Pub Date : 2025-02-01Epub Date: 2024-12-12DOI: 10.1161/ATVBAHA.124.321848
Kara R Gouwens, Yibing Nong, Ning Chen, Emily B Schulman-Geltzer, Helen E Collins, Bradford G Hill, Matthew A Nystoriak
{"title":"Myocardial Hyperemia via Cardiomyocyte Catabolism of β-Hydroxybutyrate.","authors":"Kara R Gouwens, Yibing Nong, Ning Chen, Emily B Schulman-Geltzer, Helen E Collins, Bradford G Hill, Matthew A Nystoriak","doi":"10.1161/ATVBAHA.124.321848","DOIUrl":"10.1161/ATVBAHA.124.321848","url":null,"abstract":"","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"341-343"},"PeriodicalIF":7.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-12DOI: 10.1161/ATVBAHA.124.320392
Joseph E Italiano, Clementine Payne, Roelof H Bekendam
Blood platelets are anucleate cells essential for normal blood hemostasis. To maintain a normal platelet count of 150 000 to 400 000 per μL of blood, 1011 platelets must be released each day from precursor cells called megakaryocytes. In this review, we aim to provide an overview of platelet production and evaluate the proposed mechanisms of platelet generation. We will discuss novel cytoskeletal mechanisms of platelet production, including microtubule and actin-based systems. We present new evidence that supports a cytoplasmic trigger for platelet production, discuss centrosome clustering as a new mechanism to trigger proplatelet production, and review new data supporting the bone marrow as the major location of platelet production.
{"title":"Looking Under the Hood at the Cytoskeletal Engine of Platelet Production.","authors":"Joseph E Italiano, Clementine Payne, Roelof H Bekendam","doi":"10.1161/ATVBAHA.124.320392","DOIUrl":"10.1161/ATVBAHA.124.320392","url":null,"abstract":"<p><p>Blood platelets are anucleate cells essential for normal blood hemostasis. To maintain a normal platelet count of 150 000 to 400 000 per μL of blood, 10<sup>11</sup> platelets must be released each day from precursor cells called megakaryocytes. In this review, we aim to provide an overview of platelet production and evaluate the proposed mechanisms of platelet generation. We will discuss novel cytoskeletal mechanisms of platelet production, including microtubule and actin-based systems. We present new evidence that supports a cytoplasmic trigger for platelet production, discuss centrosome clustering as a new mechanism to trigger proplatelet production, and review new data supporting the bone marrow as the major location of platelet production.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"186-197"},"PeriodicalIF":7.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-05DOI: 10.1161/ATVBAHA.124.321772
Pei Zhu 朱培, Calvin L Chao, Adam W T Steffeck, Caitlyn Dang, Noah X Hamlish, Eric M Pfrender, Bin Jiang, Clara B Peek
Background: Peripheral artery disease (PAD), caused by atherosclerosis, leads to limb ischemia, muscle damage, and impaired mobility in the lower extremities. Recent studies suggest that circadian rhythm disruptions can hinder vascular repair during ischemia, but the specific tissues involved and the impact on muscle health remain unclear. This study investigates the role of the skeletal muscle circadian clock in muscle adaptation to ischemic stress using a surgical mouse model of hindlimb ischemia.
Methods: We performed secondary analysis of publicly available RNA-sequencing data sets derived from patients with PAD to identify the differential expression of circadian-related genes in endothelial cells and ischemic limb skeletal muscles. We used mice with specific genetic loss of the circadian clock activator, BMAL1 (brain and muscle ARNT-like 1), in adult skeletal muscle tissues (Bmal1muscle). Bmal1muscle mice and controls underwent femoral artery ligation surgery to induce hindlimb ischemia. Laser Doppler imaging was used to assess limb perfusion at various time points after the surgery. Muscle tissues were analyzed with RNA sequencing and histological examination to investigate PAD-related muscle pathologies. Additionally, we studied the role of BMAL1 in muscle fiber adaptation to hypoxia using RNA and assay for transposase-accessible chromatin with sequencing analyses in primary myotube culture model.
Results: Disrupted expression of circadian rhythm-related genes was observed in existing RNA-sequencing data sets from endothelial cells and ischemic limb skeletal muscles derived from patients with PAD. Genetic loss of Bmal1 specifically in adult mouse skeletal muscle tissues delayed reperfusion recovery following induction of hindlimb ischemia. Histological examination of muscle tissues showed reduced regenerated myofiber number and a decreased proportion of type IIB fast-twitch myofibers in Bmal1muscle mouse muscles in the ischemic limbs but not in their contralateral nonischemic limbs. Transcriptomic analysis revealed abrogated metabolic, angiogenic, and myogenic pathways relevant to hypoxia adaptation in Bmal1muscle mouse muscles. These changes were corroborated in Bmal1-deficient cultured primary myotubes cultured under hypoxic conditions.
Conclusions: Circadian clock in skeletal muscle is crucial for the muscle's response to hypoxia during hindlimb ischemia. Targeting the muscle circadian clock may have therapeutic potential for enhancing muscle response to reduced blood flow and promoting recovery in conditions such as PAD.
{"title":"Circadian Dysfunction in the Skeletal Muscle Impairs Limb Perfusion and Muscle Regeneration in Peripheral Artery Disease.","authors":"Pei Zhu 朱培, Calvin L Chao, Adam W T Steffeck, Caitlyn Dang, Noah X Hamlish, Eric M Pfrender, Bin Jiang, Clara B Peek","doi":"10.1161/ATVBAHA.124.321772","DOIUrl":"10.1161/ATVBAHA.124.321772","url":null,"abstract":"<p><strong>Background: </strong>Peripheral artery disease (PAD), caused by atherosclerosis, leads to limb ischemia, muscle damage, and impaired mobility in the lower extremities. Recent studies suggest that circadian rhythm disruptions can hinder vascular repair during ischemia, but the specific tissues involved and the impact on muscle health remain unclear. This study investigates the role of the skeletal muscle circadian clock in muscle adaptation to ischemic stress using a surgical mouse model of hindlimb ischemia.</p><p><strong>Methods: </strong>We performed secondary analysis of publicly available RNA-sequencing data sets derived from patients with PAD to identify the differential expression of circadian-related genes in endothelial cells and ischemic limb skeletal muscles. We used mice with specific genetic loss of the circadian clock activator, BMAL1 (brain and muscle ARNT-like 1), in adult skeletal muscle tissues (<i>Bmal1</i><sup><i>muscle</i></sup>). <i>Bmal1</i><sup><i>muscle</i></sup> mice and controls underwent femoral artery ligation surgery to induce hindlimb ischemia. Laser Doppler imaging was used to assess limb perfusion at various time points after the surgery. Muscle tissues were analyzed with RNA sequencing and histological examination to investigate PAD-related muscle pathologies. Additionally, we studied the role of BMAL1 in muscle fiber adaptation to hypoxia using RNA and assay for transposase-accessible chromatin with sequencing analyses in primary myotube culture model.</p><p><strong>Results: </strong>Disrupted expression of circadian rhythm-related genes was observed in existing RNA-sequencing data sets from endothelial cells and ischemic limb skeletal muscles derived from patients with PAD. Genetic loss of <i>Bmal1</i> specifically in adult mouse skeletal muscle tissues delayed reperfusion recovery following induction of hindlimb ischemia. Histological examination of muscle tissues showed reduced regenerated myofiber number and a decreased proportion of type IIB fast-twitch myofibers in <i>Bmal1</i><sup><i>muscle</i></sup> mouse muscles in the ischemic limbs but not in their contralateral nonischemic limbs. Transcriptomic analysis revealed abrogated metabolic, angiogenic, and myogenic pathways relevant to hypoxia adaptation in <i>Bmal1</i><sup><i>muscle</i></sup> mouse muscles. These changes were corroborated in <i>Bmal1</i>-deficient cultured primary myotubes cultured under hypoxic conditions.</p><p><strong>Conclusions: </strong>Circadian clock in skeletal muscle is crucial for the muscle's response to hypoxia during hindlimb ischemia. Targeting the muscle circadian clock may have therapeutic potential for enhancing muscle response to reduced blood flow and promoting recovery in conditions such as PAD.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"e30-e47"},"PeriodicalIF":7.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-05DOI: 10.1161/ATVBAHA.124.320393
Lars Maegdefessel, Francesca Fasolo
In the healthy mature artery, vascular cells, including endothelial cells, smooth muscle cells (SMCs), and fibroblasts are organized in different layers, performing specific functions. SMCs located in the media are in a differentiated state and exhibit a contractile phenotype. However, in response to vascular injury within the intima, stimuli from activated endothelial cells and recruited inflammatory cells reach SMCs and induce a series of remodeling events in them, known as phenotypic switching. Indeed, SMCs retain a certain degree of plasticity and are able to transdifferentiate into other cell types that are crucial for both the formation and development of atherosclerotic lesions. Because of their highly cell-specific expression profiles and their widely recognized contribution to physiological and disease-related biological processes, long non-coding RNAs have received increasing attention in atherosclerosis research. Dynamic fluctuations in their expression have been implicated in the regulation of SMC identity. Sophisticated technologies are now available to allow researchers to access single-cell transcriptomes and study long non-coding RNA function with unprecedented precision. Here, we discuss the state of the art of long non-coding RNAs regulation of SMC phenotypic switching, describing the methodologies used to approach this issue and evaluating the therapeutic perspectives of exploiting long non-coding RNAs as targets in atherosclerosis.
{"title":"Long Non-Coding RNA Function in Smooth Muscle Cell Plasticity and Atherosclerosis.","authors":"Lars Maegdefessel, Francesca Fasolo","doi":"10.1161/ATVBAHA.124.320393","DOIUrl":"10.1161/ATVBAHA.124.320393","url":null,"abstract":"<p><p>In the healthy mature artery, vascular cells, including endothelial cells, smooth muscle cells (SMCs), and fibroblasts are organized in different layers, performing specific functions. SMCs located in the media are in a differentiated state and exhibit a contractile phenotype. However, in response to vascular injury within the intima, stimuli from activated endothelial cells and recruited inflammatory cells reach SMCs and induce a series of remodeling events in them, known as phenotypic switching. Indeed, SMCs retain a certain degree of plasticity and are able to transdifferentiate into other cell types that are crucial for both the formation and development of atherosclerotic lesions. Because of their highly cell-specific expression profiles and their widely recognized contribution to physiological and disease-related biological processes, long non-coding RNAs have received increasing attention in atherosclerosis research. Dynamic fluctuations in their expression have been implicated in the regulation of SMC identity. Sophisticated technologies are now available to allow researchers to access single-cell transcriptomes and study long non-coding RNA function with unprecedented precision. Here, we discuss the state of the art of long non-coding RNAs regulation of SMC phenotypic switching, describing the methodologies used to approach this issue and evaluating the therapeutic perspectives of exploiting long non-coding RNAs as targets in atherosclerosis.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"172-185"},"PeriodicalIF":7.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-12DOI: 10.1161/ATVBAHA.124.321760
Daniel P Andersson, Peter Arner
Background: Disturbed white adipose tissue function is important for cardiometabolic risk and metabolic syndrome (MetS). Whether this involves adipose lipid turnover (lipolysis and synthesis of triglycerides) is unknown and was presently investigated in subcutaneous adipose tissue, the body's largest fat depot.
Methods: In cross-sectional studies in 78 subjects, adipose lipid age, representing overall lipid turnover (mobilization and storage), and lipid storage capacity were assessed by the incorporation of atmospheric 14C into adipose lipids. Adipose lipid age from an algorithm of adipocyte lipolysis and clinical parameters was also determined in 185 subjects. Adult Treatment Panel III (ATPIII) scoring defined MetS (scores 3-5) or healthy (score 0). ANOVA or ANCOVA and t test were used for statistical comparison. Because there was no method interaction to determine lipid age, the 2 groups were combined.
Results: Lipid age increased by incremental ATPIII score (F=42; P<0.0001) and was 2-fold advanced in MetS (t=11.3; P<0.0001). The correlation with lipid age was independent of age, sex, body mass index, waist-to-hip ratio, sedentary lifestyle, absence of obesity, and adipose insulin resistance (F=10.7; P<0.0001). Lipid storage capacity was not related to the ATPIII score (F=1.0; P=0.44) or MetS (t=-0.9; P=0.35). Adipocyte lipolysis activation was decreased in MetS and inversely related to incremental ATPIII score, suggesting that decreased lipid mobilization is the major factor behind high lipid age in these conditions.
Conclusions: Despite normal lipid assimilation capacity, abdominal subcutaneous adipose lipid turnover is decreased in MetS and high ATPIII score because of impaired ability to mobilize lipids involving low adipocyte lipolysis activation.
{"title":"Decreased Adipose Lipid Turnover Associates With Cardiometabolic Risk and the Metabolic Syndrome.","authors":"Daniel P Andersson, Peter Arner","doi":"10.1161/ATVBAHA.124.321760","DOIUrl":"10.1161/ATVBAHA.124.321760","url":null,"abstract":"<p><strong>Background: </strong>Disturbed white adipose tissue function is important for cardiometabolic risk and metabolic syndrome (MetS). Whether this involves adipose lipid turnover (lipolysis and synthesis of triglycerides) is unknown and was presently investigated in subcutaneous adipose tissue, the body's largest fat depot.</p><p><strong>Methods: </strong>In cross-sectional studies in 78 subjects, adipose lipid age, representing overall lipid turnover (mobilization and storage), and lipid storage capacity were assessed by the incorporation of atmospheric <sup>14</sup>C into adipose lipids. Adipose lipid age from an algorithm of adipocyte lipolysis and clinical parameters was also determined in 185 subjects. Adult Treatment Panel III (ATPIII) scoring defined MetS (scores 3-5) or healthy (score 0). ANOVA or ANCOVA and <i>t</i> test were used for statistical comparison. Because there was no method interaction to determine lipid age, the 2 groups were combined.</p><p><strong>Results: </strong>Lipid age increased by incremental ATPIII score (F=42; <i>P</i><0.0001) and was 2-fold advanced in MetS (t=11.3; <i>P</i><0.0001). The correlation with lipid age was independent of age, sex, body mass index, waist-to-hip ratio, sedentary lifestyle, absence of obesity, and adipose insulin resistance (F=10.7; <i>P</i><0.0001). Lipid storage capacity was not related to the ATPIII score (F=1.0; <i>P</i>=0.44) or MetS (t=-0.9; <i>P</i>=0.35). Adipocyte lipolysis activation was decreased in MetS and inversely related to incremental ATPIII score, suggesting that decreased lipid mobilization is the major factor behind high lipid age in these conditions.</p><p><strong>Conclusions: </strong>Despite normal lipid assimilation capacity, abdominal subcutaneous adipose lipid turnover is decreased in MetS and high ATPIII score because of impaired ability to mobilize lipids involving low adipocyte lipolysis activation.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"277-284"},"PeriodicalIF":7.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.
Methods: In this study, we performed a high-resolution imaging and time-lapse imaging analysis of the behavior of ECs in Tg(kdrl:ras-mCherry::fli1a:nGFP) zebra fish embryos upon high glucose treatment. Genetic manipulation and chemical biology approaches were utilized to analyze the underlying mechanism of high glucose-induced nuclei aggregation and aberrant migration of zebra fish ECs and cultured human ECs. Bioinformatical analysis of single-cell RNA-sequencing data and molecular biological techniques was performed to identify the target genes of foxo1a.
Results: In this study, we observed that the high glucose treatment resulted in nuclei aggregation of ECs in zebra fish intersegmental vessels. Additionally, the aberrant migration of microvascular ECs in high glucose-treated embryos, which might be a cause of nuclei aggregation, was discovered. High glucose induced aggregation of vascular endothelial nuclei via foxo1a downregulation in zebra fish embryos. Then, we revealed that high glucose resulted in the downregulation of foxo1a expression and increased the expression of its direct downstream effector, klf2a, through which the aberrant migration and aggregation of vascular endothelial nuclei were caused.
Conclusions: High glucose treatment caused the nuclei of ECs to aggregate in vivo, which resembles the crowded nuclei of ECs in microaneurysms. High glucose suppresses foxo1a expression and increases the expression of its downstream effector, klf2a, thereby causing the aberrant migration and aggregation of vascular endothelial nuclei. Our findings provide a novel insight into the mechanism of microvascular complications in hyperglycemia.
{"title":"High Glucose Treatment Induces Nuclei Aggregation of Microvascular Endothelial Cells via the <i>foxo1a</i>-<i>klf2a</i> Pathway.","authors":"Xiaoning Wang, Xinyi Kang, Bowen Li, Changshen Chen, Liping Chen, Dong Liu","doi":"10.1161/ATVBAHA.124.321719","DOIUrl":"https://doi.org/10.1161/ATVBAHA.124.321719","url":null,"abstract":"<p><strong>Background: </strong>Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.</p><p><strong>Methods: </strong>In this study, we performed a high-resolution imaging and time-lapse imaging analysis of the behavior of ECs in <i>Tg(kdrl:ras-mCherry::fli1a:nGFP</i>) zebra fish embryos upon high glucose treatment. Genetic manipulation and chemical biology approaches were utilized to analyze the underlying mechanism of high glucose-induced nuclei aggregation and aberrant migration of zebra fish ECs and cultured human ECs. Bioinformatical analysis of single-cell RNA-sequencing data and molecular biological techniques was performed to identify the target genes of <i>foxo1a</i>.</p><p><strong>Results: </strong>In this study, we observed that the high glucose treatment resulted in nuclei aggregation of ECs in zebra fish intersegmental vessels. Additionally, the aberrant migration of microvascular ECs in high glucose-treated embryos, which might be a cause of nuclei aggregation, was discovered. High glucose induced aggregation of vascular endothelial nuclei via <i>foxo1a</i> downregulation in zebra fish embryos. Then, we revealed that high glucose resulted in the downregulation of <i>foxo1a</i> expression and increased the expression of its direct downstream effector, <i>klf2a</i>, through which the aberrant migration and aggregation of vascular endothelial nuclei were caused.</p><p><strong>Conclusions: </strong>High glucose treatment caused the nuclei of ECs to aggregate in vivo, which resembles the crowded nuclei of ECs in microaneurysms. High glucose suppresses <i>foxo1a</i> expression and increases the expression of its downstream effector, <i>klf2a</i>, thereby causing the aberrant migration and aggregation of vascular endothelial nuclei. Our findings provide a novel insight into the mechanism of microvascular complications in hyperglycemia.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-30DOI: 10.1161/ATVBAHA.124.321527
Hiroki Yagi, Hiroshi Akazawa, Qing Liu, Kimiko Yamamoto, Kan Nawata, Akiko Saga-Kamo, Masahiko Umei, Hiroshi Kadowaki, Ryo Matsuoka, Akito Shindo, Shun Okamura, Haruhiro Toko, Norifumi Takeda, Masahiko Ando, Haruo Yamauchi, Norihiko Takeda, Mehdi A Fini, Minoru Ono, Issei Komuro
Background: Marfan syndrome (MFS) is an inherited disorder caused by mutations in the FBN1 gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined.
Methods: To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the Xdh gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the Fbn1 missense mutation p.(Cys1041Gly). We assessed the aberrant activation of mechanosensitive signaling in the ascending aorta of Fbn1C1041G/+ mice. Further analysis of human aortic ECs investigated the mechanisms by which mechanical stress upregulates XOR expression.
Results: We found a significant increase in reactive oxygen species generation in the ascending aorta of patients with MFS and Fbn1C1041G/+ mice, which was associated with a significant increase in protein expression and enzymatic activity of XOR protein in aortic ECs. Genetic disruption of Xdh in ECs or treatment with febuxostat significantly suppressed aortic aneurysm progression and improved perivascular infiltration of macrophages. Mechanistically, mechanosensitive signaling involving FAK (focal adhesion kinase)-p38 MAPK (p38 mitogen-activated protein kinase) and Egr-1 (early growth response-1) was aberrantly activated in the ascending aorta of Fbn1C1041G/+ mice, and mechanical stress on human aortic ECs upregulated XOR expression through Egr-1 upregulation. Consistently, EC-specific knockout of XOR or systemic administration of febuxostat in Fbn1C1041G/+ mice suppressed reactive oxygen species generation, FAK-p38 MAPK activation, and Egr-1 upregulation.
Conclusions: Aberrant activation of mechanosensitive signaling in vascular ECs triggered endothelial XOR activation and reactive oxygen species generation, which contributes to the progression of aortic aneurysms in MFS. These findings highlight a drug repositioning approach using a uric acid-lowering drug febuxostat as a potential therapy for MFS.
{"title":"XOR-Derived ROS in Tie2-Lineage Cells Including Endothelial Cells Promotes Aortic Aneurysm Progression in Marfan Syndrome.","authors":"Hiroki Yagi, Hiroshi Akazawa, Qing Liu, Kimiko Yamamoto, Kan Nawata, Akiko Saga-Kamo, Masahiko Umei, Hiroshi Kadowaki, Ryo Matsuoka, Akito Shindo, Shun Okamura, Haruhiro Toko, Norifumi Takeda, Masahiko Ando, Haruo Yamauchi, Norihiko Takeda, Mehdi A Fini, Minoru Ono, Issei Komuro","doi":"10.1161/ATVBAHA.124.321527","DOIUrl":"https://doi.org/10.1161/ATVBAHA.124.321527","url":null,"abstract":"<p><strong>Background: </strong>Marfan syndrome (MFS) is an inherited disorder caused by mutations in the <i>FBN1</i> gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined.</p><p><strong>Methods: </strong>To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the <i>Xdh</i> gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the <i>Fbn1</i> missense mutation p.(Cys1041Gly). We assessed the aberrant activation of mechanosensitive signaling in the ascending aorta of <i>Fbn1</i><sup>C1041G/+</sup> mice. Further analysis of human aortic ECs investigated the mechanisms by which mechanical stress upregulates XOR expression.</p><p><strong>Results: </strong>We found a significant increase in reactive oxygen species generation in the ascending aorta of patients with MFS and <i>Fbn1</i><sup>C1041G/+</sup> mice, which was associated with a significant increase in protein expression and enzymatic activity of XOR protein in aortic ECs. Genetic disruption of <i>Xdh</i> in ECs or treatment with febuxostat significantly suppressed aortic aneurysm progression and improved perivascular infiltration of macrophages. Mechanistically, mechanosensitive signaling involving FAK (focal adhesion kinase)-p38 MAPK (p38 mitogen-activated protein kinase) and Egr-1 (early growth response-1) was aberrantly activated in the ascending aorta of <i>Fbn1</i><sup>C1041G/+</sup> mice, and mechanical stress on human aortic ECs upregulated XOR expression through Egr-1 upregulation. Consistently, EC-specific knockout of XOR or systemic administration of febuxostat in <i>Fbn1</i><sup>C1041G/+</sup> mice suppressed reactive oxygen species generation, FAK-p38 MAPK activation, and Egr-1 upregulation.</p><p><strong>Conclusions: </strong>Aberrant activation of mechanosensitive signaling in vascular ECs triggered endothelial XOR activation and reactive oxygen species generation, which contributes to the progression of aortic aneurysms in MFS. These findings highlight a drug repositioning approach using a uric acid-lowering drug febuxostat as a potential therapy for MFS.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-30DOI: 10.1161/ATVBAHA.124.321308
Karin Leander, Yan Q Chen, Max Vikström, Angela Silveira, Rachel M Fisher, Robert J Konrad, Ferdinand M van 't Hooft
Background: Binding of ANGPTL (angiopoietin-like protein)-3 to ANGPTL8 generates a protein complex (ANGPTL3/8) that strongly inhibits LPL (lipoprotein lipase) activity, as compared with ANGPTL3 alone, suggesting that ANGPTL3/8 concentrations are critical for the regulation of circulation lipoprotein concentrations and subsequent increased coronary heart disease (CHD) risk. To test this hypothesis in humans, we evaluated the associations of circulating free ANGPTL3 and ANGPTL3/8 complex concentrations with lipoprotein concentrations and CHD risk in 2 prospective cohort studies.
Methods: Fasting blood samples were obtained in conjunction with the baseline evaluation of 9479 subjects from 2 population-based Swedish cohorts of middle-aged men and women. Standard biochemical blood analyses, including all lipid/lipoprotein measurements, were performed in these samples at baseline. Additional serum samples were stored at -80 °C and used at a later stage for ANGPTL3 and ANGPTL3/8 concentration measurements. Information about incident CHD was obtained for both cohorts by matching to the Swedish National Patient Register and the Cause of Death Register.
Results: ANGPTL3 concentrations showed modest, positive associations with all lipoprotein concentrations but were not associated with CHD risk. In contrast, ANGPTL3/8 concentrations were associated in both cohorts with an atherogenic lipoprotein profile (characterized by increased triglyceride and LDL [low-density lipoprotein] concentrations and reduced HDL [high-density lipoprotein] concentrations). In the combined cohort, ANGPTL3/8 was associated with increased CHD risk. Hazard ratio per 1 SD increase was 1.10 (95% CI, 1.03-1.17) after adjustment for age, sex, cohort, smoking, and hypertension.
Conclusions: Elevated concentrations of ANGPTL3/8, but not ANGPTL3, are associated with an atherogenic lipoprotein profile and increased CHD risk in humans.
{"title":"Circulating ANGPTL3/8 Concentrations Are Associated With an Atherogenic Lipoprotein Profile and Increased CHD Risk in Swedish Population-Based Studies.","authors":"Karin Leander, Yan Q Chen, Max Vikström, Angela Silveira, Rachel M Fisher, Robert J Konrad, Ferdinand M van 't Hooft","doi":"10.1161/ATVBAHA.124.321308","DOIUrl":"https://doi.org/10.1161/ATVBAHA.124.321308","url":null,"abstract":"<p><strong>Background: </strong>Binding of ANGPTL (angiopoietin-like protein)-3 to ANGPTL8 generates a protein complex (ANGPTL3/8) that strongly inhibits LPL (lipoprotein lipase) activity, as compared with ANGPTL3 alone, suggesting that ANGPTL3/8 concentrations are critical for the regulation of circulation lipoprotein concentrations and subsequent increased coronary heart disease (CHD) risk. To test this hypothesis in humans, we evaluated the associations of circulating free ANGPTL3 and ANGPTL3/8 complex concentrations with lipoprotein concentrations and CHD risk in 2 prospective cohort studies.</p><p><strong>Methods: </strong>Fasting blood samples were obtained in conjunction with the baseline evaluation of 9479 subjects from 2 population-based Swedish cohorts of middle-aged men and women. Standard biochemical blood analyses, including all lipid/lipoprotein measurements, were performed in these samples at baseline. Additional serum samples were stored at -80 °C and used at a later stage for ANGPTL3 and ANGPTL3/8 concentration measurements. Information about incident CHD was obtained for both cohorts by matching to the Swedish National Patient Register and the Cause of Death Register.</p><p><strong>Results: </strong>ANGPTL3 concentrations showed modest, positive associations with all lipoprotein concentrations but were not associated with CHD risk. In contrast, ANGPTL3/8 concentrations were associated in both cohorts with an atherogenic lipoprotein profile (characterized by increased triglyceride and LDL [low-density lipoprotein] concentrations and reduced HDL [high-density lipoprotein] concentrations). In the combined cohort, ANGPTL3/8 was associated with increased CHD risk. Hazard ratio per 1 SD increase was 1.10 (95% CI, 1.03-1.17) after adjustment for age, sex, cohort, smoking, and hypertension.</p><p><strong>Conclusions: </strong>Elevated concentrations of ANGPTL3/8, but not ANGPTL3, are associated with an atherogenic lipoprotein profile and increased CHD risk in humans.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1161/ATVBAHA.124.321201
Prasant K Jena, Moshe Arditi, Magali Noval Rivas
The intestinal microbiota influences many host biological processes, including metabolism, intestinal barrier functions, and immune responses in the gut and distant organs. Alterations in its composition have been associated with the development of inflammatory disorders and cardiovascular diseases, including Kawasaki disease (KD). KD is an acute pediatric vasculitis of unknown etiology and the leading cause of acquired heart disease in children in the United States. The presence of gastrointestinal symptoms in the acute phase of KD has been associated with an increased risk of treatment resistance and the development of coronary artery aneurysms. Studies report alterations in fecal bacterial communities of patients with KD, characterized by the blooming of pathogenic bacteria and decreased relative abundance of short-chain fatty acid-producing bacteria. However, causality and functionality cannot be established from these observational patient cohorts of KD. This highlights the need for more advanced and rigorous studies to establish causality and functionality in both experimental models of KD vasculitis and patient cohorts. Here, we review the evidence linking an altered gut microbiota composition to the development of KD, assess the potential mechanisms involved in this process, and discuss the potential therapeutic value of these observations.
{"title":"Gut Microbiota Alterations in Patients With Kawasaki Disease.","authors":"Prasant K Jena, Moshe Arditi, Magali Noval Rivas","doi":"10.1161/ATVBAHA.124.321201","DOIUrl":"10.1161/ATVBAHA.124.321201","url":null,"abstract":"<p><p>The intestinal microbiota influences many host biological processes, including metabolism, intestinal barrier functions, and immune responses in the gut and distant organs. Alterations in its composition have been associated with the development of inflammatory disorders and cardiovascular diseases, including Kawasaki disease (KD). KD is an acute pediatric vasculitis of unknown etiology and the leading cause of acquired heart disease in children in the United States. The presence of gastrointestinal symptoms in the acute phase of KD has been associated with an increased risk of treatment resistance and the development of coronary artery aneurysms. Studies report alterations in fecal bacterial communities of patients with KD, characterized by the blooming of pathogenic bacteria and decreased relative abundance of short-chain fatty acid-producing bacteria. However, causality and functionality cannot be established from these observational patient cohorts of KD. This highlights the need for more advanced and rigorous studies to establish causality and functionality in both experimental models of KD vasculitis and patient cohorts. Here, we review the evidence linking an altered gut microbiota composition to the development of KD, assess the potential mechanisms involved in this process, and discuss the potential therapeutic value of these observations.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited. In particular, the guide cues and the signaling-originating cells remain elusive.
Methods: Live imaging analysis was used to observe the vascular developmental process of zebra fish. Whole-mount in situ hybridization and fluorescent in situ hybridization were used to detect the expression profiles of the genes. Single-cell sequencing analysis was conducted to identify the guiding protein and its originating cells.
Results: Taking advantage of live imaging analysis, we described a directional blood vessel migration in the vascularization process of zebra fish pectoral fins. We demonstrated that pectoral fin vessel c migrated over long distances and was anastomosed with the second pair of intersegmental vessels. Furthermore, we found the cxcl12a-cxcr4a axis specifically guided this long-distance extension of pectoral fin vessel c-intersegmental vessel, and either inhibition or overexpression of cxcl12a-cxcr4a signaling both mislead the growth of pectoral fin vessel c to ectopic areas. Finally, based on an analysis of single-cell sequencing data, we revealed that a population of monocytes expresses the Cxcl12a, which guides the migration of the vascular sprout.
Conclusions: Our study identified Cxcl12a as the signaling molecule for orchestrating the organotypic-specific long-distance migration and anastomosis of the pectoral fin vessel and the intersegmental vessels in zebra fish. We discovered a specific cluster of gata1-positive monocytes responsible for expressing Cxcl12a. The findings offer novel insights into the mechanisms underlying organotypic vascularization in vertebrates.
{"title":"Monocyte-Derived cxcl12 Guides a Directional Migration of Blood Vessels in Zebra Fish.","authors":"Xiaofeng Lu, Xiaoning Wang, Bowen Li, Xin Wang, Xuchu Duan, Dong Liu","doi":"10.1161/ATVBAHA.124.321588","DOIUrl":"https://doi.org/10.1161/ATVBAHA.124.321588","url":null,"abstract":"<p><strong>Background: </strong>Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited. In particular, the guide cues and the signaling-originating cells remain elusive.</p><p><strong>Methods: </strong>Live imaging analysis was used to observe the vascular developmental process of zebra fish. Whole-mount in situ hybridization and fluorescent in situ hybridization were used to detect the expression profiles of the genes. Single-cell sequencing analysis was conducted to identify the guiding protein and its originating cells.</p><p><strong>Results: </strong>Taking advantage of live imaging analysis, we described a directional blood vessel migration in the vascularization process of zebra fish pectoral fins. We demonstrated that pectoral fin vessel c migrated over long distances and was anastomosed with the second pair of intersegmental vessels. Furthermore, we found the cxcl12a-cxcr4a axis specifically guided this long-distance extension of pectoral fin vessel c-intersegmental vessel, and either inhibition or overexpression of cxcl12a-cxcr4a signaling both mislead the growth of pectoral fin vessel c to ectopic areas. Finally, based on an analysis of single-cell sequencing data, we revealed that a population of monocytes expresses the Cxcl12a, which guides the migration of the vascular sprout.</p><p><strong>Conclusions: </strong>Our study identified Cxcl12a as the signaling molecule for orchestrating the organotypic-specific long-distance migration and anastomosis of the pectoral fin vessel and the intersegmental vessels in zebra fish. We discovered a specific cluster of gata1-positive monocytes responsible for expressing Cxcl12a. The findings offer novel insights into the mechanisms underlying organotypic vascularization in vertebrates.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}