Pub Date : 2010-09-15eCollection Date: 2010-01-01DOI: 10.3389/fnene.2010.00026
Carla X Bittner, Anitsi Loaiza, Iván Ruminot, Valeria Larenas, Tamara Sotelo-Hitschfeld, Robin Gutiérrez, Alex Córdova, Rocío Valdebenito, Wolf B Frommer, L Felipe Barros
The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K(+), supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.
{"title":"High resolution measurement of the glycolytic rate.","authors":"Carla X Bittner, Anitsi Loaiza, Iván Ruminot, Valeria Larenas, Tamara Sotelo-Hitschfeld, Robin Gutiérrez, Alex Córdova, Rocío Valdebenito, Wolf B Frommer, L Felipe Barros","doi":"10.3389/fnene.2010.00026","DOIUrl":"https://doi.org/10.3389/fnene.2010.00026","url":null,"abstract":"<p><p>The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K(+), supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.</p>","PeriodicalId":88242,"journal":{"name":"Frontiers in neuroenergetics","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fnene.2010.00026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29320652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-09-10eCollection Date: 2010-01-01DOI: 10.3389/fnene.2010.00027
Cristián Martínez, Dante Kalise, L Felipe Barros
The production and dissipation of energy in cells is intimately linked to the movement of small molecules in and out of enzymes, channels, and transporters. An analytical model of diffusion was described previously, which was used to estimate local effects of these proteins acting as molecular sources. The present article describes a simple but more general model, which can be used to estimate the local impact of proteins acting as molecular sinks. The results show that the enzymes, transporters, and channels, whose substrates are present at relatively high concentrations like ATP, Na(+), glucose, lactate, and pyruvate, do not operate fast enough to deplete their vicinity to a meaningful extent, supporting the notion that for these molecules the cytosol is a well-mixed compartment. One specific consequence of this analysis is that the well-documented cross-talk existing between the Na(+)/K(+) ATPase and the glycolytic machinery should not be explained by putative changes in local ATP concentration. In contrast, Ca2(+) and H(+) transporters like the Na(+)/Ca2(+) exchanger NCX and the Na(+)/H(+) exchanger NHE, show experimental rates of transport that are two to three orders of magnitude faster than the rates at which the aqueous phase may possibly feed their binding sites. This paradoxical result implies that Ca2(+) and H(+) transporters do not extract their substrates directly from the bulk cytosol, but from an intermediate "harvesting" compartment located between the aqueous phase and the transport site.
{"title":"General requirement for harvesting antennae at ca and h channels and transporters.","authors":"Cristián Martínez, Dante Kalise, L Felipe Barros","doi":"10.3389/fnene.2010.00027","DOIUrl":"https://doi.org/10.3389/fnene.2010.00027","url":null,"abstract":"<p><p>The production and dissipation of energy in cells is intimately linked to the movement of small molecules in and out of enzymes, channels, and transporters. An analytical model of diffusion was described previously, which was used to estimate local effects of these proteins acting as molecular sources. The present article describes a simple but more general model, which can be used to estimate the local impact of proteins acting as molecular sinks. The results show that the enzymes, transporters, and channels, whose substrates are present at relatively high concentrations like ATP, Na(+), glucose, lactate, and pyruvate, do not operate fast enough to deplete their vicinity to a meaningful extent, supporting the notion that for these molecules the cytosol is a well-mixed compartment. One specific consequence of this analysis is that the well-documented cross-talk existing between the Na(+)/K(+) ATPase and the glycolytic machinery should not be explained by putative changes in local ATP concentration. In contrast, Ca2(+) and H(+) transporters like the Na(+)/Ca2(+) exchanger NCX and the Na(+)/H(+) exchanger NHE, show experimental rates of transport that are two to three orders of magnitude faster than the rates at which the aqueous phase may possibly feed their binding sites. This paradoxical result implies that Ca2(+) and H(+) transporters do not extract their substrates directly from the bulk cytosol, but from an intermediate \"harvesting\" compartment located between the aqueous phase and the transport site.</p>","PeriodicalId":88242,"journal":{"name":"Frontiers in neuroenergetics","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fnene.2010.00027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29307966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-08-27eCollection Date: 2010-01-01DOI: 10.3389/fnene.2010.00023
Mohamad Saka, Jason Berwick, Myles Jones
Modern non-invasive brain imaging techniques utilize changes in cerebral blood flow, volume and oxygenation that accompany brain activation. However, stimulus-evoked hemodynamic responses display considerable inter-trial variability even when identical stimuli are presented and the sources of this variability are poorly understood. One of the sources of this response variation could be ongoing spontaneous hemodynamic fluctuations. To investigate this issue, 2-dimensional optical imaging spectroscopy was used to measure cortical hemodynamics in response to sensory stimuli in anesthetized rodents. Pre-stimulus cortical hemodynamics displayed spontaneous periodic fluctuations and as such, data from individual stimulus presentation trials were assigned to one of four groups depending on the phase angle of pre-stimulus hemodynamic fluctuations and averaged. This analysis revealed that sensory evoked cortical hemodynamics displayed distinctive response characteristics and magnitudes depending on the phase angle of ongoing fluctuations at stimulus onset. To investigate the origin of this phenomenon, "null-trials" were collected without stimulus presentation. Subtraction of phase averaged "null trials" from their phase averaged stimulus-evoked counterparts resulted in four similar time series that resembled the mean stimulus-evoked response. These analyses suggest that linear superposition of evoked and ongoing cortical hemodynamic changes may be a property of the structure of inter-trial variability.
{"title":"Linear superposition of sensory-evoked and ongoing cortical hemodynamics.","authors":"Mohamad Saka, Jason Berwick, Myles Jones","doi":"10.3389/fnene.2010.00023","DOIUrl":"https://doi.org/10.3389/fnene.2010.00023","url":null,"abstract":"<p><p>Modern non-invasive brain imaging techniques utilize changes in cerebral blood flow, volume and oxygenation that accompany brain activation. However, stimulus-evoked hemodynamic responses display considerable inter-trial variability even when identical stimuli are presented and the sources of this variability are poorly understood. One of the sources of this response variation could be ongoing spontaneous hemodynamic fluctuations. To investigate this issue, 2-dimensional optical imaging spectroscopy was used to measure cortical hemodynamics in response to sensory stimuli in anesthetized rodents. Pre-stimulus cortical hemodynamics displayed spontaneous periodic fluctuations and as such, data from individual stimulus presentation trials were assigned to one of four groups depending on the phase angle of pre-stimulus hemodynamic fluctuations and averaged. This analysis revealed that sensory evoked cortical hemodynamics displayed distinctive response characteristics and magnitudes depending on the phase angle of ongoing fluctuations at stimulus onset. To investigate the origin of this phenomenon, \"null-trials\" were collected without stimulus presentation. Subtraction of phase averaged \"null trials\" from their phase averaged stimulus-evoked counterparts resulted in four similar time series that resembled the mean stimulus-evoked response. These analyses suggest that linear superposition of evoked and ongoing cortical hemodynamic changes may be a property of the structure of inter-trial variability.</p>","PeriodicalId":88242,"journal":{"name":"Frontiers in neuroenergetics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fnene.2010.00023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40071327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-08-19eCollection Date: 2010-01-01DOI: 10.3389/fnene.2010.00018
Fahmeed Hyder, Basavaraju G Sanganahalli, Peter Herman, Daniel Coman, Natasja J G Maandag, Kevin L Behar, Hal Blumenfeld, Douglas L Rothman
Functional magnetic resonance imaging (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping brain activity. Interest in quantitative fMRI has renewed awareness in importance of oxidative neuroenergetics, as reflected by cerebral metabolic rate of oxygen consumption(CMRO2), for supporting brain function. Relationships between BOLD signal and the underlying neurophysiological parameters have been elucidated to allow determination of dynamic changes inCMRO2 by "calibrated fMRI," which require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and volume (CBV). But how doCMRO2 changes, steady-state or transient, derived from calibrated fMRI compare with neural activity recordings of local field potential (LFP) and/or multi-unit activity (MUA)? Here we discuss recent findings primarily from animal studies which allow high magnetic fields studies for superior BOLD sensitivity as well as multi-modal CBV and CBF measurements in conjunction with LFP and MUA recordings from activated sites. A key observation is that while relationships between neural activity and sensory stimulus features range from linear to non-linear, associations between hyperemic components (BOLD, CBF, CBV) and neural activity (LFP, MUA) are almost always linear. More importantly, the results demonstrate good agreement between the changes inCMRO2 and independent measures of LFP or MUA. The tight neurovascular and neurometabolic couplings, observed from steady-state conditions to events separated by <200 ms, suggest rapid oxygen equilibration between blood and tissue pools and thus calibrated fMRI at high magnetic fields can provide high spatiotemporal mapping ofCMRO2 changes.
{"title":"Neurovascular and Neurometabolic Couplings in Dynamic Calibrated fMRI: Transient Oxidative Neuroenergetics for Block-Design and Event-Related Paradigms.","authors":"Fahmeed Hyder, Basavaraju G Sanganahalli, Peter Herman, Daniel Coman, Natasja J G Maandag, Kevin L Behar, Hal Blumenfeld, Douglas L Rothman","doi":"10.3389/fnene.2010.00018","DOIUrl":"https://doi.org/10.3389/fnene.2010.00018","url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping brain activity. Interest in quantitative fMRI has renewed awareness in importance of oxidative neuroenergetics, as reflected by cerebral metabolic rate of oxygen consumption(CMRO2), for supporting brain function. Relationships between BOLD signal and the underlying neurophysiological parameters have been elucidated to allow determination of dynamic changes inCMRO2 by \"calibrated fMRI,\" which require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and volume (CBV). But how doCMRO2 changes, steady-state or transient, derived from calibrated fMRI compare with neural activity recordings of local field potential (LFP) and/or multi-unit activity (MUA)? Here we discuss recent findings primarily from animal studies which allow high magnetic fields studies for superior BOLD sensitivity as well as multi-modal CBV and CBF measurements in conjunction with LFP and MUA recordings from activated sites. A key observation is that while relationships between neural activity and sensory stimulus features range from linear to non-linear, associations between hyperemic components (BOLD, CBF, CBV) and neural activity (LFP, MUA) are almost always linear. More importantly, the results demonstrate good agreement between the changes inCMRO2 and independent measures of LFP or MUA. The tight neurovascular and neurometabolic couplings, observed from steady-state conditions to events separated by <200 ms, suggest rapid oxygen equilibration between blood and tissue pools and thus calibrated fMRI at high magnetic fields can provide high spatiotemporal mapping ofCMRO2 changes.</p>","PeriodicalId":88242,"journal":{"name":"Frontiers in neuroenergetics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fnene.2010.00018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40065710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-08-16eCollection Date: 2010-01-01DOI: 10.3389/fnene.2010.00016
Jessica A Filosa
Neurovascular research has made significant strides toward understanding how the brain neurovascular unit accomplishes rapid and spatial increases in blood flow following neuronal activation. Among the experimental models used, the in vitro brain slice preparation provides unique information revealing the potential signals and cellular mechanisms involved in functional hyperemia. The most crucial limitation of this model, however, is the lack of intraluminal pressure and flow in the vessels being studied. Moreover, differences in basal vascular tone have led to varied interpretations regarding the polarity of vascular responses following neuron-to-glial stimulation. Given the complexity of astrocyte-induced neurovascular responses, we propose the use of a modified in vitro brain slice preparation, where intraluminal arteriolar pressure and flow are retained. Throughout this review, we discuss the advantages and disadvantages to be considered when using brain slices for neurovascular studies. Potential ways to overcome the current limitations are proposed.
{"title":"Vascular tone and neurovascular coupling: considerations toward an improved in vitro model.","authors":"Jessica A Filosa","doi":"10.3389/fnene.2010.00016","DOIUrl":"10.3389/fnene.2010.00016","url":null,"abstract":"<p><p>Neurovascular research has made significant strides toward understanding how the brain neurovascular unit accomplishes rapid and spatial increases in blood flow following neuronal activation. Among the experimental models used, the in vitro brain slice preparation provides unique information revealing the potential signals and cellular mechanisms involved in functional hyperemia. The most crucial limitation of this model, however, is the lack of intraluminal pressure and flow in the vessels being studied. Moreover, differences in basal vascular tone have led to varied interpretations regarding the polarity of vascular responses following neuron-to-glial stimulation. Given the complexity of astrocyte-induced neurovascular responses, we propose the use of a modified in vitro brain slice preparation, where intraluminal arteriolar pressure and flow are retained. Throughout this review, we discuss the advantages and disadvantages to be considered when using brain slices for neurovascular studies. Potential ways to overcome the current limitations are proposed.</p>","PeriodicalId":88242,"journal":{"name":"Frontiers in neuroenergetics","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29272865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-08-11eCollection Date: 2010-01-01DOI: 10.3389/fnene.2010.00015
Sam Harris, Myles Jones, Ying Zheng, Jason Berwick
An important constraint on how hemodynamic neuroimaging signals such as fMRI can be interpreted in terms of the underlying evoked activity is an understanding of neurovascular coupling mechanisms that actually generate hemodynamic responses. The predominant view at present is that the hemodynamic response is most correlated with synaptic input and subsequent neural processing rather than spiking output. It is still not clear whether input or processing is more important in the generation of hemodynamics responses. In order to investigate this we measured the hemodynamic and neural responses to electrical whisker pad stimuli in rat whisker barrel somatosensory cortex both before and after the local cortical injections of the GABA(A) agonist muscimol. Muscimol would not be expected to affect the thalamocortical input into the cortex but would inhibit subsequent intra-cortical processing. Pre-muscimol infusion whisker stimuli elicited the expected neural and accompanying hemodynamic responses to that reported previously. Following infusion of muscimol, although the temporal profile of neural responses to each pulse of the stimulus train was similar, the average response was reduced in magnitude by approximately 79% compared to that elicited pre-infusion. The whisker-evoked hemodynamic responses were reduced by a commensurate magnitude suggesting that, although the neurovascular coupling relationships were similar for synaptic input as well as for cortical processing, the magnitude of the overall response is dominated by processing rather than from that produced from the thalamocortical input alone.
{"title":"Does neural input or processing play a greater role in the magnitude of neuroimaging signals?","authors":"Sam Harris, Myles Jones, Ying Zheng, Jason Berwick","doi":"10.3389/fnene.2010.00015","DOIUrl":"https://doi.org/10.3389/fnene.2010.00015","url":null,"abstract":"<p><p>An important constraint on how hemodynamic neuroimaging signals such as fMRI can be interpreted in terms of the underlying evoked activity is an understanding of neurovascular coupling mechanisms that actually generate hemodynamic responses. The predominant view at present is that the hemodynamic response is most correlated with synaptic input and subsequent neural processing rather than spiking output. It is still not clear whether input or processing is more important in the generation of hemodynamics responses. In order to investigate this we measured the hemodynamic and neural responses to electrical whisker pad stimuli in rat whisker barrel somatosensory cortex both before and after the local cortical injections of the GABA(A) agonist muscimol. Muscimol would not be expected to affect the thalamocortical input into the cortex but would inhibit subsequent intra-cortical processing. Pre-muscimol infusion whisker stimuli elicited the expected neural and accompanying hemodynamic responses to that reported previously. Following infusion of muscimol, although the temporal profile of neural responses to each pulse of the stimulus train was similar, the average response was reduced in magnitude by approximately 79% compared to that elicited pre-infusion. The whisker-evoked hemodynamic responses were reduced by a commensurate magnitude suggesting that, although the neurovascular coupling relationships were similar for synaptic input as well as for cortical processing, the magnitude of the overall response is dominated by processing rather than from that produced from the thalamocortical input alone.</p>","PeriodicalId":88242,"journal":{"name":"Frontiers in neuroenergetics","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fnene.2010.00015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29211679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-08-06eCollection Date: 2010-01-01DOI: 10.3389/fnene.2010.00022
Taner Akkin, David Landowne, Aarthi Sivaprakasam
We review the use of optical coherence tomography (OCT) for detection of neural activity, and present a new approach for depth-localization of neural action potentials (APs) using voltage-sensitive dyes as contrast agents in OCT. A stained squid giant axon is imaged by spectral-domain OCT. Changes in the intensity and phase of back-scattered light coming from regions around the membrane are measured during AP propagation. The depth-resolved change in back-scattered intensity coincides with the arrival of AP at the measurement area, and is synchronous with the changes in transmitted light intensity and reflection-mode cross-polarized light intensity measured independently. The system also provides depth-resolved phase changes as an additional indication of activity. With further investigation our results could open a new era in functional imaging technology to localize neural activity at different depths in situ.
{"title":"Detection of Neural Action Potentials Using Optical Coherence Tomography: Intensity and Phase Measurements with and without Dyes.","authors":"Taner Akkin, David Landowne, Aarthi Sivaprakasam","doi":"10.3389/fnene.2010.00022","DOIUrl":"https://doi.org/10.3389/fnene.2010.00022","url":null,"abstract":"<p><p>We review the use of optical coherence tomography (OCT) for detection of neural activity, and present a new approach for depth-localization of neural action potentials (APs) using voltage-sensitive dyes as contrast agents in OCT. A stained squid giant axon is imaged by spectral-domain OCT. Changes in the intensity and phase of back-scattered light coming from regions around the membrane are measured during AP propagation. The depth-resolved change in back-scattered intensity coincides with the arrival of AP at the measurement area, and is synchronous with the changes in transmitted light intensity and reflection-mode cross-polarized light intensity measured independently. The system also provides depth-resolved phase changes as an additional indication of activity. With further investigation our results could open a new era in functional imaging technology to localize neural activity at different depths in situ.</p>","PeriodicalId":88242,"journal":{"name":"Frontiers in neuroenergetics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fnene.2010.00022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40071325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-08-05eCollection Date: 2010-01-01DOI: 10.3389/fnene.2010.00024
Ivo Vanzetta, Hamutal Slovin
Interpreting fMRI data relies on the assumption that hemodynamic responses reflect neuronal activity. Some recently reported results seem to suggest that this assumption might be less robust than what has been thought so far. Data by Schummers et al. (2008) suggest that hemodynamic responses depend on functional properties of astrocytes as mediators of neuronal activity to blood vessels, and therefore reflect neuronal tuning properties only indirectly. The question is how much the final outcome differs from a linear integration of the local neuronal responses.
{"title":"A BOLD Assumption.","authors":"Ivo Vanzetta, Hamutal Slovin","doi":"10.3389/fnene.2010.00024","DOIUrl":"https://doi.org/10.3389/fnene.2010.00024","url":null,"abstract":"Interpreting fMRI data relies on the assumption that hemodynamic responses reflect neuronal activity. Some recently reported results seem to suggest that this assumption might be less robust than what has been thought so far. Data by Schummers et al. (2008) suggest that hemodynamic responses depend on functional properties of astrocytes as mediators of neuronal activity to blood vessels, and therefore reflect neuronal tuning properties only indirectly. The question is how much the final outcome differs from a linear integration of the local neuronal responses.","PeriodicalId":88242,"journal":{"name":"Frontiers in neuroenergetics","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fnene.2010.00024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29202907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-07-30eCollection Date: 2010-01-01DOI: 10.3389/fnene.2010.00021
Anna Letizia Allegra Mascaro, Leonardo Sacconi, Francesco S Pavone
In the last few years two-photon microscopy has been used to perform in vivo high spatial resolution imaging of neurons, glial cells and vascular structures in the intact neocortex. Recently, in parallel to its applications in imaging, multi-photon absorption has been used as a tool for the selective disruption of neural processes and blood vessels in living animals. In this review we present some basic features of multi-photon nanosurgery and we illustrate the advantages offered by this novel methodology in neuroscience research. We show how the spatial localization of multi-photon excitation can be exploited to perform selective lesions on cortical neurons in living mice expressing fluorescent proteins. This methodology is applied to disrupt a single neuron without causing any visible collateral damage to the surrounding structures. The spatial precision of this method allows to dissect single processes as well as individual dendritic spines, preserving the structural integrity of the main neuronal arbor. The same approach can be used to breach the blood-brain barrier through a targeted photo-disruption of blood vessels walls. We show how the vascular system can be perturbed through laser ablation leading toward two different models of stroke: intravascular clot and extravasation. Following the temporal evolution of the injured system (either a neuron or a blood vessel) through time lapse in vivo imaging, the physiological response of the target structure and the rearrangement of the surrounding area can be characterized. Multi-photon nanosurgery in live brain represents a useful tool to produce different models of neurodegenerative disease.
{"title":"Multi-photon nanosurgery in live brain.","authors":"Anna Letizia Allegra Mascaro, Leonardo Sacconi, Francesco S Pavone","doi":"10.3389/fnene.2010.00021","DOIUrl":"https://doi.org/10.3389/fnene.2010.00021","url":null,"abstract":"<p><p>In the last few years two-photon microscopy has been used to perform in vivo high spatial resolution imaging of neurons, glial cells and vascular structures in the intact neocortex. Recently, in parallel to its applications in imaging, multi-photon absorption has been used as a tool for the selective disruption of neural processes and blood vessels in living animals. In this review we present some basic features of multi-photon nanosurgery and we illustrate the advantages offered by this novel methodology in neuroscience research. We show how the spatial localization of multi-photon excitation can be exploited to perform selective lesions on cortical neurons in living mice expressing fluorescent proteins. This methodology is applied to disrupt a single neuron without causing any visible collateral damage to the surrounding structures. The spatial precision of this method allows to dissect single processes as well as individual dendritic spines, preserving the structural integrity of the main neuronal arbor. The same approach can be used to breach the blood-brain barrier through a targeted photo-disruption of blood vessels walls. We show how the vascular system can be perturbed through laser ablation leading toward two different models of stroke: intravascular clot and extravasation. Following the temporal evolution of the injured system (either a neuron or a blood vessel) through time lapse in vivo imaging, the physiological response of the target structure and the rearrangement of the surrounding area can be characterized. Multi-photon nanosurgery in live brain represents a useful tool to produce different models of neurodegenerative disease.</p>","PeriodicalId":88242,"journal":{"name":"Frontiers in neuroenergetics","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fnene.2010.00021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29202910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-07-30eCollection Date: 2010-01-01DOI: 10.3389/fnene.2010.00019
Janos Luckl, Wesley Baker, Zheng-Hui Sun, Turgut Durduran, Arjun G Yodh, Joel H Greenberg
Our group has already published the possible neuroprotective effect of contralateral forepaw stimulation in temporary focal ischemia in a study. However, the background is still unclear. In the present study we investigated the possible mechanism by monitoring focal ischemia with multispectral [laser speckle, imaging of intrinsic signals (OIS)] imaging. Sprague-Dawley rats were prepared using 1.2% isoflurane anesthesia. The middle cerebral artery was occluded by photothrombosis (4 mW) and the common carotid artery was ligated permanently. Physiological variables were constantly monitored during the experiment. A 6 x 6 mm area centered 3 mm posterior and 4 mm lateral to Bregma was thinned for laser speckle and OIS imaging. Nine circular regions of interests (0.3 mm in diameter) were evenly spaced on the speckle contrast image for the analysis of peri-infarct flow transients, blood flow, and metabolic changes. Both the sham (n = 7) and forepaw-stimulated animals (n = 7) underwent neurological examinations 24 h after ischemia at which point all animals were sacrificed and the infarct size was determined by triphenyltetrazolium chloride. The physiological variables were in normal range and the experimental protocol did not cause significant differences between groups. Both the neurological scores (sham: 3.6 +/- 1.7, stimulated: 4.3 +/- 1.4) and the infarct volume (sham: 124 +/- 39 mm(3), stimulated: 147 +/- 47 mm(3)) did not show significant differences between groups. The forepaw stimulation did not increase the intra-ischemic flow neither over the penumbral or the peri-ischemic area. However, the hemoglobin transients related metabolic load (CMRO(2)) was significantly lower (p < 0.001) while the averaged number of hyperemic flow transients were significantly (p = 0.013) higher in the forepaw (sham: 3.5 +/- 2.2, stimulated: 7.0 +/- 2.3) stimulated animals.
{"title":"The biological effect of contralateral forepaw stimulation in rat focal cerebral ischemia: a multispectral optical imaging study.","authors":"Janos Luckl, Wesley Baker, Zheng-Hui Sun, Turgut Durduran, Arjun G Yodh, Joel H Greenberg","doi":"10.3389/fnene.2010.00019","DOIUrl":"https://doi.org/10.3389/fnene.2010.00019","url":null,"abstract":"<p><p>Our group has already published the possible neuroprotective effect of contralateral forepaw stimulation in temporary focal ischemia in a study. However, the background is still unclear. In the present study we investigated the possible mechanism by monitoring focal ischemia with multispectral [laser speckle, imaging of intrinsic signals (OIS)] imaging. Sprague-Dawley rats were prepared using 1.2% isoflurane anesthesia. The middle cerebral artery was occluded by photothrombosis (4 mW) and the common carotid artery was ligated permanently. Physiological variables were constantly monitored during the experiment. A 6 x 6 mm area centered 3 mm posterior and 4 mm lateral to Bregma was thinned for laser speckle and OIS imaging. Nine circular regions of interests (0.3 mm in diameter) were evenly spaced on the speckle contrast image for the analysis of peri-infarct flow transients, blood flow, and metabolic changes. Both the sham (n = 7) and forepaw-stimulated animals (n = 7) underwent neurological examinations 24 h after ischemia at which point all animals were sacrificed and the infarct size was determined by triphenyltetrazolium chloride. The physiological variables were in normal range and the experimental protocol did not cause significant differences between groups. Both the neurological scores (sham: 3.6 +/- 1.7, stimulated: 4.3 +/- 1.4) and the infarct volume (sham: 124 +/- 39 mm(3), stimulated: 147 +/- 47 mm(3)) did not show significant differences between groups. The forepaw stimulation did not increase the intra-ischemic flow neither over the penumbral or the peri-ischemic area. However, the hemoglobin transients related metabolic load (CMRO(2)) was significantly lower (p < 0.001) while the averaged number of hyperemic flow transients were significantly (p = 0.013) higher in the forepaw (sham: 3.5 +/- 2.2, stimulated: 7.0 +/- 2.3) stimulated animals.</p>","PeriodicalId":88242,"journal":{"name":"Frontiers in neuroenergetics","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fnene.2010.00019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29202909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}