Pub Date : 2013-09-01DOI: 10.2174/2211552802999140131105947
Sesquile Ramon, Collynn F Woeller, Richard P Phipps
Inflammation is implicated in the progression of multiple types of cancers including lung, colorectal, breast and hematological malignancies. Cyclooxygenases (Cox) -1 and -2 are important enzymes involved in the regulation of inflammation. Elevated Cox-2 expression is associated with a poor cancer prognosis. Hematological malignancies, which are among the top 10 most predominant cancers in the USA, express high levels of Cox-2. Current therapeutic approaches against hematological malignances are insufficient as many patients develop resistance or relapse. Therefore, targeting Cox-2 holds promise as a therapeutic approach to treat hematological malignancies. NSAIDs and Cox-2 selective inhibitors are anti-inflammatory drugs that decrease prostaglandin and thromboxane production while promoting the synthesis of specialized proresolving mediators. Here, we review the evidence regarding the applicability of NSAIDs, such as aspirin, as well as Cox-2 specific inhibitors, to treat hematological malignancies. Furthermore, we discuss how FDA-approved Cox inhibitors can be used as anti-cancer drugs alone or in combination with existing chemotherapeutic treatments.
{"title":"The influence of Cox-2 and bioactive lipids on hematological cancers.","authors":"Sesquile Ramon, Collynn F Woeller, Richard P Phipps","doi":"10.2174/2211552802999140131105947","DOIUrl":"https://doi.org/10.2174/2211552802999140131105947","url":null,"abstract":"<p><p>Inflammation is implicated in the progression of multiple types of cancers including lung, colorectal, breast and hematological malignancies. Cyclooxygenases (Cox) -1 and -2 are important enzymes involved in the regulation of inflammation. Elevated Cox-2 expression is associated with a poor cancer prognosis. Hematological malignancies, which are among the top 10 most predominant cancers in the USA, express high levels of Cox-2. Current therapeutic approaches against hematological malignances are insufficient as many patients develop resistance or relapse. Therefore, targeting Cox-2 holds promise as a therapeutic approach to treat hematological malignancies. NSAIDs and Cox-2 selective inhibitors are anti-inflammatory drugs that decrease prostaglandin and thromboxane production while promoting the synthesis of specialized proresolving mediators. Here, we review the evidence regarding the applicability of NSAIDs, such as aspirin, as well as Cox-2 specific inhibitors, to treat hematological malignancies. Furthermore, we discuss how FDA-approved Cox inhibitors can be used as anti-cancer drugs alone or in combination with existing chemotherapeutic treatments.</p>","PeriodicalId":87239,"journal":{"name":"Current angiogenesis","volume":"2 2","pages":"135-142"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039176/pdf/nihms582117.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32387232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01DOI: 10.2174/22115528113020020001
Mara Fernandes Ribeiro, Hongyan Zhu, Ronald W Millard, Guo-Chang Fan
Exosomes, a group of small vesicles (30-100 nm), originate when the inward budding of the endosomal membrane forms multivesicular bodies (MVBs). Exosomes are released into the extracellular space when the MVBs fuse with the plasma membrane. Numerous studies have indicated that exosomes play critical roles in mediating cell-to-cell communication. Also, exosomes are believed to possess a powerful capacity in regulating cell survival/death, inflammation and tumor metastasis, depending on the particular array of molecules contained within a particular population of exosomes. This mini-review will summarize dual roles of exosomes derived from different types of cells (i.e. endothelial cells, tumor cells, platelets, bone-marrow stem cells, cardiomyocytes, myocardial progenitor cells and among others) in endothelial cell proliferation, migration and tube-like formation. In particular, this review will focus on the therapeutic potential of exosomes as a natural nano-particle for delivering pro-/anti-angiogenic factors (proteins, mRNAs and microRNAs) into endothelial cells.
{"title":"Exosomes Function in Pro- and Anti-Angiogenesis.","authors":"Mara Fernandes Ribeiro, Hongyan Zhu, Ronald W Millard, Guo-Chang Fan","doi":"10.2174/22115528113020020001","DOIUrl":"https://doi.org/10.2174/22115528113020020001","url":null,"abstract":"<p><p>Exosomes, a group of small vesicles (30-100 nm), originate when the inward budding of the endosomal membrane forms multivesicular bodies (MVBs). Exosomes are released into the extracellular space when the MVBs fuse with the plasma membrane. Numerous studies have indicated that exosomes play critical roles in mediating cell-to-cell communication. Also, exosomes are believed to possess a powerful capacity in regulating cell survival/death, inflammation and tumor metastasis, depending on the particular array of molecules contained within a particular population of exosomes. This mini-review will summarize dual roles of exosomes derived from different types of cells (i.e. endothelial cells, tumor cells, platelets, bone-marrow stem cells, cardiomyocytes, myocardial progenitor cells and among others) in endothelial cell proliferation, migration and tube-like formation. In particular, this review will focus on the therapeutic potential of exosomes as a natural nano-particle for delivering pro-/anti-angiogenic factors (proteins, mRNAs and microRNAs) into endothelial cells.</p>","PeriodicalId":87239,"journal":{"name":"Current angiogenesis","volume":"2 1","pages":"54-59"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217212/pdf/nihms552357.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32795405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-12-01DOI: 10.2174/2211552811201040299
Nnenna A Finn, Charles D Searles
Angiogenesis, the process by which new blood vessels are formed, is a critical phenomenon that is activated during various stages of mammalian development. MicroRNAs (miRNAs), a class of short, single stranded, non-coding RNAs, are recognized as important regulators of angiogenesis, and the role of intracellular miRNAs in modulating angiogenesis signaling has been identified. The recent discovery of extracellular and circulating miRNAs has sparked new questions regarding their potential in modulating angiogenesis signaling not only within cells but also between cells. In this review, we discuss the characteristics of intracellular and extracellular miRNAs and decipher the potential functional roles for these molecules in regard to the angiogenic process. We summarize what is currently known about circulating miRNAs in distinct clinical populations and discuss evidence that implicates extracellular miRNAs as novel mediators of angiogenesis-associated intercellular signaling. Lastly, we offer a new perspective on the functional role of vesicle-encapsulated circulating miRNA in modulating angiogenesis signaling pathways.
{"title":"Intracellular and Extracellular miRNAs in Regulation of Angiogenesis Signaling.","authors":"Nnenna A Finn, Charles D Searles","doi":"10.2174/2211552811201040299","DOIUrl":"10.2174/2211552811201040299","url":null,"abstract":"<p><p>Angiogenesis, the process by which new blood vessels are formed, is a critical phenomenon that is activated during various stages of mammalian development. MicroRNAs (miRNAs), a class of short, single stranded, non-coding RNAs, are recognized as important regulators of angiogenesis, and the role of intracellular miRNAs in modulating angiogenesis signaling has been identified. The recent discovery of extracellular and circulating miRNAs has sparked new questions regarding their potential in modulating angiogenesis signaling not only within cells but also between cells. In this review, we discuss the characteristics of intracellular and extracellular miRNAs and decipher the potential functional roles for these molecules in regard to the angiogenic process. We summarize what is currently known about circulating miRNAs in distinct clinical populations and discuss evidence that implicates extracellular miRNAs as novel mediators of angiogenesis-associated intercellular signaling. Lastly, we offer a new perspective on the functional role of vesicle-encapsulated circulating miRNA in modulating angiogenesis signaling pathways.</p>","PeriodicalId":87239,"journal":{"name":"Current angiogenesis","volume":"4 102","pages":"299-307"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729401/pdf/nihms488168.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31631442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-09-01DOI: 10.2174/2211552811201030169
Benjamin Schmidt, Hae-June Lee, Sandra Ryeom, Sam S Yoon
Radiation therapy or the combination of radiation and chemotherapy is an important component in the local control of many tumor types including glioblastoma, rectal cancer, and pancreatic cancer. The addition of anti-angiogenic agents to chemotherapy is now standard treatment for a variety of metastatic cancers including colorectal cancer and non-squamous cell lung cancer. Anti-angiogenic agents can increase the efficacy of radiation or chemoradiation for primary tumors through mechanisms such as vascular normalization and augmentation of endothelial cell injury. The most commonly used anti-angiogenic drug, bevacizumab, is a humanized monoclonal antibody that binds and neutralizes vascular endothelial growth factor A (VEGF-A). Dozens of preclinical studies nearly uniformly demonstrate that inhibition of VEGF-A or its receptors potentiates the effects of radiation therapy against solid tumors, and this potentiation is generally independent of the type or schedule of radiation and timing of VEGF-A inhibitor delivery. There are now several clinical trials combining bevacizumab with radiation or chemoradiation for the local control of various primary, recurrent, and metastatic tumors, and many of these early trials show encouraging results. Some added toxicities occur with the delivery of bevacizumab but common toxicities such as hypertension and proteinuria are generally easily managed while severe toxicities are rare. In the future, bevacizumab and other anti-angiogenic agents may become common additions to radiation and chemoradiation regimens for tumors that are difficult to locally control.
{"title":"Combining Bevacizumab with Radiation or Chemoradiation for Solid Tumors: A Review of the Scientific Rationale, and Clinical Trials.","authors":"Benjamin Schmidt, Hae-June Lee, Sandra Ryeom, Sam S Yoon","doi":"10.2174/2211552811201030169","DOIUrl":"https://doi.org/10.2174/2211552811201030169","url":null,"abstract":"<p><p>Radiation therapy or the combination of radiation and chemotherapy is an important component in the local control of many tumor types including glioblastoma, rectal cancer, and pancreatic cancer. The addition of anti-angiogenic agents to chemotherapy is now standard treatment for a variety of metastatic cancers including colorectal cancer and non-squamous cell lung cancer. Anti-angiogenic agents can increase the efficacy of radiation or chemoradiation for primary tumors through mechanisms such as vascular normalization and augmentation of endothelial cell injury. The most commonly used anti-angiogenic drug, bevacizumab, is a humanized monoclonal antibody that binds and neutralizes vascular endothelial growth factor A (VEGF-A). Dozens of preclinical studies nearly uniformly demonstrate that inhibition of VEGF-A or its receptors potentiates the effects of radiation therapy against solid tumors, and this potentiation is generally independent of the type or schedule of radiation and timing of VEGF-A inhibitor delivery. There are now several clinical trials combining bevacizumab with radiation or chemoradiation for the local control of various primary, recurrent, and metastatic tumors, and many of these early trials show encouraging results. Some added toxicities occur with the delivery of bevacizumab but common toxicities such as hypertension and proteinuria are generally easily managed while severe toxicities are rare. In the future, bevacizumab and other anti-angiogenic agents may become common additions to radiation and chemoradiation regimens for tumors that are difficult to locally control.</p>","PeriodicalId":87239,"journal":{"name":"Current angiogenesis","volume":"1 3","pages":"169-179"},"PeriodicalIF":0.0,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069862/pdf/nihms519809.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32464980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-06-01DOI: 10.2174/2211552811201020133
James M Dunleavey, Andrew C Dudley
As in normal tissues, solid tumors depend on vascular networks to supply blood, oxygen, and nutrients. Tumor blood vessels are formed by common processes of neovascularization for example endothelial sprouting. However, some tumors have alternative and unexpected mechanisms of neovascularization at their disposal. In a process termed "vascular mimicry," tumors create their own, tumor cell-lined channels for fluid transport independent of typical modes of angiogenesis. These tumor cell-lined conduits may express endothelial-selective markers and anti-coagulant factors which allow for anastamosis with host endothelium. In this review, we explore the current status of vascular mimicry research, highlighting recent evidence which strengthens the hypothesis for this unusual ability of tumor cells. Furthermore, we address the theoretical possibility that vascular mimicry provides a mechanism whereby tumors could escape anti-angiogenic therapies.
{"title":"Vascular Mimicry: Concepts and Implications for Anti-Angiogenic Therapy.","authors":"James M Dunleavey, Andrew C Dudley","doi":"10.2174/2211552811201020133","DOIUrl":"https://doi.org/10.2174/2211552811201020133","url":null,"abstract":"<p><p>As in normal tissues, solid tumors depend on vascular networks to supply blood, oxygen, and nutrients. Tumor blood vessels are formed by common processes of neovascularization for example endothelial sprouting. However, some tumors have alternative and unexpected mechanisms of neovascularization at their disposal. In a process termed \"vascular mimicry,\" tumors create their own, tumor cell-lined channels for fluid transport independent of typical modes of angiogenesis. These tumor cell-lined conduits may express endothelial-selective markers and anti-coagulant factors which allow for anastamosis with host endothelium. In this review, we explore the current status of vascular mimicry research, highlighting recent evidence which strengthens the hypothesis for this unusual ability of tumor cells. Furthermore, we address the theoretical possibility that vascular mimicry provides a mechanism whereby tumors could escape anti-angiogenic therapies.</p>","PeriodicalId":87239,"journal":{"name":"Current angiogenesis","volume":"1 2","pages":"133-138"},"PeriodicalIF":0.0,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982611/pdf/nihms453528.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32259967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-02-01Epub Date: 2012-03-28DOI: 10.2174/2211552811201010052
Cassandra Henry, Ariel Lopez-Chavez, Laura P Stabile, Jill M Siegfried
The hepatocyte growth factor (HGF)/c-Met signaling pathway mediates angiogenesis. We have previously reported that airway expression of a human HGF transgene (HGF TG) produced mice that were more susceptible to lung tumorigenesis induced by 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK). Here we show untreated HGF TG mice display enhanced vascularization (40 wks) and enhanced lymph vessel formation (20 wks) in the lungs compared to wild-type (WT) littermates, as ascertained by microvessel density. We profiled mRNA expression from HGF TG and WT mice for genes involved in angiogenesis. We consistently found significant decreases in expression of the VEGF family of angiogenic genes, including Vegfa, Vegfb, Vegfc, and Vegfd / Figf. Decreases were confirmed in whole lung protein extracts by immunoblot. Similar patterns of down-regulation were observed at 10, 20, and 40 wks of age. Vandetanib, an inhibitor of VEGFR2 and VEGFR3, did not prevent the increase in microvessel density observed in HGF TG mice. Reduction in VEGF pathway genes was also detected in lung tumors derived from NNK-treated HGF TG mice. HGF TG lung tumors also showed increased expression of five Cxcl family genes including Cxcl1 and Cxcl2 (murine forms of IL8). These results suggest increased vascularization produced by airway over-expression of HGF occurs through direct activation of c-Met on endothelial cells, rather than induction of VEGF pathways. Elevated HGF may also increase expression of inflammatory mediators that contribute to lung tumor progression.
{"title":"HGF Airway Over-expression Leads to Enhanced Pulmonary Vascularization without Induction of VEGF.","authors":"Cassandra Henry, Ariel Lopez-Chavez, Laura P Stabile, Jill M Siegfried","doi":"10.2174/2211552811201010052","DOIUrl":"https://doi.org/10.2174/2211552811201010052","url":null,"abstract":"<p><p>The hepatocyte growth factor (HGF)/c-Met signaling pathway mediates angiogenesis. We have previously reported that airway expression of a human HGF transgene (HGF TG) produced mice that were more susceptible to lung tumorigenesis induced by 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK). Here we show untreated HGF TG mice display enhanced vascularization (40 wks) and enhanced lymph vessel formation (20 wks) in the lungs compared to wild-type (WT) littermates, as ascertained by microvessel density. We profiled mRNA expression from HGF TG and WT mice for genes involved in angiogenesis. We consistently found significant decreases in expression of the VEGF family of angiogenic genes, including <i>Vegfa</i>, <i>Vegfb, Vegfc</i>, and <i>Vegfd / Figf</i>. Decreases were confirmed in whole lung protein extracts by immunoblot. Similar patterns of down-regulation were observed at 10, 20, and 40 wks of age. Vandetanib, an inhibitor of VEGFR2 and VEGFR3, did not prevent the increase in microvessel density observed in HGF TG mice. Reduction in VEGF pathway genes was also detected in lung tumors derived from NNK-treated HGF TG mice. HGF TG lung tumors also showed increased expression of five Cxcl family genes including <i>Cxcl1</i> and <i>Cxcl2</i> (murine forms of IL8). These results suggest increased vascularization produced by airway over-expression of HGF occurs through direct activation of c-Met on endothelial cells, rather than induction of VEGF pathways. Elevated HGF may also increase expression of inflammatory mediators that contribute to lung tumor progression.</p>","PeriodicalId":87239,"journal":{"name":"Current angiogenesis","volume":"1 1","pages":"52-63"},"PeriodicalIF":0.0,"publicationDate":"2012-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/2211552811201010052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25351484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}