首页 > 最新文献

Artif. Intell.最新文献

英文 中文
Interpretable time series kernel analytics by pre-image estimation 可解释的时间序列核分析的预图像估计
Pub Date : 2020-09-01 DOI: 10.1016/j.artint.2020.103342
T. T. T. Tran, A. Chouakria, Saeed Varasteh Yazdi, P. Honeine, P. Gallinari
{"title":"Interpretable time series kernel analytics by pre-image estimation","authors":"T. T. T. Tran, A. Chouakria, Saeed Varasteh Yazdi, P. Honeine, P. Gallinari","doi":"10.1016/j.artint.2020.103342","DOIUrl":"https://doi.org/10.1016/j.artint.2020.103342","url":null,"abstract":"","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"31 1","pages":"103342"},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72562431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the equivalence of optimal recommendation sets and myopically optimal query sets 最优推荐集与近视最优查询集的等价性
Pub Date : 2020-09-01 DOI: 10.1016/j.artint.2020.103328
P. Viappiani, Craig Boutilier
{"title":"On the equivalence of optimal recommendation sets and myopically optimal query sets","authors":"P. Viappiani, Craig Boutilier","doi":"10.1016/j.artint.2020.103328","DOIUrl":"https://doi.org/10.1016/j.artint.2020.103328","url":null,"abstract":"","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"97 1","pages":"103328"},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80246232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
PopMNet: Generating structured pop music melodies using neural networks PopMNet:使用神经网络生成结构化的流行音乐旋律
Pub Date : 2020-09-01 DOI: 10.1016/j.artint.2020.103303
Jian Wu, Xiaoguang Liu, Xiaolin Hu, Jun Zhu
{"title":"PopMNet: Generating structured pop music melodies using neural networks","authors":"Jian Wu, Xiaoguang Liu, Xiaolin Hu, Jun Zhu","doi":"10.1016/j.artint.2020.103303","DOIUrl":"https://doi.org/10.1016/j.artint.2020.103303","url":null,"abstract":"","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"47 1","pages":"103303"},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86236536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Automated Temporal Equilibrium Analysis: Verification and Synthesis of Multi-Player Games 自动时间平衡分析:多人游戏的验证与综合
Pub Date : 2020-08-13 DOI: 10.1016/j.artint.2020.103353
J. Gutierrez, Muhammad Najib, Giuseppe Perelli, M. Wooldridge
{"title":"Automated Temporal Equilibrium Analysis: Verification and Synthesis of Multi-Player Games","authors":"J. Gutierrez, Muhammad Najib, Giuseppe Perelli, M. Wooldridge","doi":"10.1016/j.artint.2020.103353","DOIUrl":"https://doi.org/10.1016/j.artint.2020.103353","url":null,"abstract":"","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"1 1","pages":"103353"},"PeriodicalIF":0.0,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88906069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Combining gaze and AI planning for online human intention recognition 结合凝视和人工智能规划进行在线人类意图识别
Pub Date : 2020-07-01 DOI: 10.1016/j.artint.2020.103275
Ronal Singh, Tim Miller, Joshua Newn, Eduardo Velloso, F. Vetere, L. Sonenberg
{"title":"Combining gaze and AI planning for online human intention recognition","authors":"Ronal Singh, Tim Miller, Joshua Newn, Eduardo Velloso, F. Vetere, L. Sonenberg","doi":"10.1016/j.artint.2020.103275","DOIUrl":"https://doi.org/10.1016/j.artint.2020.103275","url":null,"abstract":"","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"54 3 1","pages":"103275"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90929920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
On the complexity of reasoning about opinion diffusion under majority dynamics 多数动态下意见扩散推理的复杂性
Pub Date : 2020-07-01 DOI: 10.1016/j.artint.2020.103288
V. Auletta, Diodato Ferraioli, G. Greco
{"title":"On the complexity of reasoning about opinion diffusion under majority dynamics","authors":"V. Auletta, Diodato Ferraioli, G. Greco","doi":"10.1016/j.artint.2020.103288","DOIUrl":"https://doi.org/10.1016/j.artint.2020.103288","url":null,"abstract":"","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"15 1","pages":"103288"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79933311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Knowing the price of success 知道成功的代价
Pub Date : 2020-07-01 DOI: 10.1016/j.artint.2020.103287
Rui Cao, Pavel Naumov
{"title":"Knowing the price of success","authors":"Rui Cao, Pavel Naumov","doi":"10.1016/j.artint.2020.103287","DOIUrl":"https://doi.org/10.1016/j.artint.2020.103287","url":null,"abstract":"","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"54 1","pages":"103287"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86284860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Better Bounds on the Adaptivity Gap of Influence Maximization under Full-adoption Feedback 全采用反馈下影响最大化自适应间隙的更好界
Pub Date : 2020-06-27 DOI: 10.1609/aaai.v35i13.17433
Gianlorenzo D'angelo, Debashmita Poddar, Cosimo Vinci
In the influence maximization (IM) problem, we are given a social network and a budget k, and we look for a set of k nodes in the network, called seeds, that maximize the expected number of nodes that are reached by an influence cascade generated by the seeds, according to some stochastic model for influence diffusion. Extensive studies have been done on the IM problem, since his definition by Kempe, Kleinberg, and Tardos (2003). However, most of the work focuses on the non-adaptive version of the problem where all the k seed nodes must be selected before that the cascade starts. In this paper we study the adaptive IM, where the nodes are selected sequentially one by one, and the decision on the i-th seed can be based on the observed cascade produced by the first i-1 seeds. We focus on the full-adoption feedback in which we can observe the entire cascade of each previously selected seed and on the independent cascade model where each edge is associated with an independent probability of diffusing influence.Previous works showed that there are constant upper bounds on the adaptivity gap, which compares the performance of an adaptive algorithm against a non-adaptive one, but the analyses used to prove these bounds only works for specific graph classes such as in-arborescences, out-arborescences, and one-directional bipartite graphs. Our main result is the first sub-linear upper bound that holds for any graph. Specifically, we show that the adaptivity gap is upper-bounded by ∛n+1, where n is the number of nodes in the graph. Moreover we improve over the known upper bound for in-arborescences from 2e/(e-1)≈3.16 to 2e²/(e²-1)≈2.31. Finally, we study α-bounded graphs, a class of undirected graphs in which the sum of node degrees higher than two is at most α, and show that the adaptivity gap is upper-bounded by √α+O(1). Moreover, we show that in 0-bounded graphs, i.e. undirected graphs in which each connected component is a path or a cycle, the adaptivity gap is at most 3e³/(e³-1)≈3.16.To prove our bounds, we introduce new techniques to relate adaptive policies with non-adaptive ones that might be of their own interest.
在影响最大化(IM)问题中,我们给定一个社会网络和一个预算k,我们在网络中寻找k个节点的集合,称为种子,根据影响扩散的一些随机模型,使种子产生的影响级联所达到的节点的期望数量最大化。自Kempe, Kleinberg和Tardos(2003)对IM问题进行定义以来,对其进行了广泛的研究。然而,大部分工作都集中在问题的非自适应版本上,在级联开始之前必须选择所有k个种子节点。本文研究了一种自适应遗传算法,其中节点依次选择,第i-1个种子产生的级联可以作为第i-1个种子的决策依据。我们专注于完全采用反馈,其中我们可以观察到每个先前选择的种子的整个级联,以及独立级联模型,其中每个边缘都与扩散影响的独立概率相关联。先前的研究表明,自适应差距存在恒定的上界,用于比较自适应算法与非自适应算法的性能,但用于证明这些上界仅适用于特定的图类,如树内图、树外图和单向二部图。我们的主要结果是对任何图都成立的第一个次线性上界。具体来说,我们证明了自适应差距的上界为∛n+1,其中n为图中的节点数。此外,我们改进了已知的树内序列的上界,从2e/(e-1)≈3.16到2e²/(e²-1)≈2.31。最后,我们研究了α-有界图,这是一类节点度大于2的和不大于α的无向图,并证明了自适应间隙的上界为√α+O(1)。此外,我们证明了在0有界图中,即每个连通分量为一条路径或一个循环的无向图中,自适应间隙不超过3e³/(e³-1)≈3.16。为了证明我们的界限,我们引入了新的技术,将自适应策略与可能符合自身利益的非自适应策略联系起来。
{"title":"Better Bounds on the Adaptivity Gap of Influence Maximization under Full-adoption Feedback","authors":"Gianlorenzo D'angelo, Debashmita Poddar, Cosimo Vinci","doi":"10.1609/aaai.v35i13.17433","DOIUrl":"https://doi.org/10.1609/aaai.v35i13.17433","url":null,"abstract":"In the influence maximization (IM) problem, we are given a social network and a budget k, and we look for a set of k nodes in the network, called seeds, that maximize the expected number of nodes that are reached by an influence cascade generated by the seeds, according to some stochastic model for influence diffusion. Extensive studies have been done on the IM problem, since his definition by Kempe, Kleinberg, and Tardos (2003). However, most of the work focuses on the non-adaptive version of the problem where all the k seed nodes must be selected before that the cascade starts. In this paper we study the adaptive IM, where the nodes are selected sequentially one by one, and the decision on the i-th seed can be based on the observed cascade produced by the first i-1 seeds. We focus on the full-adoption feedback in which we can observe the entire cascade of each previously selected seed and on the independent cascade model where each edge is associated with an independent probability of diffusing influence.\u0000\u0000Previous works showed that there are constant upper bounds on the adaptivity gap, which compares the performance of an adaptive algorithm against a non-adaptive one, but the analyses used to prove these bounds only works for specific graph classes such as in-arborescences, out-arborescences, and one-directional bipartite graphs. Our main result is the first sub-linear upper bound that holds for any graph. Specifically, we show that the adaptivity gap is upper-bounded by ∛n+1, where n is the number of nodes in the graph. Moreover we improve over the known upper bound for in-arborescences from 2e/(e-1)≈3.16 to 2e²/(e²-1)≈2.31. Finally, we study α-bounded graphs, a class of undirected graphs in which the sum of node degrees higher than two is at most α, and show that the adaptivity gap is upper-bounded by √α+O(1). Moreover, we show that in 0-bounded graphs, i.e. undirected graphs in which each connected component is a path or a cycle, the adaptivity gap is at most 3e³/(e³-1)≈3.16.\u0000\u0000To prove our bounds, we introduce new techniques to relate adaptive policies with non-adaptive ones that might be of their own interest.","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"36 1","pages":"103895"},"PeriodicalIF":0.0,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89735086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
DEL-based epistemic planning: Decidability and complexity 基于del的认知规划:可决定性和复杂性
Pub Date : 2020-06-22 DOI: 10.1016/j.artint.2020.103304
Thomas Bolander, Tristan Charrier, S. Pinchinat, François Schwarzentruber
{"title":"DEL-based epistemic planning: Decidability and complexity","authors":"Thomas Bolander, Tristan Charrier, S. Pinchinat, François Schwarzentruber","doi":"10.1016/j.artint.2020.103304","DOIUrl":"https://doi.org/10.1016/j.artint.2020.103304","url":null,"abstract":"","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"19 1","pages":"103304"},"PeriodicalIF":0.0,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81729736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation 从组合优化的上下文示例中学习MAX-SAT
Pub Date : 2020-04-03 DOI: 10.1609/AAAI.V34I04.5877
Mohit Kumar, Samuel Kolb, Stefano Teso, L. D. Raedt
Combinatorial optimization problems are ubiquitous in artificial intelligence. Designing the underlying models, however, requires substantial expertise, which is a limiting factor in practice. The models typically consist of hard and soft constraints, or combine hard constraints with a preference function. We introduce a novel setting for learning combinatorial optimisation problems from contextual examples. These positive and negative examples show – in a particular context – whether the solutions are good enough or not. We develop our framework using the MAX-SAT formalism. We provide learnability results within the realizable and agnostic settings, as well as hassle, an implementation based on syntax-guided synthesis and showcase its promise on recovering synthetic and benchmark instances from examples.
组合优化问题在人工智能中普遍存在。然而,设计底层模型需要大量的专业知识,这在实践中是一个限制因素。这些模型通常由硬约束和软约束组成,或者将硬约束与偏好函数结合起来。我们引入了一个从上下文示例中学习组合优化问题的新设置。这些正面和负面的例子表明——在特定的情况下——解决方案是否足够好。我们使用MAX-SAT形式来开发我们的框架。我们在可实现和不可知的设置中提供了可学习性结果,以及基于语法引导的合成的实现,并展示了它在从示例中恢复合成和基准实例方面的承诺。
{"title":"Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation","authors":"Mohit Kumar, Samuel Kolb, Stefano Teso, L. D. Raedt","doi":"10.1609/AAAI.V34I04.5877","DOIUrl":"https://doi.org/10.1609/AAAI.V34I04.5877","url":null,"abstract":"Combinatorial optimization problems are ubiquitous in artificial intelligence. Designing the underlying models, however, requires substantial expertise, which is a limiting factor in practice. The models typically consist of hard and soft constraints, or combine hard constraints with a preference function. We introduce a novel setting for learning combinatorial optimisation problems from contextual examples. These positive and negative examples show – in a particular context – whether the solutions are good enough or not. We develop our framework using the MAX-SAT formalism. We provide learnability results within the realizable and agnostic settings, as well as hassle, an implementation based on syntax-guided synthesis and showcase its promise on recovering synthetic and benchmark instances from examples.","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"126 1","pages":"103794"},"PeriodicalIF":0.0,"publicationDate":"2020-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87678968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
期刊
Artif. Intell.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1