Pub Date : 2011-01-01Epub Date: 2011-08-22DOI: 10.2174/1875397301005010051
J Martin Herold, Lindsey A Ingerman, Cen Gao, Stephen V Frye
The recognition of methyl-lysine and -arginine residues on both histone and other proteins by specific "reader" elements is important for chromatin regulation, gene expression, and control of cell-cycle progression. Recently the crucial role of these reader proteins in cancer development and dedifferentiation has emerged, owing to the increased interest among the scientific community. The methyl-lysine and -arginine readers are a large and very diverse set of effector proteins and targeting them with small molecule probes in drug discovery will inevitably require a detailed understanding of their structural biology and mechanism of binding. In the following review, the critical elements of methyl-lysine and -arginine recognition will be summarized with respect to each protein family and initial results in assay development, probe design, and drug discovery will be highlighted.
{"title":"Drug discovery toward antagonists of methyl-lysine binding proteins.","authors":"J Martin Herold, Lindsey A Ingerman, Cen Gao, Stephen V Frye","doi":"10.2174/1875397301005010051","DOIUrl":"10.2174/1875397301005010051","url":null,"abstract":"<p><p>The recognition of methyl-lysine and -arginine residues on both histone and other proteins by specific \"reader\" elements is important for chromatin regulation, gene expression, and control of cell-cycle progression. Recently the crucial role of these reader proteins in cancer development and dedifferentiation has emerged, owing to the increased interest among the scientific community. The methyl-lysine and -arginine readers are a large and very diverse set of effector proteins and targeting them with small molecule probes in drug discovery will inevitably require a detailed understanding of their structural biology and mechanism of binding. In the following review, the critical elements of methyl-lysine and -arginine recognition will be summarized with respect to each protein family and initial results in assay development, probe design, and drug discovery will be highlighted.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"5 ","pages":"51-61"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fd/4f/TOCHGENJ-5-51.PMC3229088.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30304898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-01Epub Date: 2011-07-22DOI: 10.2174/1875397301105010042
Jimmy Cui, Sergio C Chai, Anang A Shelat, R Kiplin Guy, Taosheng Chen
Large-scale screening of small organic compounds has become a standard and essential practice in the early discovery of chemical entities with potential therapeutic use. To effectively support high-throughput screening campaigns, compound collections have to be in suitable formats, which requires a process known as compound reformatting. Here we report our approach to reformat the newly-established chemical repository of a large-scale screening facility at St. Jude Children's Research Hospital, which comprises more than half a million compounds, mostly from commercial sources. We highlight the timeline for a reformatting process, the importance of standardizing the operational procedures, and the advantages and disadvantages of using automation. The end result of our reformatting process is the concurrent generation of copies for long-term storage, screening, and "cherry-picking"; all of which facilitate compound management and high-throughput screening.
{"title":"An automated approach to efficiently reformat a large collection of compounds.","authors":"Jimmy Cui, Sergio C Chai, Anang A Shelat, R Kiplin Guy, Taosheng Chen","doi":"10.2174/1875397301105010042","DOIUrl":"https://doi.org/10.2174/1875397301105010042","url":null,"abstract":"<p><p>Large-scale screening of small organic compounds has become a standard and essential practice in the early discovery of chemical entities with potential therapeutic use. To effectively support high-throughput screening campaigns, compound collections have to be in suitable formats, which requires a process known as compound reformatting. Here we report our approach to reformat the newly-established chemical repository of a large-scale screening facility at St. Jude Children's Research Hospital, which comprises more than half a million compounds, mostly from commercial sources. We highlight the timeline for a reformatting process, the importance of standardizing the operational procedures, and the advantages and disadvantages of using automation. The end result of our reformatting process is the concurrent generation of copies for long-term storage, screening, and \"cherry-picking\"; all of which facilitate compound management and high-throughput screening.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"5 ","pages":"42-7"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d2/13/TOCHGENJ-5-42.PMC3145259.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29902282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-01Epub Date: 2011-01-06DOI: 10.2174/1875397301105010001
Steven O Simmons, Chun-Yang Fan, Kim Yeoman, John Wakefield, Ram Ramabhadran
Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this study, we describe the development of an Nrf2-specific reporter gene assay that can be used to study the oxidative stress response in multiple cell types. Using five different cell lines, the Nrf2-activating potency of twenty metals was assessed across a range of concentrations. While ten of the metals tested (cadmium, cobalt, copper, gold, iron, lead, mercury, silver, sodium arsenite and zinc) stimulated Nrf2-dependent transcriptional activity in at least three of the engineered cell lines, only three (cadmium, copper and sodium arsenite) were active in all five cell lines. A comparison of metal-induced Nrf2 transcriptional activation revealed significant differences in the absolute magnitude of activation as well as the relative potencies between the cell lines tested. However, there was no direct correlation between activity and potency. Taken together, these results show that the capacity to stimulate Nrf2 activity and relative potencies of these test compounds are highly dependent on the cell type tested. Since oxidative stress is thought to be involved in the mode of action of many toxicological studies, this observation may inform the design of paradigms for toxicity testing for toxicant prioritization and characterization.
{"title":"NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent.","authors":"Steven O Simmons, Chun-Yang Fan, Kim Yeoman, John Wakefield, Ram Ramabhadran","doi":"10.2174/1875397301105010001","DOIUrl":"https://doi.org/10.2174/1875397301105010001","url":null,"abstract":"<p><p>Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this study, we describe the development of an Nrf2-specific reporter gene assay that can be used to study the oxidative stress response in multiple cell types. Using five different cell lines, the Nrf2-activating potency of twenty metals was assessed across a range of concentrations. While ten of the metals tested (cadmium, cobalt, copper, gold, iron, lead, mercury, silver, sodium arsenite and zinc) stimulated Nrf2-dependent transcriptional activity in at least three of the engineered cell lines, only three (cadmium, copper and sodium arsenite) were active in all five cell lines. A comparison of metal-induced Nrf2 transcriptional activation revealed significant differences in the absolute magnitude of activation as well as the relative potencies between the cell lines tested. However, there was no direct correlation between activity and potency. Taken together, these results show that the capacity to stimulate Nrf2 activity and relative potencies of these test compounds are highly dependent on the cell type tested. Since oxidative stress is thought to be involved in the mode of action of many toxicological studies, this observation may inform the design of paradigms for toxicity testing for toxicant prioritization and characterization.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"5 ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9d/32/TOCHGENJ-5-1.PMC3106370.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29915743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-01Epub Date: 2011-04-08DOI: 10.2174/1875397301105010013
Syed Ahmad, Mark A Hughes, Kimberly T Lane, Matthew R Redinbo, Li-An Yeh, John E Scott
CPT-11 is a widely-used anti-cancer drug that is converted in vivo to its active metabolite, SN-38. In the liver, enzymes detoxify SN-38 by coupling it to a glucuronidate moiety and this inactive compound (SN-38G) is excreted into the gastrointestinal tract. In the intestine, commensal bacteria convert the SN-38G back to the active and toxic SN-38 using bacterial β-glucuronidase enzyme (GUS). This intestinal SN-38 causes debilitating diarrhea that prevents dose-intensification and efficacy in a significant fraction of patients undergoing CPT-11 treatment for cancer. This CPT-11 metabolic pathway suggests that small molecule inhibitors of GUS may have utility as novel therapeutics for prevention of dose-limiting diarrhea resulting from CPT-11 therapy. To identify chemical inhibitors of GUS activity, we employed and validated a high throughput, fluorescence-based biochemical assay and used this assay to screen a compound library. Novel inhibitors of GUS were identified with IC(50) values ranging from 50 nM to 4.8 µM. These compounds may be useful as chemical probes for use in proof-of-concept experiments designed to determine the efficacy of GUS inhibitors in altering the intestinal metabolism of drugs. Our results demonstrate that this high throughput assay can be used to identify small molecule inhibitors of GUS.
{"title":"A High Throughput Assay for Discovery of Bacterial β-Glucuronidase Inhibitors.","authors":"Syed Ahmad, Mark A Hughes, Kimberly T Lane, Matthew R Redinbo, Li-An Yeh, John E Scott","doi":"10.2174/1875397301105010013","DOIUrl":"https://doi.org/10.2174/1875397301105010013","url":null,"abstract":"<p><p>CPT-11 is a widely-used anti-cancer drug that is converted in vivo to its active metabolite, SN-38. In the liver, enzymes detoxify SN-38 by coupling it to a glucuronidate moiety and this inactive compound (SN-38G) is excreted into the gastrointestinal tract. In the intestine, commensal bacteria convert the SN-38G back to the active and toxic SN-38 using bacterial β-glucuronidase enzyme (GUS). This intestinal SN-38 causes debilitating diarrhea that prevents dose-intensification and efficacy in a significant fraction of patients undergoing CPT-11 treatment for cancer. This CPT-11 metabolic pathway suggests that small molecule inhibitors of GUS may have utility as novel therapeutics for prevention of dose-limiting diarrhea resulting from CPT-11 therapy. To identify chemical inhibitors of GUS activity, we employed and validated a high throughput, fluorescence-based biochemical assay and used this assay to screen a compound library. Novel inhibitors of GUS were identified with IC(50) values ranging from 50 nM to 4.8 µM. These compounds may be useful as chemical probes for use in proof-of-concept experiments designed to determine the efficacy of GUS inhibitors in altering the intestinal metabolism of drugs. Our results demonstrate that this high throughput assay can be used to identify small molecule inhibitors of GUS.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"5 ","pages":"13-20"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/74/73/TOCHGENJ-5-13.PMC3106358.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29915744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-01Epub Date: 2011-08-22DOI: 10.2174/1875397301005010048
Tim J Wigle
th anniversary of the announcement of the draft sequence of the 3 billion DNA bases in the genome by the Human Genome Project, there is still a lack of molecular targeted therapies for previously intractable diseases. It has become clear that the genomes within and across species are too similar to explain the diversity of life and the etiology of all diseases, indicating that the underlying DNA sequence is only one component of this problem. Coinciding with the accomplishment of this impressive feat led by the NIH and Celera Genomics, has been the explosion of research defined as “epigenetic”. The term epigenetics was first coined in the 1940s by British embryologist and geneticist Conrad Waddington [1], who was attempting to describe “the interactions of genes with their environment, which brings the phenotype into being”. Since then, this definition has been refined to encompass the study of heritable phenotypic traits that result
{"title":"Promoting illiteracy in epigenetics: an emerging therapeutic strategy.","authors":"Tim J Wigle","doi":"10.2174/1875397301005010048","DOIUrl":"https://doi.org/10.2174/1875397301005010048","url":null,"abstract":"th anniversary of the announcement of the draft sequence of the 3 billion DNA bases in the genome by the Human Genome Project, there is still a lack of molecular targeted therapies for previously intractable diseases. It has become clear that the genomes within and across species are too similar to explain the diversity of life and the etiology of all diseases, indicating that the underlying DNA sequence is only one component of this problem. Coinciding with the accomplishment of this impressive feat led by the NIH and Celera Genomics, has been the explosion of research defined as “epigenetic”. The term epigenetics was first coined in the 1940s by British embryologist and geneticist Conrad Waddington [1], who was attempting to describe “the interactions of genes with their environment, which brings the phenotype into being”. Since then, this definition has been refined to encompass the study of heritable phenotypic traits that result","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"5 Suppl 1","pages":"48-50"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/89/ca/TOCHGENJ-5-48.PMC3178898.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30180361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-01Epub Date: 2011-08-22DOI: 10.2174/1875397301005010085
Matthieu Schapira
There are about fifty SET domain protein methyltransferases (PMTs) in the human genome, that transfer a methyl group from S-adenosyl-L-methionine (SAM) to substrate lysines on histone tails or other peptides. A number of structures in complex with cofactor, substrate, or inhibitors revealed the mechanisms of substrate recognition, methylation state specificity, and chemical inhibition. Based on these structures, we review the structural chemistry of SET domain PMTs, and propose general concepts towards the development of selective inhibitors.
人类基因组中约有 50 个 SET 结构域蛋白甲基转移酶(PMT),可将 S-腺苷-L-蛋氨酸(SAM)上的甲基转移到组蛋白尾部或其他肽上的底物赖氨酸上。一些与辅助因子、底物或抑制剂复合的结构揭示了底物识别、甲基化状态特异性和化学抑制的机制。基于这些结构,我们回顾了 SET 结构域 PMT 的结构化学,并提出了开发选择性抑制剂的一般概念。
{"title":"Structural Chemistry of Human SET Domain Protein Methyltransferases.","authors":"Matthieu Schapira","doi":"10.2174/1875397301005010085","DOIUrl":"10.2174/1875397301005010085","url":null,"abstract":"<p><p>There are about fifty SET domain protein methyltransferases (PMTs) in the human genome, that transfer a methyl group from S-adenosyl-L-methionine (SAM) to substrate lysines on histone tails or other peptides. A number of structures in complex with cofactor, substrate, or inhibitors revealed the mechanisms of substrate recognition, methylation state specificity, and chemical inhibition. Based on these structures, we review the structural chemistry of SET domain PMTs, and propose general concepts towards the development of selective inhibitors.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"5 Suppl 1","pages":"85-94"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/f2/TOCHGENJ-5-85.PMC3178901.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30180363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-01Epub Date: 2011-11-30DOI: 10.2174/1875397301105010122
Haifeng Eishingdrelo, Jidong Cai, Paul Weissensee, Praveen Sharma, Michael J Tocci, Paul S Wright
We have developed a novel cell-based protein-protein interaction assay method. The method relies on conversion of an inactive permuted luciferase containing a Tobacco Etch Virus protease (TEV) cleavage sequence fused onto protein (A) to an active luciferase upon interaction and cleavage by another protein (B) fused with the TEV protease. We demonstrate assay applicability for ligand-induced protein-protein interactions including G-protein coupled receptors, receptor tyrosine kinases and nuclear hormone receptors.
{"title":"A cell-based protein-protein interaction method using a permuted luciferase reporter.","authors":"Haifeng Eishingdrelo, Jidong Cai, Paul Weissensee, Praveen Sharma, Michael J Tocci, Paul S Wright","doi":"10.2174/1875397301105010122","DOIUrl":"https://doi.org/10.2174/1875397301105010122","url":null,"abstract":"<p><p>We have developed a novel cell-based protein-protein interaction assay method. The method relies on conversion of an inactive permuted luciferase containing a Tobacco Etch Virus protease (TEV) cleavage sequence fused onto protein (A) to an active luciferase upon interaction and cleavage by another protein (B) fused with the TEV protease. We demonstrate assay applicability for ligand-induced protein-protein interactions including G-protein coupled receptors, receptor tyrosine kinases and nuclear hormone receptors.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"5 ","pages":"122-8"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9b/e8/TOCHGENJ-5-122.PMC3242404.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30356660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-01Epub Date: 2011-08-22DOI: 10.2174/1875397301105010115
Julie Blouin, Philippe Roby, Mathieu Arcand, Lucille Beaudet, Francesco Lipari
Out of the 90 human protein tyrosine kinases, 81 were assayed with short peptides derived from well-characterized [CDK1(Tyr15), IRS1(Tyr983), and JAK1(Tyr1023)] or generic [polyGlu:Tyr(4:1) and poly-Glu:Ala:Tyr(1:1:1)] substrates. As expected, the CDK1 peptide is a substrate for all Src family kinases. On the other hand, some of the activities are novel and lead to a better understanding of the function of certain kinases. Specifically, the CDK1 peptide is a substrate for many of the Eph family members. Interestingly, profiling of nearly all the human protein tyrosine kinases revealed a distinct pattern of selectivity towards the CDK1 and IRS1 peptides.
{"title":"Catalytic specificity of human protein tyrosine kinases revealed by Peptide substrate profiling.","authors":"Julie Blouin, Philippe Roby, Mathieu Arcand, Lucille Beaudet, Francesco Lipari","doi":"10.2174/1875397301105010115","DOIUrl":"https://doi.org/10.2174/1875397301105010115","url":null,"abstract":"<p><p>Out of the 90 human protein tyrosine kinases, 81 were assayed with short peptides derived from well-characterized [CDK1(Tyr15), IRS1(Tyr983), and JAK1(Tyr1023)] or generic [polyGlu:Tyr(4:1) and poly-Glu:Ala:Tyr(1:1:1)] substrates. As expected, the CDK1 peptide is a substrate for all Src family kinases. On the other hand, some of the activities are novel and lead to a better understanding of the function of certain kinases. Specifically, the CDK1 peptide is a substrate for many of the Eph family members. Interestingly, profiling of nearly all the human protein tyrosine kinases revealed a distinct pattern of selectivity towards the CDK1 and IRS1 peptides.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"5 ","pages":"115-21"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e0/96/TOCHGENJ-5-115.PMC3178905.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30180360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-12-21DOI: 10.2174/1875397301004010084
Zhijie Cheng, Denise Garvin, Aileen Paguio, Pete Stecha, Keith Wood, Frank Fan
The G protein coupled receptors (GPCR) represent the target class for nearly half of the current therapeutic drugs and remain to be the focus of drug discovery efforts. The complexity of receptor signaling continues to evolve. It is now known that many GPCRs are coupled to multiple G-proteins, which lead to regulation of respective signaling pathways downstream. Deciphering this receptor coupling will aid our understanding of the GPCR function and ultimately developing drug candidates. Here, we report the development of four homogenous bioluminescent reporter assays using improved destabilized luciferases and various response elements: CRE, NFAT-RE, SRE, and SRF-RE. These assays allowed measurement of major GPCR pathways including cAMP production, intracellular Ca(2+) mobilizations, ERK/MAPK activ-ity, and small G protein RhoA activity, respectively using the same reporter assay format. We showed that we can decipher G protein activation profiles for exogenous m(3) muscarinic receptor and endogenous β(2)-adrenergic receptors in HEK293 cells by using these four reporter assays. Furthermore, we demonstrated that these assays can be readily used for potency rankings of agonists and antagonists, and for high throughput screening.
{"title":"Luciferase Reporter Assay System for Deciphering GPCR Pathways.","authors":"Zhijie Cheng, Denise Garvin, Aileen Paguio, Pete Stecha, Keith Wood, Frank Fan","doi":"10.2174/1875397301004010084","DOIUrl":"https://doi.org/10.2174/1875397301004010084","url":null,"abstract":"<p><p>The G protein coupled receptors (GPCR) represent the target class for nearly half of the current therapeutic drugs and remain to be the focus of drug discovery efforts. The complexity of receptor signaling continues to evolve. It is now known that many GPCRs are coupled to multiple G-proteins, which lead to regulation of respective signaling pathways downstream. Deciphering this receptor coupling will aid our understanding of the GPCR function and ultimately developing drug candidates. Here, we report the development of four homogenous bioluminescent reporter assays using improved destabilized luciferases and various response elements: CRE, NFAT-RE, SRE, and SRF-RE. These assays allowed measurement of major GPCR pathways including cAMP production, intracellular Ca(2+) mobilizations, ERK/MAPK activ-ity, and small G protein RhoA activity, respectively using the same reporter assay format. We showed that we can decipher G protein activation profiles for exogenous m(3) muscarinic receptor and endogenous β(2)-adrenergic receptors in HEK293 cells by using these four reporter assays. Furthermore, we demonstrated that these assays can be readily used for potency rankings of agonists and antagonists, and for high throughput screening.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"4 ","pages":"84-91"},"PeriodicalIF":0.0,"publicationDate":"2010-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1875397301004010084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29680987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-12-13DOI: 10.2174/1875397301004010074
Susan T Yeyeodu, Sam M Witherspoon, Nailya Gilyazova, Gordon C Ibeanu
Neurite outgrowth assays are the most common phenotypic screen to assess chemical effects on neuronal cells. Current automated assays involve expensive equipment, lengthy sample preparation and handling, costly reagents and slow rates of data acquisition and analysis. We have developed a high throughput screen (HTS) for neurite outgrowth using a robust neuronal cell model coupled to fast and inexpensive visualization methods, reduced data volume and rapid data analysis. Neuroscreen-1 (NS-1) cell, a subclone of PC12, possessing rapid growth and enhanced sensitivity to NGF was used as a model neuron. This method reduces preparation time by using cells expressing GFP or native cells stained with HCS CellMask(™) Red in a multiplexed 30 min fixation and staining step. A 2x2 camera binning process reduced both image data files and analysis times by 75% and 60% respectively, compared to current protocols. In addition, eliminating autofocus steps during montage generation reduced data collection time. Pharmacological profiles for stimulation and inhibition of neurite outgrowth by NGF and SU6656 were comparable to current standard method utilizing immunofluorescence detection of tubulin. Potentiation of NGF-induced neurite outgrowth by members of a 1,120-member Prestwick compound library as assayed using this method identified six molecules, including etoposide, isoflupredone acetate, fludrocortisone acetate, thioguanosine, oxyphenbutazone and gibberellic acid, that more than doubled the neurite mass primed by 2 ng/ml NGF. This simple procedure represents an important routine approach in high throughput screening of large chemical libraries using the neurite outgrowth phenotype as a measure of the effects of chemical molecules on neuronal cells.
{"title":"A rapid, inexpensive high throughput screen method for neurite outgrowth.","authors":"Susan T Yeyeodu, Sam M Witherspoon, Nailya Gilyazova, Gordon C Ibeanu","doi":"10.2174/1875397301004010074","DOIUrl":"https://doi.org/10.2174/1875397301004010074","url":null,"abstract":"<p><p>Neurite outgrowth assays are the most common phenotypic screen to assess chemical effects on neuronal cells. Current automated assays involve expensive equipment, lengthy sample preparation and handling, costly reagents and slow rates of data acquisition and analysis. We have developed a high throughput screen (HTS) for neurite outgrowth using a robust neuronal cell model coupled to fast and inexpensive visualization methods, reduced data volume and rapid data analysis. Neuroscreen-1 (NS-1) cell, a subclone of PC12, possessing rapid growth and enhanced sensitivity to NGF was used as a model neuron. This method reduces preparation time by using cells expressing GFP or native cells stained with HCS CellMask(™) Red in a multiplexed 30 min fixation and staining step. A 2x2 camera binning process reduced both image data files and analysis times by 75% and 60% respectively, compared to current protocols. In addition, eliminating autofocus steps during montage generation reduced data collection time. Pharmacological profiles for stimulation and inhibition of neurite outgrowth by NGF and SU6656 were comparable to current standard method utilizing immunofluorescence detection of tubulin. Potentiation of NGF-induced neurite outgrowth by members of a 1,120-member Prestwick compound library as assayed using this method identified six molecules, including etoposide, isoflupredone acetate, fludrocortisone acetate, thioguanosine, oxyphenbutazone and gibberellic acid, that more than doubled the neurite mass primed by 2 ng/ml NGF. This simple procedure represents an important routine approach in high throughput screening of large chemical libraries using the neurite outgrowth phenotype as a measure of the effects of chemical molecules on neuronal cells.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"4 ","pages":"74-83"},"PeriodicalIF":0.0,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/37/b2/TOCHGENJ-4-74.PMC3040990.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29693651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}