首页 > 最新文献

Applied Artificial Intelligence最新文献

英文 中文
Toward Data-Driven and Multi-Scale Modeling for Material Flow Simulation: Characteristic Analysis of Modeling Methods 材料流动模拟的数据驱动和多尺度建模:建模方法特征分析
IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-17 DOI: 10.1080/08839514.2024.2367840
Satoshi Nagahara, Toshiya Kaihara, Nobutada Fujii, Daisuke Kokuryo
Material flow simulation is a powerful tool to realize efficient operations in complicated production systems such as high-mix and low-volume production. Nevertheless, great effort and expertise ar...
物料流模拟是实现复杂生产系统(如多品种、小批量生产)高效运行的有力工具。尽管如此,仍需要大量的努力和专业知识。
{"title":"Toward Data-Driven and Multi-Scale Modeling for Material Flow Simulation: Characteristic Analysis of Modeling Methods","authors":"Satoshi Nagahara, Toshiya Kaihara, Nobutada Fujii, Daisuke Kokuryo","doi":"10.1080/08839514.2024.2367840","DOIUrl":"https://doi.org/10.1080/08839514.2024.2367840","url":null,"abstract":"Material flow simulation is a powerful tool to realize efficient operations in complicated production systems such as high-mix and low-volume production. Nevertheless, great effort and expertise ar...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"60 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Path Planning of UAV Using Levy Pelican Optimization Algorithm In Mountain Environment 在山区环境中使用利维鹈鹕优化算法进行无人机路径规划
IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-16 DOI: 10.1080/08839514.2024.2368343
Guiliang Zhou, Shuaiqi Lü, Lina Mao, Kaiwen Xu, Tianwen Bao, Xu Bao
To overcome the issues of simple strategy and easy fall into local optimum when solving UAV 3D path planning problem, we propose an improved Levy Pelican Optimization Algorithm (LPOA) that incorpor...
为了克服在解决无人机三维路径规划问题时存在的策略简单和容易陷入局部最优的问题,我们提出了一种改进的Levy Pelican优化算法(LPOA),该算法结合了...
{"title":"Path Planning of UAV Using Levy Pelican Optimization Algorithm In Mountain Environment","authors":"Guiliang Zhou, Shuaiqi Lü, Lina Mao, Kaiwen Xu, Tianwen Bao, Xu Bao","doi":"10.1080/08839514.2024.2368343","DOIUrl":"https://doi.org/10.1080/08839514.2024.2368343","url":null,"abstract":"To overcome the issues of simple strategy and easy fall into local optimum when solving UAV 3D path planning problem, we propose an improved Levy Pelican Optimization Algorithm (LPOA) that incorpor...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"33 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of Vessel Track Characteristics Using a Conditional Generative Adversarial Network (CGAN) 使用条件生成对抗网络生成船舶航迹特征
IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-31 DOI: 10.1080/08839514.2024.2360283
Jessica N.A Campbell, Martha Dais Ferreira, Anthony W. Isenor
Machine learning (ML) models often require large volumes of data to learn a given task. However, access and existence of training data can be difficult to acquire due to privacy laws and availabili...
机器学习(ML)模型通常需要大量数据来学习特定任务。然而,由于隐私法和可利用性等原因,训练数据的访问和存在可能很难获得。
{"title":"Generation of Vessel Track Characteristics Using a Conditional Generative Adversarial Network (CGAN)","authors":"Jessica N.A Campbell, Martha Dais Ferreira, Anthony W. Isenor","doi":"10.1080/08839514.2024.2360283","DOIUrl":"https://doi.org/10.1080/08839514.2024.2360283","url":null,"abstract":"Machine learning (ML) models often require large volumes of data to learn a given task. However, access and existence of training data can be difficult to acquire due to privacy laws and availabili...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"7 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statement of Retraction 撤回声明
IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-30 DOI: 10.1080/08839514.2024.2357925
Published in Applied Artificial Intelligence: An International Journal (Vol. 38, No. 1, 2024)
发表于《应用人工智能》:国际期刊》(第 38 卷第 1 期,2024 年)
{"title":"Statement of Retraction","authors":"","doi":"10.1080/08839514.2024.2357925","DOIUrl":"https://doi.org/10.1080/08839514.2024.2357925","url":null,"abstract":"Published in Applied Artificial Intelligence: An International Journal (Vol. 38, No. 1, 2024)","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"143 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Evaluation of Hybrid Machine Learning Algorithms for Online Lending Credit Risk Prediction 用于在线借贷信用风险预测的混合机器学习算法的性能评估
IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-25 DOI: 10.1080/08839514.2024.2358661
Tesfahun Berhane, Tamiru Melese, Abdu Mohammed Seid
Peer-to-Peer systems are still in the early stages of development when it comes to the processing of credit and the appraisal of the risk associated with it. In this study, we used a hybrid convolu...
在处理信贷和评估相关风险方面,点对点系统仍处于早期发展阶段。在这项研究中,我们使用了一种混合卷积法,它可以对信贷风险进行评估。
{"title":"Performance Evaluation of Hybrid Machine Learning Algorithms for Online Lending Credit Risk Prediction","authors":"Tesfahun Berhane, Tamiru Melese, Abdu Mohammed Seid","doi":"10.1080/08839514.2024.2358661","DOIUrl":"https://doi.org/10.1080/08839514.2024.2358661","url":null,"abstract":"Peer-to-Peer systems are still in the early stages of development when it comes to the processing of credit and the appraisal of the risk associated with it. In this study, we used a hybrid convolu...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"25 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropy-based deep neural network training optimization for optical coherence tomography imaging 基于熵的光学相干断层成像深度神经网络训练优化
IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-24 DOI: 10.1080/08839514.2024.2355760
Karri Karthik, Manjunatha Mahadevappa
This paper presents an optimization technique for the number of training epochs needed for deep learning models. The proposed method eliminates the need for separate validation data and significant...
本文针对深度学习模型所需的训练历元数提出了一种优化技术。所提出的方法无需单独的验证数据和大量的...
{"title":"Entropy-based deep neural network training optimization for optical coherence tomography imaging","authors":"Karri Karthik, Manjunatha Mahadevappa","doi":"10.1080/08839514.2024.2355760","DOIUrl":"https://doi.org/10.1080/08839514.2024.2355760","url":null,"abstract":"This paper presents an optimization technique for the number of training epochs needed for deep learning models. The proposed method eliminates the need for separate validation data and significant...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"66 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying the Cheetah Algorithm to optimize resource allocation in the fog computing environment 应用猎豹算法优化雾计算环境中的资源分配
IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-14 DOI: 10.1080/08839514.2024.2349982
Fatemeh Arvaneh, Faraneh Zarafshan, Abbas Karimi
This study investigates the application of heuristic and meta-heuristic algorithms to address resource allocation challenges in Internet of Things (IoT) applications within fog computing environmen...
本研究调查了启发式和元启发式算法在雾计算环境中的应用,以解决物联网(IoT)应用中的资源分配难题。
{"title":"Applying the Cheetah Algorithm to optimize resource allocation in the fog computing environment","authors":"Fatemeh Arvaneh, Faraneh Zarafshan, Abbas Karimi","doi":"10.1080/08839514.2024.2349982","DOIUrl":"https://doi.org/10.1080/08839514.2024.2349982","url":null,"abstract":"This study investigates the application of heuristic and meta-heuristic algorithms to address resource allocation challenges in Internet of Things (IoT) applications within fog computing environmen...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"7 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Human-In-One-Loop Active Domain Adaptation Framework for Digit Recognition 用于数字识别的人一环主动域适应框架
IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-11 DOI: 10.1080/08839514.2024.2349410
Hao Xiu, Guanchen Li, Jie He, Xiaotong Zhang, Yue Qi
Domain adaptation can effectively enhance a model’s performance on target domain data with limited data. However, when some target domain labels are obtainable, training the model with both source ...
域适应可以在数据有限的情况下有效提高模型在目标域数据上的性能。然而,当可以获得一些目标域标签时,同时使用源数据和目标域数据训练模型的效果并不理想。
{"title":"A Human-In-One-Loop Active Domain Adaptation Framework for Digit Recognition","authors":"Hao Xiu, Guanchen Li, Jie He, Xiaotong Zhang, Yue Qi","doi":"10.1080/08839514.2024.2349410","DOIUrl":"https://doi.org/10.1080/08839514.2024.2349410","url":null,"abstract":"Domain adaptation can effectively enhance a model’s performance on target domain data with limited data. However, when some target domain labels are obtainable, training the model with both source ...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"36 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Evaluation Method of Dental Treatment Quality Combined with Deep Learning and Multi-index Decomposition 结合深度学习和多指标分解的牙科治疗质量评估方法
IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-07 DOI: 10.1080/08839514.2024.2351714
Gang Peng, Jie Liu, Feng Yan, Beicun Liu
Dentists judge that the quality of dental treatment for each patient is very time-consuming and inefficient, lacks quantitative evaluation criteria, and is easy to cause errors. At the same time, t...
牙科医生判断每位患者的牙科治疗质量非常耗时且效率低下,缺乏量化评价标准,容易造成误差。与此同时,牙科治疗的质量也很重要。
{"title":"An Evaluation Method of Dental Treatment Quality Combined with Deep Learning and Multi-index Decomposition","authors":"Gang Peng, Jie Liu, Feng Yan, Beicun Liu","doi":"10.1080/08839514.2024.2351714","DOIUrl":"https://doi.org/10.1080/08839514.2024.2351714","url":null,"abstract":"Dentists judge that the quality of dental treatment for each patient is very time-consuming and inefficient, lacks quantitative evaluation criteria, and is easy to cause errors. At the same time, t...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"27 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep Learning Model with Axial Attention for Radar Echo Extrapolation 用于雷达回波推断的轴向关注深度学习模型
IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-03 DOI: 10.1080/08839514.2024.2311003
Yu-Mei Xie, Ying-Liang Zhao, Shu-Yan Huang
Radar echo extrapolation is an important approach in precipitation nowcasting which utilizes historical radar echo images to predict future echo images. In this paper, we introduce the self-attenti...
雷达回波外推是降水预报中的一种重要方法,它利用历史雷达回波图像来预测未来的回波图像。在本文中,我们介绍了雷达回波外推法的自注意...
{"title":"A Deep Learning Model with Axial Attention for Radar Echo Extrapolation","authors":"Yu-Mei Xie, Ying-Liang Zhao, Shu-Yan Huang","doi":"10.1080/08839514.2024.2311003","DOIUrl":"https://doi.org/10.1080/08839514.2024.2311003","url":null,"abstract":"Radar echo extrapolation is an important approach in precipitation nowcasting which utilizes historical radar echo images to predict future echo images. In this paper, we introduce the self-attenti...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"67 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Artificial Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1