Pub Date : 2010-06-03DOI: 10.1186/1753-4631-4-S1-S3
Giovanni Vecchiato, Laura Astolfi, Febo Cincotti, Fabrizio De Vico Fallani, Domenica M Sorrentino, Donatella Mattia, Serenella Salinari, Luigi Bianchi, Jlena Toppi, Fabio Aloise, Fabio Babiloni
Background: In the present research we were interested to study the cerebral activity of a group of healthy subjects during the observation a documentary intermingled by a series of TV advertisements. In particular, we desired to examine whether Public Service Announcements (PSAs) are able to elicit a different pattern of activity, when compared with a different class of commercials, and correlate it with the memorization of the showed stimuli, as resulted from a following subject's verbal interview.
Methods: We recorded the EEG signals from a group of 15 healthy subjects and applied the High Resolution EEG techniques in order to estimate and map their Power Spectral Density (PSD) on a realistic cortical model. The single subjects' activities have been z-score transformed and then grouped to define four different datasets, related to subjects who remembered and forgotten the PSAs and to subjects who remembered and forgotten cars commercials (CAR) respectively, which we contrasted to investigate cortical areas involved in this encoding process.
Results: The results we here present show that the cortical activity elicited during the observation of the TV commercials that were remembered (RMB) is higher and localized in the left frontal brain areas when compared to the activity elicited during the vision of the TV commercials that were forgotten (FRG) in theta and gamma bands for both categories of advertisements (PSAs and CAR). Moreover, the cortical maps associated with the PSAs also show an increase of activity in the alpha and beta band.
Conclusions: In conclusion, the TV advertisements that will be remembered by the experimental population have increased their cerebral activity, mainly in the left hemisphere. These results seem to be congruent with and well inserted in the already existing literature, on this topic, related to the HERA model. The different pattern of activity in different frequency bands elicited by the observation of PSAs may be justified by the existence of additional cortical networks processing these kind of audiovisual stimuli. Further research with an extended set of subjects will be necessary to further validate the observations reported in this paper.
{"title":"Patterns of cortical activity during the observation of Public Service Announcements and commercial advertisings.","authors":"Giovanni Vecchiato, Laura Astolfi, Febo Cincotti, Fabrizio De Vico Fallani, Domenica M Sorrentino, Donatella Mattia, Serenella Salinari, Luigi Bianchi, Jlena Toppi, Fabio Aloise, Fabio Babiloni","doi":"10.1186/1753-4631-4-S1-S3","DOIUrl":"https://doi.org/10.1186/1753-4631-4-S1-S3","url":null,"abstract":"<p><strong>Background: </strong>In the present research we were interested to study the cerebral activity of a group of healthy subjects during the observation a documentary intermingled by a series of TV advertisements. In particular, we desired to examine whether Public Service Announcements (PSAs) are able to elicit a different pattern of activity, when compared with a different class of commercials, and correlate it with the memorization of the showed stimuli, as resulted from a following subject's verbal interview.</p><p><strong>Methods: </strong>We recorded the EEG signals from a group of 15 healthy subjects and applied the High Resolution EEG techniques in order to estimate and map their Power Spectral Density (PSD) on a realistic cortical model. The single subjects' activities have been z-score transformed and then grouped to define four different datasets, related to subjects who remembered and forgotten the PSAs and to subjects who remembered and forgotten cars commercials (CAR) respectively, which we contrasted to investigate cortical areas involved in this encoding process.</p><p><strong>Results: </strong>The results we here present show that the cortical activity elicited during the observation of the TV commercials that were remembered (RMB) is higher and localized in the left frontal brain areas when compared to the activity elicited during the vision of the TV commercials that were forgotten (FRG) in theta and gamma bands for both categories of advertisements (PSAs and CAR). Moreover, the cortical maps associated with the PSAs also show an increase of activity in the alpha and beta band.</p><p><strong>Conclusions: </strong>In conclusion, the TV advertisements that will be remembered by the experimental population have increased their cerebral activity, mainly in the left hemisphere. These results seem to be congruent with and well inserted in the already existing literature, on this topic, related to the HERA model. The different pattern of activity in different frequency bands elicited by the observation of PSAs may be justified by the existence of additional cortical networks processing these kind of audiovisual stimuli. Further research with an extended set of subjects will be necessary to further validate the observations reported in this paper.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 Suppl 1 ","pages":"S3"},"PeriodicalIF":0.0,"publicationDate":"2010-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-S1-S3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29031091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: It has been discussed that neural phase-synchrony across distant cortical areas (or global phase-synchrony) was correlated with various aspects of consciousness. The generating process of the synchrony, however, remains largely unknown. As a first step, we investigate transient process of global phase-synchrony, focusing on phase-synchronized clusters. We hypothesize that the phase-synchronized clusters are dynamically organized before global synchrony and clustering patterns depend on perceptual conditions.
Methods: In an EEG study, Kitajo reported that phase-synchrony across distant cortical areas was selectively enhanced by top-down attention around 4 Hz in Necker cube perception. Here, we further analyzed the phase-synchronized clusters using hierarchical clustering which sequentially binds up the nearest electrodes based on similarity of phase locking between the cortical signals. First, we classified dominant components of the phase-synchronized clusters over time. We then investigated how the phase-synchronized clusters change with time, focusing on their size and spatial structure.
Results: Phase-locked clusters organized a stable spatial pattern common to the perceptual conditions. In addition, the phase-locked clusters were modulated transiently depending on the perceptual conditions and the time from the perceptual switch. When top-down attention succeeded in switching perception as subjects intended, independent clusters at frontal and occipital areas grew to connect with each other around the time of the perceptual switch. However, the clusters in the occipital and left parietal areas remained divided when top-down attention failed in switching perception. When no primary biases exist, the cluster in the occipital area grew to its maximum at the time of the perceptual switch within the occipital area.
Conclusions: Our study confirmed the existence of stable phase-synchronized clusters. Furthermore, these clusters were transiently connected with each other. The connecting pattern depended on subjects' internal states. These results suggest that subjects' attentional states are associated with distinct spatio-temporal patterns of the phase-locked clusters.
{"title":"Transient process of cortical activity during Necker cube perception: from local clusters to global synchrony.","authors":"Daisuke Shimaoka, Keiichi Kitajo, Kunihiko Kaneko, Yoko Yamaguchi","doi":"10.1186/1753-4631-4-S1-S7","DOIUrl":"https://doi.org/10.1186/1753-4631-4-S1-S7","url":null,"abstract":"<p><strong>Background: </strong>It has been discussed that neural phase-synchrony across distant cortical areas (or global phase-synchrony) was correlated with various aspects of consciousness. The generating process of the synchrony, however, remains largely unknown. As a first step, we investigate transient process of global phase-synchrony, focusing on phase-synchronized clusters. We hypothesize that the phase-synchronized clusters are dynamically organized before global synchrony and clustering patterns depend on perceptual conditions.</p><p><strong>Methods: </strong>In an EEG study, Kitajo reported that phase-synchrony across distant cortical areas was selectively enhanced by top-down attention around 4 Hz in Necker cube perception. Here, we further analyzed the phase-synchronized clusters using hierarchical clustering which sequentially binds up the nearest electrodes based on similarity of phase locking between the cortical signals. First, we classified dominant components of the phase-synchronized clusters over time. We then investigated how the phase-synchronized clusters change with time, focusing on their size and spatial structure.</p><p><strong>Results: </strong>Phase-locked clusters organized a stable spatial pattern common to the perceptual conditions. In addition, the phase-locked clusters were modulated transiently depending on the perceptual conditions and the time from the perceptual switch. When top-down attention succeeded in switching perception as subjects intended, independent clusters at frontal and occipital areas grew to connect with each other around the time of the perceptual switch. However, the clusters in the occipital and left parietal areas remained divided when top-down attention failed in switching perception. When no primary biases exist, the cluster in the occipital area grew to its maximum at the time of the perceptual switch within the occipital area.</p><p><strong>Conclusions: </strong>Our study confirmed the existence of stable phase-synchronized clusters. Furthermore, these clusters were transiently connected with each other. The connecting pattern depended on subjects' internal states. These results suggest that subjects' attentional states are associated with distinct spatio-temporal patterns of the phase-locked clusters.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 Suppl 1 ","pages":"S7"},"PeriodicalIF":0.0,"publicationDate":"2010-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-S1-S7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29031095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-03DOI: 10.1186/1753-4631-4-S1-S2
Olivera B Sveljo, Katarina M Koprivsek, Milos A Lucic, Mladen B Prvulovic, Milka Culic
Background: Pattern of brain asymmetries varies with handedness, gender, age, and with variety of genetic and social factors. Large-scale neuroimaging analyses can optimize the detection of asymmetric features and confirm the factors that might modulate pattern of brain asymmetries. We attempted to evaluate eventual differences between genders in hemodynamic responses to a simple language task.
Methods: 12 healthy right-handed volunteers (age 24-46), 6 men and 6 women underwent fMRI scanning while performing the simple cognitive - language processing task - silent number counting in Serbian.
Results: Group analysis of hemodynamic responses shows activation in expected brain language areas of inferior frontal gyrus (IFG) and superior temporal gyrus (STG) in both hemispheres. In the male group, aside from dedicated language areas in IFG and STG, activation was noted in right frontal region and interhemispheric supplementary motor area. On the other hand, in the female group, besides activation in dedicated language areas, activation was noted, in right hippocampus, limbic brain and cerebellum bilaterally.
Conclusions: Our results on differences in silent counting by means of fMRI suggest that those differences may be based on different brain pattern activation in men and women. The relation between performance, strategies and regional brain activation should be the topic of further studies when considering not only gender differences in language processing but also differences that may be attributed to the variations in the task details, stimuli, and the stimulus presentation methods.
{"title":"Gender differences in brain areas involved in silent counting by means of fMRI.","authors":"Olivera B Sveljo, Katarina M Koprivsek, Milos A Lucic, Mladen B Prvulovic, Milka Culic","doi":"10.1186/1753-4631-4-S1-S2","DOIUrl":"https://doi.org/10.1186/1753-4631-4-S1-S2","url":null,"abstract":"<p><strong>Background: </strong>Pattern of brain asymmetries varies with handedness, gender, age, and with variety of genetic and social factors. Large-scale neuroimaging analyses can optimize the detection of asymmetric features and confirm the factors that might modulate pattern of brain asymmetries. We attempted to evaluate eventual differences between genders in hemodynamic responses to a simple language task.</p><p><strong>Methods: </strong>12 healthy right-handed volunteers (age 24-46), 6 men and 6 women underwent fMRI scanning while performing the simple cognitive - language processing task - silent number counting in Serbian.</p><p><strong>Results: </strong>Group analysis of hemodynamic responses shows activation in expected brain language areas of inferior frontal gyrus (IFG) and superior temporal gyrus (STG) in both hemispheres. In the male group, aside from dedicated language areas in IFG and STG, activation was noted in right frontal region and interhemispheric supplementary motor area. On the other hand, in the female group, besides activation in dedicated language areas, activation was noted, in right hippocampus, limbic brain and cerebellum bilaterally.</p><p><strong>Conclusions: </strong>Our results on differences in silent counting by means of fMRI suggest that those differences may be based on different brain pattern activation in men and women. The relation between performance, strategies and regional brain activation should be the topic of further studies when considering not only gender differences in language processing but also differences that may be attributed to the variations in the task details, stimuli, and the stimulus presentation methods.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 Suppl 1 ","pages":"S2"},"PeriodicalIF":0.0,"publicationDate":"2010-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-S1-S2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29031090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-03DOI: 10.1186/1753-4631-4-S1-S4
Narayan P Subramaniyam, Outi Rm Väisänen, Katrina E Wendel, Jaakko Av Malmivuo
Background: The electroencephalography (EEG) is an attractive and a simple technique to measure the brain activity. It is attractive due its excellent temporal resolution and simple due to its non-invasiveness and sensor design. However, the spatial resolution of EEG is reduced due to the low conducting skull. In this paper, we compute the potential distribution over the closed surface covering the brain (cortex) from the EEG scalp potential. We compare two methods - L-curve and generalised cross validation (GCV) used to obtain the regularisation parameter and also investigate the feasibility in applying such techniques to N170 component of the visually evoked potential (VEP) data.
Methods: Using the image data set of the visible human man (VHM), a finite difference method (FDM) model of the head was constructed. The EEG dataset (256-channel) used was the N170 component of the VEP. A forward transfer matrix relating the cortical potential to the scalp potential was obtained. Using Tikhonov regularisation, the potential distribution over the cortex was obtained.
Results: The cortical potential distribution for three subjects was solved using both L-curve and GCV method. A total of 18 cortical potential distributions were obtained (3 subjects with three stimuli each - fearful face, neutral face, control objects).
Conclusions: The GCV method is a more robust method compared to L-curve to find the optimal regularisation parameter. Cortical potential imaging is a reliable method to obtain the potential distribution over cortex for VEP data.
{"title":"Cortical potential imaging using L-curve and GCV method to choose the regularisation parameter.","authors":"Narayan P Subramaniyam, Outi Rm Väisänen, Katrina E Wendel, Jaakko Av Malmivuo","doi":"10.1186/1753-4631-4-S1-S4","DOIUrl":"https://doi.org/10.1186/1753-4631-4-S1-S4","url":null,"abstract":"<p><strong>Background: </strong>The electroencephalography (EEG) is an attractive and a simple technique to measure the brain activity. It is attractive due its excellent temporal resolution and simple due to its non-invasiveness and sensor design. However, the spatial resolution of EEG is reduced due to the low conducting skull. In this paper, we compute the potential distribution over the closed surface covering the brain (cortex) from the EEG scalp potential. We compare two methods - L-curve and generalised cross validation (GCV) used to obtain the regularisation parameter and also investigate the feasibility in applying such techniques to N170 component of the visually evoked potential (VEP) data.</p><p><strong>Methods: </strong>Using the image data set of the visible human man (VHM), a finite difference method (FDM) model of the head was constructed. The EEG dataset (256-channel) used was the N170 component of the VEP. A forward transfer matrix relating the cortical potential to the scalp potential was obtained. Using Tikhonov regularisation, the potential distribution over the cortex was obtained.</p><p><strong>Results: </strong>The cortical potential distribution for three subjects was solved using both L-curve and GCV method. A total of 18 cortical potential distributions were obtained (3 subjects with three stimuli each - fearful face, neutral face, control objects).</p><p><strong>Conclusions: </strong>The GCV method is a more robust method compared to L-curve to find the optimal regularisation parameter. Cortical potential imaging is a reliable method to obtain the potential distribution over cortex for VEP data.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 Suppl 1 ","pages":"S4"},"PeriodicalIF":0.0,"publicationDate":"2010-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-S1-S4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29031092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-03DOI: 10.1186/1753-4631-4-S1-S12
Kalliopi Kostelidou, Fabio Babiloni
A COST Action is a consortium of -mainly- European scientists (but open to international cooperation) working on a common research area, with the same subject; COST provides funding to the Actions for networking and dissemination activities, thus the participating scientists must have secured research funding from other national or European sources. COST funding is in the scale of approximately 100 kEuros per year and in this vein, it is often criticized both in that it does not fund research and the core science and in that its funding is 'limited'. However, COST with its instruments is an integral pillar of the European Research Area, and it is through its mission that a variety of aspects of the research environment, fundamental to the success of the research, are catered for; these include scientific networking, collaboration/exchange/training and dissemination activities. Through fast procedures, proposals are evaluated and approved for funding in less than one year from submission date and Actions become operational immediately, managed on flexible management. In this way, COST contributes to reducing the fragmentation in European research investments, while opening the European Research Area to cooperation worldwide. COST Actions have an excellent record of building the critical mass for follow up activities in the EU FP or other similarly competitive programmes.
{"title":"Why bother with a COST Action? The benefits of networking in science.","authors":"Kalliopi Kostelidou, Fabio Babiloni","doi":"10.1186/1753-4631-4-S1-S12","DOIUrl":"https://doi.org/10.1186/1753-4631-4-S1-S12","url":null,"abstract":"<p><p>A COST Action is a consortium of -mainly- European scientists (but open to international cooperation) working on a common research area, with the same subject; COST provides funding to the Actions for networking and dissemination activities, thus the participating scientists must have secured research funding from other national or European sources. COST funding is in the scale of approximately 100 kEuros per year and in this vein, it is often criticized both in that it does not fund research and the core science and in that its funding is 'limited'. However, COST with its instruments is an integral pillar of the European Research Area, and it is through its mission that a variety of aspects of the research environment, fundamental to the success of the research, are catered for; these include scientific networking, collaboration/exchange/training and dissemination activities. Through fast procedures, proposals are evaluated and approved for funding in less than one year from submission date and Actions become operational immediately, managed on flexible management. In this way, COST contributes to reducing the fragmentation in European research investments, while opening the European Research Area to cooperation worldwide. COST Actions have an excellent record of building the critical mass for follow up activities in the EU FP or other similarly competitive programmes.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 Suppl 1 ","pages":"S12"},"PeriodicalIF":0.0,"publicationDate":"2010-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-S1-S12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29031089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-03DOI: 10.1186/1753-4631-4-S1-S9
Arvid Lundervold
Background: During the last years, functional magnetic resonance imaging (fMRI) of the brain has been introduced as a new tool to measure consciousness, both in a clinical setting and in a basic neurocognitive research. Moreover, advanced mathematical methods and theories have arrived the field of fMRI (e.g. computational neuroimaging), and functional and structural brain connectivity can now be assessed non-invasively.
Results: The present work deals with a pluralistic approach to "consciousness'', where we connect theory and tools from three quite different disciplines: (1) philosophy of mind (emergentism and global workspace theory), (2) functional neuroimaging acquisitions, and (3) theory of deterministic and statistical neurodynamics - in particular the Wilson-Cowan model and stochastic resonance.
Conclusions: Based on recent experimental and theoretical work, we believe that the study of large-scale neuronal processes (activity fluctuations, state transitions) that goes on in the living human brain while examined with functional MRI during "resting state", can deepen our understanding of graded consciousness in a clinical setting, and clarify the concept of "consiousness" in neurocognitive and neurophilosophy research.
{"title":"On consciousness, resting state fMRI, and neurodynamics.","authors":"Arvid Lundervold","doi":"10.1186/1753-4631-4-S1-S9","DOIUrl":"https://doi.org/10.1186/1753-4631-4-S1-S9","url":null,"abstract":"<p><strong>Background: </strong>During the last years, functional magnetic resonance imaging (fMRI) of the brain has been introduced as a new tool to measure consciousness, both in a clinical setting and in a basic neurocognitive research. Moreover, advanced mathematical methods and theories have arrived the field of fMRI (e.g. computational neuroimaging), and functional and structural brain connectivity can now be assessed non-invasively.</p><p><strong>Results: </strong>The present work deals with a pluralistic approach to \"consciousness'', where we connect theory and tools from three quite different disciplines: (1) philosophy of mind (emergentism and global workspace theory), (2) functional neuroimaging acquisitions, and (3) theory of deterministic and statistical neurodynamics - in particular the Wilson-Cowan model and stochastic resonance.</p><p><strong>Conclusions: </strong>Based on recent experimental and theoretical work, we believe that the study of large-scale neuronal processes (activity fluctuations, state transitions) that goes on in the living human brain while examined with functional MRI during \"resting state\", can deepen our understanding of graded consciousness in a clinical setting, and clarify the concept of \"consiousness\" in neurocognitive and neurophilosophy research.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 Suppl 1 ","pages":"S9"},"PeriodicalIF":0.0,"publicationDate":"2010-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-S1-S9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29032776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-03DOI: 10.1186/1753-4631-4-S1-S11
Andreas A Ioannides, Peter Bc Fenwick, Elina Pitri, Lichan Liu
Background: Identifying eye movement related areas in the frontal lobe has a long history, with microstimulation in monkeys producing the most clear-cut results. For humans, however, there is still no consensus about the location and the extent of the frontal eye field (FEF). There is also no simple non-invasive method for unambiguously defining the FEF in individual subjects, a prerequisite for clinical applications. Here we explore the use of magnetoencephalography (MEG) for the non-invasive identification and characterization of FEF activity in an individual subject.
Methods: We mapped human brain activity before, during and after saccades by applying tomographic analysis to MEG data. Statistical parametric maps and circular statistics produced plausible FEF loci, but no unambiguous definition for individual subjects. Here we first computed the spectral decomposition and correlation with electrooculogram (EOG) of the tomographic brain activations. For each of these two measures statistical comparisons were made between different saccades.
Results: In this paper, we first review the frontal cortex activations identified in earlier animal and human studies and place the putative human FEFs in a well-defined anatomical framework. This framework is then used as reference for describing the results of new Fourier analysis of the tomographic solutions comparing active saccade tasks and their controls. The most consistent change in the dorsal frontal cortex was at the putative left FEF, for both saccades to the left and right. The asymmetric result is consistent with the 1-way callosal traffic theory. We also showed that the new correlation analysis had its most consistent change in the contralateral putative FEF. This result was obtained for EOG latencies before saccade onset with delays of a few hundreds of milliseconds (FEF activity leading the EOG) and only for visual cues signaling the execution of a saccade in a previously defined saccade direction.
Conclusions: The FEF definition derived from microstimulation describes only one of the areas in the dorsal lateral frontal lobe that act together to plan, prepare and execute a saccade. The definition and characterization of these areas in an individual subject can be obtained from non-invasive MEG measurements.
{"title":"A step towards non-invasive characterization of the human frontal eye fields of individual subjects.","authors":"Andreas A Ioannides, Peter Bc Fenwick, Elina Pitri, Lichan Liu","doi":"10.1186/1753-4631-4-S1-S11","DOIUrl":"https://doi.org/10.1186/1753-4631-4-S1-S11","url":null,"abstract":"<p><strong>Background: </strong>Identifying eye movement related areas in the frontal lobe has a long history, with microstimulation in monkeys producing the most clear-cut results. For humans, however, there is still no consensus about the location and the extent of the frontal eye field (FEF). There is also no simple non-invasive method for unambiguously defining the FEF in individual subjects, a prerequisite for clinical applications. Here we explore the use of magnetoencephalography (MEG) for the non-invasive identification and characterization of FEF activity in an individual subject.</p><p><strong>Methods: </strong>We mapped human brain activity before, during and after saccades by applying tomographic analysis to MEG data. Statistical parametric maps and circular statistics produced plausible FEF loci, but no unambiguous definition for individual subjects. Here we first computed the spectral decomposition and correlation with electrooculogram (EOG) of the tomographic brain activations. For each of these two measures statistical comparisons were made between different saccades.</p><p><strong>Results: </strong>In this paper, we first review the frontal cortex activations identified in earlier animal and human studies and place the putative human FEFs in a well-defined anatomical framework. This framework is then used as reference for describing the results of new Fourier analysis of the tomographic solutions comparing active saccade tasks and their controls. The most consistent change in the dorsal frontal cortex was at the putative left FEF, for both saccades to the left and right. The asymmetric result is consistent with the 1-way callosal traffic theory. We also showed that the new correlation analysis had its most consistent change in the contralateral putative FEF. This result was obtained for EOG latencies before saccade onset with delays of a few hundreds of milliseconds (FEF activity leading the EOG) and only for visual cues signaling the execution of a saccade in a previously defined saccade direction.</p><p><strong>Conclusions: </strong>The FEF definition derived from microstimulation describes only one of the areas in the dorsal lateral frontal lobe that act together to plan, prepare and execute a saccade. The definition and characterization of these areas in an individual subject can be obtained from non-invasive MEG measurements.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 Suppl 1 ","pages":"S11"},"PeriodicalIF":0.0,"publicationDate":"2010-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-S1-S11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29031088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-03DOI: 10.1186/1753-4631-4-S1-S5
Hiie Hinrikus, Deniss Karai, Jaanus Lass, Anastassia Rodina
Background: Information transmission and processing in the nervous system has stochastic nature. Multiple factors contribute to neuronal trial-to-trial variability. Noise and variations are introduced by the processes at the molecular and cellular level (thermal noise, channel current noise, membrane potential variations, biochemical and diffusion noise at synapses etc). The stochastic processes are affected by different physical (temperature, electromagnetic field) and chemical (drugs) factors. The aim of this study was experimental investigation of hypotheses that increase in the noise level in the brain affects processing of visual information. Change in the noise level was introduced by an external factor producing excess noise in the brain.
Methods: An exposure to 450 MHz low-frequency modulated microwave radiation was applied to generate excess noise. Such exposure has been shown to increase diffusion, alter membrane resting potential, gating variables and intracellular Calcium efflux. Nine healthy volunteers passed the experimental protocol at the lower (without microwave) and the higher (with microwave) noise level. Two photos (visual stimuli) of unfamiliar, young male faces were presented to the subjects, one picture after another. The task was to identify later the photos from a group of six photos and to decide in which order they were presented. Each subject had a total of eight sessions at the lower and eight at the higher noise level. Each session consisted of 50 trials; altogether a subject made 800 trials, 400 at the lower and 400 at the higher noise level. Student t-test was applied for statistical evaluation of the results.
Results: Correct recognition of both stimuli in the right order was better at the lower noise level. All the subjects under investigation showed higher numbers of right answers in trials at the lower noise level. Average number of correct answers from n=400 trials with microwave exposure was 50.3, without exposure 54.4, difference 7.5%, p<0.002. No difference between results at the lower and the higher noise level was revealed in the case of only partly correct or incorrect answers.
Conclusions: Our experimental results showed that introduced excess noise reduced significantly ability of the nervous system in correct processing of visual information.
{"title":"Effect of noise in processing of visual information.","authors":"Hiie Hinrikus, Deniss Karai, Jaanus Lass, Anastassia Rodina","doi":"10.1186/1753-4631-4-S1-S5","DOIUrl":"https://doi.org/10.1186/1753-4631-4-S1-S5","url":null,"abstract":"<p><strong>Background: </strong>Information transmission and processing in the nervous system has stochastic nature. Multiple factors contribute to neuronal trial-to-trial variability. Noise and variations are introduced by the processes at the molecular and cellular level (thermal noise, channel current noise, membrane potential variations, biochemical and diffusion noise at synapses etc). The stochastic processes are affected by different physical (temperature, electromagnetic field) and chemical (drugs) factors. The aim of this study was experimental investigation of hypotheses that increase in the noise level in the brain affects processing of visual information. Change in the noise level was introduced by an external factor producing excess noise in the brain.</p><p><strong>Methods: </strong>An exposure to 450 MHz low-frequency modulated microwave radiation was applied to generate excess noise. Such exposure has been shown to increase diffusion, alter membrane resting potential, gating variables and intracellular Calcium efflux. Nine healthy volunteers passed the experimental protocol at the lower (without microwave) and the higher (with microwave) noise level. Two photos (visual stimuli) of unfamiliar, young male faces were presented to the subjects, one picture after another. The task was to identify later the photos from a group of six photos and to decide in which order they were presented. Each subject had a total of eight sessions at the lower and eight at the higher noise level. Each session consisted of 50 trials; altogether a subject made 800 trials, 400 at the lower and 400 at the higher noise level. Student t-test was applied for statistical evaluation of the results.</p><p><strong>Results: </strong>Correct recognition of both stimuli in the right order was better at the lower noise level. All the subjects under investigation showed higher numbers of right answers in trials at the lower noise level. Average number of correct answers from n=400 trials with microwave exposure was 50.3, without exposure 54.4, difference 7.5%, p<0.002. No difference between results at the lower and the higher noise level was revealed in the case of only partly correct or incorrect answers.</p><p><strong>Conclusions: </strong>Our experimental results showed that introduced excess noise reduced significantly ability of the nervous system in correct processing of visual information.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 Suppl 1 ","pages":"S5"},"PeriodicalIF":0.0,"publicationDate":"2010-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-S1-S5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29031093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems.
Results: The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved.
Conclusions: The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis.
{"title":"Fractional-calculus diffusion equation.","authors":"Abdul-Wali Ms Ajlouni, Hussam A Al-Rabai'ah","doi":"10.1186/1753-4631-4-3","DOIUrl":"https://doi.org/10.1186/1753-4631-4-3","url":null,"abstract":"<p><strong>Background: </strong>Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems.</p><p><strong>Results: </strong>The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved.</p><p><strong>Conclusions: </strong>The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 ","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2010-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29008012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract.
{"title":"Research on the relation of EEG signal chaos characteristics with high-level intelligence activity of human brain.","authors":"Xingyuan Wang, Juan Meng, Guilin Tan, Lixian Zou","doi":"10.1186/1753-4631-4-2","DOIUrl":"https://doi.org/10.1186/1753-4631-4-2","url":null,"abstract":"<p><p> Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2010-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28944593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}