常重要,这一点似乎非常清楚,但没有内在的理由说明为什么大脑皮层必须只是一个空间处理器,为什么它不能被结构化以实现时空转换(Pitts & McCulloch 1947)。可选择的时间地点架构,例如由Licklider (Licklider 1951)和Braitenberg (Braitenberg 1961;britenberg(1967)利用空间排序来执行时域的计算。 经过长时间的相对忽视,最近发现的神经元同步
{"title":"As If Time Really Mattered: Temporal Strategies for Neural Coding of Sensory Information","authors":"Eaton Peabody","doi":"10.4324/9781315789347-16","DOIUrl":"https://doi.org/10.4324/9781315789347-16","url":null,"abstract":"Potential strategies for temporal neural processing in the brain and their implications for the design of artificial neural networks are considered. Current connectionist thinking holds that neurons send signals to each other by changes in their average rate of discharge. This implies that there is one output signal per neuron at any given time (scalar coding), and that all neuronal specificity is achieved solely by patterns of synaptic connections. However, information can be carried by temporal codes, in temporal patterns of neural discharges and by relative times of arrival of individual spikes. Temporal coding permits multiplexing of information in the time domain, which potentially increases the flexibility of neural networks. A broadcast model of information transmission is contrasted with the current notion of highly specific connectivity. Evidence for temporal coding in somatoception, audition, electroception, gustation, olfaction and vision is reviewed, and possible neural architectures for temporal information processing are discussed. 1. The role of timing in the brain The human brain is by far the most capable, the most versatile, and the most complex informationprocessing system known to science. For those concerned with problems of artificial intelligence there has long been the dream that once its functional principles are well understood, the design and construction of adaptive devices more powerful than any yet seen could follow in a straightforward manner. Despite great advances, the neurosciences are still far from understanding the nature of the \"neural code\" underlying the detailed workings of the brain. i.e. exactly which information-processing operations are involved. If we choose to view the brain in informational terms, as an adaptive signalling system embedded within an external environment, then the issue of which aspects of neural activity constitute the \"signals\" in the system is absolutely critical to understanding its functioning. It is a question which must be answered before all others, because all functional assumptions, interpretations, and models depend upon the appropriate choice of what processes neurons use to convey information. The role of the time patterns of neural discharges in the transmission and processing of information in the nervous system has been debated since the pulsatile nature of nervous transmission was recognized less than a century ago. Because external stimuli can be physically well-characterized and controlled, the encoding of sensory information has always played a pivotal role in more general conceptions of neural coding. 2. Coding by average discharge rate With the advent of single cell recording techniques in neurophysiology, it was generally assumed that neural information is encoded solely in the average neural discharge rates of neurons (Adrian 1928). This notion of a average discharge rate code, sometimes called the Frequency Coding principle1, has persisted and forms the basis ","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47168532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Self-Organization and Pavlov's Dogs: A Simple Model of the Brain 自组织与巴甫洛夫的狗:一个简单的大脑模型
Pub Date : 2018-10-24 DOI: 10.4324/9781315789347-13
D. Stassinopoulos, P. Bak, P. Alstrøm
{"title":"Self-Organization and Pavlov's Dogs: A Simple Model of the Brain","authors":"D. Stassinopoulos, P. Bak, P. Alstrøm","doi":"10.4324/9781315789347-13","DOIUrl":"https://doi.org/10.4324/9781315789347-13","url":null,"abstract":"","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47431190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Origins
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1