Cristina Rosa, Shizuo G Kamita, Haley Dequine, Ha Wuriyanghan, John A Lindbo, Bryce W Falk
The xylem feeding leafhopper Homalodisaca vitripennis (H. vitripennis) is an unusually robust and efficient vector of Xylella fastidiosa, a Gram-negative bacterium which causes several very important plant diseases. Here we investigated RNA interference (RNAi) to target actin, a key component of insect cells and whole bodies, in H. vitripennis cells. RNAi effectors were delivered via lipid based transfection and real-time RT-PCR, RNA hybridization, and microscopic analyses were employed to verify RNAi effects. When actin dsRNAs were used, a 10-fold decrease in the target H. vitripennis actin mRNA level was seen in cells. Altered phenotypic effects also were evident in transfected cells, as were small interfering RNAs, hallmarks of RNAi. The use of H. vitripennis cells and RNAi offers new opportunities to research hemipterans, the most important insect vectors of plant pathogens.
{"title":"RNAi effects on actin mRNAs in Homalodisca vitripennis cells.","authors":"Cristina Rosa, Shizuo G Kamita, Haley Dequine, Ha Wuriyanghan, John A Lindbo, Bryce W Falk","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The xylem feeding leafhopper Homalodisaca vitripennis (H. vitripennis) is an unusually robust and efficient vector of Xylella fastidiosa, a Gram-negative bacterium which causes several very important plant diseases. Here we investigated RNA interference (RNAi) to target actin, a key component of insect cells and whole bodies, in H. vitripennis cells. RNAi effectors were delivered via lipid based transfection and real-time RT-PCR, RNA hybridization, and microscopic analyses were employed to verify RNAi effects. When actin dsRNAs were used, a 10-fold decrease in the target H. vitripennis actin mRNA level was seen in cells. Altered phenotypic effects also were evident in transfected cells, as were small interfering RNAs, hallmarks of RNAi. The use of H. vitripennis cells and RNAi offers new opportunities to research hemipterans, the most important insect vectors of plant pathogens.</p>","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"6 1","pages":"361-6"},"PeriodicalIF":0.0,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/06/70/jrgs-06-361.PMC2902141.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29121515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"miRiam: a reliable unsupervised method for detecting miRNA binding sites on mRNAs: April 2010 release.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"6 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29121514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Markus Zumbansen, Ludger M Altrogge, Nicole Ue Spottke, Sonja Spicker, Sheila M Offizier, Sandra Bs Domzalski, Allison L St Amand, Andrea Toell, Devin Leake, Herbert A Mueller-Hartmann
Meaningful RNAi-based data for target gene identification are strongly dependent on the use of a biologically relevant cell type and efficient delivery of highly functional siRNA reagents into the selected cell type. Here we report the use of the Amaxa(R) Nucleofector(R) 96-well Shuttle(R) System for siRNA screening in primary cells. Lonza's Clonetics(R) HUVEC-Human Umbilical Vein Endothelial Cells were transfected with Thermo Scientific Dharmacon siGENOME(R) siRNA Libraries targeting protein kinases and cell cycle related genes and screened for genes important for cell viability. Of the 37 primary hits, down-regulation of 33 led to reduced proliferation or increased cell death, while down-regulation of two allowed for better cell viability. The validated four genes out of the 16 strongest primary hits (COPB2, PYCS, CDK4 and MYC) influenced cell proliferation to varying degrees, reflecting differing importance for survival of HUVEC cells. Our results demonstrate that the Nucleofector(R) 96-well Shuttle(R) System allows the delivery of siRNA libraries in cell types previously considered to be difficult to transfect. Thus, identification and validation of gene targets can now be conducted in primary cells, as the selection of cell types is not limited to those accessible by lipid-mediated transfection.
{"title":"First siRNA library screening in hard-to-transfect HUVEC cells.","authors":"Markus Zumbansen, Ludger M Altrogge, Nicole Ue Spottke, Sonja Spicker, Sheila M Offizier, Sandra Bs Domzalski, Allison L St Amand, Andrea Toell, Devin Leake, Herbert A Mueller-Hartmann","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Meaningful RNAi-based data for target gene identification are strongly dependent on the use of a biologically relevant cell type and efficient delivery of highly functional siRNA reagents into the selected cell type. Here we report the use of the Amaxa(R) Nucleofector(R) 96-well Shuttle(R) System for siRNA screening in primary cells. Lonza's Clonetics(R) HUVEC-Human Umbilical Vein Endothelial Cells were transfected with Thermo Scientific Dharmacon siGENOME(R) siRNA Libraries targeting protein kinases and cell cycle related genes and screened for genes important for cell viability. Of the 37 primary hits, down-regulation of 33 led to reduced proliferation or increased cell death, while down-regulation of two allowed for better cell viability. The validated four genes out of the 16 strongest primary hits (COPB2, PYCS, CDK4 and MYC) influenced cell proliferation to varying degrees, reflecting differing importance for survival of HUVEC cells. Our results demonstrate that the Nucleofector(R) 96-well Shuttle(R) System allows the delivery of siRNA libraries in cell types previously considered to be difficult to transfect. Thus, identification and validation of gene targets can now be conducted in primary cells, as the selection of cell types is not limited to those accessible by lipid-mediated transfection.</p>","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"6 1","pages":"354-60"},"PeriodicalIF":0.0,"publicationDate":"2009-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1b/35/jrgs-06-354.PMC2902142.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29121513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"'mi'-nimal interference: Somatic cell reprogramming in cancer and therapy.","authors":"Graeme Doran","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"5 1","pages":"319-20"},"PeriodicalIF":0.0,"publicationDate":"2009-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5a/b2/jrgs-05-319.PMC2737231.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28415041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNAi has been used extensively to down-regulate proteins in adult mosquitoes; however, it is not well adapted for use in larvae. Larval mosquitoes can generate a pH as high as 10.5 in the anterior region of their midgut. The mechanisms responsible for the generation and maintenance of this pH are not entirely understood, but members of the carbonic anhydrase (CA) family of enzymes have been implicated. Here we use an An. gambiae larval cell line, Ag55 cells, to demonstrate that application of full-length double-stranded RNA specific to one CA, AgCA9, is sufficient to silence AgCA9 mRNA and down-regulate the corresponding protein. This is a first step towards determining the role(s) of these enzymes in pH regulation.
{"title":"Silencing of carbonic anhydrase in an Anopheles gambiae larval cell line, Ag55.","authors":"Kristin E Smith, Paul J Linser","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>RNAi has been used extensively to down-regulate proteins in adult mosquitoes; however, it is not well adapted for use in larvae. Larval mosquitoes can generate a pH as high as 10.5 in the anterior region of their midgut. The mechanisms responsible for the generation and maintenance of this pH are not entirely understood, but members of the carbonic anhydrase (CA) family of enzymes have been implicated. Here we use an An. gambiae larval cell line, Ag55 cells, to demonstrate that application of full-length double-stranded RNA specific to one CA, AgCA9, is sufficient to silence AgCA9 mRNA and down-regulate the corresponding protein. This is a first step towards determining the role(s) of these enzymes in pH regulation.</p>","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"5 1","pages":"345-50"},"PeriodicalIF":0.0,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/14/07/jrgs-05-345.PMC2737235.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28416104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-Li Liu, Douglas P Owen, Kerry D Fisher, Leonard W Seymour, Mark Stevenson
The use of small interfering RNA molecules for therapeutic applications requires development of improved delivery systems, a process that would be facilitated by a non-invasive positive-readout mouse model for studying siRNA pharmacodynamics. Positive readout would yield better signal/noise ratios than existing negative-readout systems. We have engineered a positive-readout luciferase reporter system, activated by successful delivery of siRNA targeting the lac repressor. Co-transfection of a plasmid expressing lac repressor and a plasmid expressing firefly luciferase under the control of an RSV promoter, containing two lac operator sites, resulted in 5.7-fold lower luciferase activity than luciferase-encoding plasmid alone. Inhibition was reversed following addition of synthetic inducer, IPTG, which elevated luciferase expression to normal levels and confirmed functionality of the lac operon. Delivery of 1nM siRNA targeting lac repressor to repressor/reporter co-transfected cells was sufficient to fully restore luciferase expression to levels observed in the absence of repressor. Maximum expression was observed after 48hr, with a rapid decrease thereafter due to the short half life of luciferase. The luciferase positive-readout reporter system is therefore a dynamic indicator of successful RNAi delivery in vitro and could be adapted to generate a transgenic mouse capable of reporting RNAi activity non-invasively in vivo.
{"title":"Establishment of a positive-readout reporter system for siRNAs.","authors":"Wei-Li Liu, Douglas P Owen, Kerry D Fisher, Leonard W Seymour, Mark Stevenson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The use of small interfering RNA molecules for therapeutic applications requires development of improved delivery systems, a process that would be facilitated by a non-invasive positive-readout mouse model for studying siRNA pharmacodynamics. Positive readout would yield better signal/noise ratios than existing negative-readout systems. We have engineered a positive-readout luciferase reporter system, activated by successful delivery of siRNA targeting the lac repressor. Co-transfection of a plasmid expressing lac repressor and a plasmid expressing firefly luciferase under the control of an RSV promoter, containing two lac operator sites, resulted in 5.7-fold lower luciferase activity than luciferase-encoding plasmid alone. Inhibition was reversed following addition of synthetic inducer, IPTG, which elevated luciferase expression to normal levels and confirmed functionality of the lac operon. Delivery of 1nM siRNA targeting lac repressor to repressor/reporter co-transfected cells was sufficient to fully restore luciferase expression to levels observed in the absence of repressor. Maximum expression was observed after 48hr, with a rapid decrease thereafter due to the short half life of luciferase. The luciferase positive-readout reporter system is therefore a dynamic indicator of successful RNAi delivery in vitro and could be adapted to generate a transgenic mouse capable of reporting RNAi activity non-invasively in vivo.</p>","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"5 1","pages":"331-8"},"PeriodicalIF":0.0,"publicationDate":"2009-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e8/91/jrgs-05-331.PMC2737236.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28416102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-coding RNAs: Bridging Biology and Therapy.","authors":"Daniel P C Shreve, David R F Carter","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"5 1","pages":"351-3"},"PeriodicalIF":0.0,"publicationDate":"2009-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fb/73/jrgs-05-351.PMC2737233.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28416105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glen Reid, Natacha Coppieters 't Wallant, Rachna Patel, Ana Antonic, Faamatala Saxon-Aliifaalogo, Helen Cao, Gill Webster, James D Watson
Ribonucleotide reductase (RR) has an essential role in DNA synthesis and repair and is a therapeutic target in a number of different cancers. Previous studies have shown that RNAi-mediated knockdown of either the RRM1 or RRM2 subunit sensitizes cells to the cytotoxic effects of the nucleoside analogs and more recently it has been shown that RRM2 knockdown itself has a growth inhibitory effect. Here we compare the effects of siRNA-mediated knockdown of both RRM1 and RRM2 subunits of RR in A549 and HCT-116 cells using an optimized transfection protocol. Growth of A549 cells was strongly inhibited by efficient siRNA-mediated silencing of either RRM1 or RRM2, and knockdown of each subunit led to long-term growth inhibition and cell-cycle arrest. Knockdown with sub growth inhibitory siRNA concentrations sensitized A549 and HCT-116 cells to gemcitabine when RRM1 was targeted, whereas RRM2 knockdown led to hydroxyurea sensitization. These results suggest that the inhibition of cell growth, rather than drug sensitization, is the major effect of RRM1 and RRM2 knockdown. In an A549 xenograft model, cells transfected with RRM1-specific siRNA failed to form tumors in 6 out of 8 CD1 nude mice, whereas those transfected with RRM2-specific siRNA grew but at a reduced rate. Taken together, these data demonstrate that siRNA-mediated knockdown of the RRM1 subunit is more effective than knockdown of RRM2 in inhibiting the growth of cancer cell lines and suggest that RRM1 is a potential target for nucleic acid-based cancer therapies, either alone or in combination with gemcitabine.
{"title":"Potent subunit-specific effects on cell growth and drug sensitivity from optimised siRNA-mediated silencing of ribonucleotide reductase.","authors":"Glen Reid, Natacha Coppieters 't Wallant, Rachna Patel, Ana Antonic, Faamatala Saxon-Aliifaalogo, Helen Cao, Gill Webster, James D Watson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Ribonucleotide reductase (RR) has an essential role in DNA synthesis and repair and is a therapeutic target in a number of different cancers. Previous studies have shown that RNAi-mediated knockdown of either the RRM1 or RRM2 subunit sensitizes cells to the cytotoxic effects of the nucleoside analogs and more recently it has been shown that RRM2 knockdown itself has a growth inhibitory effect. Here we compare the effects of siRNA-mediated knockdown of both RRM1 and RRM2 subunits of RR in A549 and HCT-116 cells using an optimized transfection protocol. Growth of A549 cells was strongly inhibited by efficient siRNA-mediated silencing of either RRM1 or RRM2, and knockdown of each subunit led to long-term growth inhibition and cell-cycle arrest. Knockdown with sub growth inhibitory siRNA concentrations sensitized A549 and HCT-116 cells to gemcitabine when RRM1 was targeted, whereas RRM2 knockdown led to hydroxyurea sensitization. These results suggest that the inhibition of cell growth, rather than drug sensitization, is the major effect of RRM1 and RRM2 knockdown. In an A549 xenograft model, cells transfected with RRM1-specific siRNA failed to form tumors in 6 out of 8 CD1 nude mice, whereas those transfected with RRM2-specific siRNA grew but at a reduced rate. Taken together, these data demonstrate that siRNA-mediated knockdown of the RRM1 subunit is more effective than knockdown of RRM2 in inhibiting the growth of cancer cell lines and suggest that RRM1 is a potential target for nucleic acid-based cancer therapies, either alone or in combination with gemcitabine.</p>","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"5 1","pages":"321-30"},"PeriodicalIF":0.0,"publicationDate":"2009-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b0/84/jrgs-05-321.PMC2737234.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28415042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The proto-oncogene c-kit plays an important role in the development and survival of mast cells. Gain-of-function mutations in c-kit are one of the most characteristic events in mast cell leukemia (MCL) but as yet there is no clinically approved treatment for the disease. Here we describe growth inhibition of human MCL cell lines by the use of RNAi against c-kit or its mutant form. Retroviral transduction of HMC1.1 and HMC1.2 cell lines with vectors carrying DNA to be transcribed to RNAi against the wild type or mutant c-kit messengers reduced Kit protein levels considerably, decreased cell proliferation, and increased the apoptotic levels five days after retroviral infection. Thus RNAi targeted against Kit or its mutant form could be considered as a new antiproliferative agent against human mast leukemia cell lines, especially HMC1.2 cells which are resistant to the Kit tyrosine kinase inhibitor, imatinib mesylate.
{"title":"Selective RNAi-mediated inhibition of mutated c-kit.","authors":"Irene Ruano, Marta Izquierdo","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The proto-oncogene c-kit plays an important role in the development and survival of mast cells. Gain-of-function mutations in c-kit are one of the most characteristic events in mast cell leukemia (MCL) but as yet there is no clinically approved treatment for the disease. Here we describe growth inhibition of human MCL cell lines by the use of RNAi against c-kit or its mutant form. Retroviral transduction of HMC1.1 and HMC1.2 cell lines with vectors carrying DNA to be transcribed to RNAi against the wild type or mutant c-kit messengers reduced Kit protein levels considerably, decreased cell proliferation, and increased the apoptotic levels five days after retroviral infection. Thus RNAi targeted against Kit or its mutant form could be considered as a new antiproliferative agent against human mast leukemia cell lines, especially HMC1.2 cells which are resistant to the Kit tyrosine kinase inhibitor, imatinib mesylate.</p>","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"5 1","pages":"339-44"},"PeriodicalIF":0.0,"publicationDate":"2009-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/67/a8/jrgs-05-339.PMC2737232.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28416103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNAi at Oxford.","authors":"Masa Aleckovic, David Carter","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"4 1","pages":"266-8"},"PeriodicalIF":0.0,"publicationDate":"2008-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4d/96/jrgs-04-266.PMC2737242.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28416108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}