Caveolae are specialized cell membrane invaginations known to regulate several cancer cell functions and oncogenic signaling pathways. Among other caveolar proteins, they are characterized by the presence of proteins of the cavin family. In this study, we assessed the impact of cavin-1, cavin-2, and cavin-3 on cell migration in a human HT-1080 fibrosarcoma model. We found that all cavin-1, -2 and -3 transcripts were expressed and that treatment with phorbol 12-myristate 13-acetate (PMA), which is known to prime cell migration and proliferation, specifically upregulated cavin-3 gene and protein expression. PMA also triggered matrix metalloproteinase (MMP)-9 secretion, but reduced the global cell migration index. Overexpression of recombinant forms of the three cavins demonstrated that only cavin-3 was able to reduce basal cell migration, and this anti-migratory effect was potentiated by PMA. Interestingly, cavin-3 overexpression inhibited PMA-induced MMP-9, while cavin-3 gene silencing led to an increase in MMP-9 gene expression and secretion. Furthermore, recombinant cavin-3 significantly prevented PMA-mediated dephosphorylation of AKT, a crucial regulator in MMP-9 transcription. In conclusion, our results demonstrate that cellular cavin-3 expression may repress MMP-9 transcriptional regulation in part through AKT. We suggest that the balance in cavin-3-to-MMP-9 expression regulates the extent of extracellular matrix degradation, confirming the tumor-suppressive role of cavin-3 in controlling the invasive potential of human fibrosarcoma cells.
{"title":"A Role for the Cavin-3/Matrix Metalloproteinase-9 Signaling Axis in the Regulation of PMA-Activated Human HT1080 Fibrosarcoma Cell Neoplastic Phenotype.","authors":"Chirine Toufaily, Cyndia Charfi, Bayader Annabi, Borhane Annabi","doi":"10.4137/CGM.S18581","DOIUrl":"https://doi.org/10.4137/CGM.S18581","url":null,"abstract":"<p><p>Caveolae are specialized cell membrane invaginations known to regulate several cancer cell functions and oncogenic signaling pathways. Among other caveolar proteins, they are characterized by the presence of proteins of the cavin family. In this study, we assessed the impact of cavin-1, cavin-2, and cavin-3 on cell migration in a human HT-1080 fibrosarcoma model. We found that all cavin-1, -2 and -3 transcripts were expressed and that treatment with phorbol 12-myristate 13-acetate (PMA), which is known to prime cell migration and proliferation, specifically upregulated cavin-3 gene and protein expression. PMA also triggered matrix metalloproteinase (MMP)-9 secretion, but reduced the global cell migration index. Overexpression of recombinant forms of the three cavins demonstrated that only cavin-3 was able to reduce basal cell migration, and this anti-migratory effect was potentiated by PMA. Interestingly, cavin-3 overexpression inhibited PMA-induced MMP-9, while cavin-3 gene silencing led to an increase in MMP-9 gene expression and secretion. Furthermore, recombinant cavin-3 significantly prevented PMA-mediated dephosphorylation of AKT, a crucial regulator in MMP-9 transcription. In conclusion, our results demonstrate that cellular cavin-3 expression may repress MMP-9 transcriptional regulation in part through AKT. We suggest that the balance in cavin-3-to-MMP-9 expression regulates the extent of extracellular matrix degradation, confirming the tumor-suppressive role of cavin-3 in controlling the invasive potential of human fibrosarcoma cells. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"7 ","pages":"43-51"},"PeriodicalIF":0.0,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CGM.S18581","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32918919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-08-10eCollection Date: 2014-01-01DOI: 10.4137/CGM.S16817
Abdul Hameed, Jennifer J Brady, Paul Dowling, Martin Clynes, Peter O'Gorman
Myeloma bone disease (MBD) is a devastating complication of multiple myeloma (MM). More than 80% of MM patients suffer from destructive bony lesions, leading to pain, fractures, mobility issues, and neurological deficits. MBD is not only a main cause of disability and morbidity in MM patients but also increases the cost of management. Bone destruction and lack of bone formation are main factors in the development of MBD. Some novel factors are found to be involved in the pathogenesis of MBD, eg, receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) system (RANKL/OPG), Wingless (Wnt), dickkopf-1 (Wnt/DKK1) pathway. The addition of novel agents in the treatment of MM, use of bisphosphonates and other supportive modalities such as radiotherapy, vertebroplasty/kyphoplasty, and surgical interventions, all have significant roles in the treatment of MBD. This review provides an overview on the pathophysiology and management of MBD.
{"title":"Bone disease in multiple myeloma: pathophysiology and management.","authors":"Abdul Hameed, Jennifer J Brady, Paul Dowling, Martin Clynes, Peter O'Gorman","doi":"10.4137/CGM.S16817","DOIUrl":"https://doi.org/10.4137/CGM.S16817","url":null,"abstract":"<p><p>Myeloma bone disease (MBD) is a devastating complication of multiple myeloma (MM). More than 80% of MM patients suffer from destructive bony lesions, leading to pain, fractures, mobility issues, and neurological deficits. MBD is not only a main cause of disability and morbidity in MM patients but also increases the cost of management. Bone destruction and lack of bone formation are main factors in the development of MBD. Some novel factors are found to be involved in the pathogenesis of MBD, eg, receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) system (RANKL/OPG), Wingless (Wnt), dickkopf-1 (Wnt/DKK1) pathway. The addition of novel agents in the treatment of MM, use of bisphosphonates and other supportive modalities such as radiotherapy, vertebroplasty/kyphoplasty, and surgical interventions, all have significant roles in the treatment of MBD. This review provides an overview on the pathophysiology and management of MBD. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"7 ","pages":"33-42"},"PeriodicalIF":0.0,"publicationDate":"2014-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CGM.S16817","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32639623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-06-19eCollection Date: 2014-01-01DOI: 10.4137/CGM.S14501
Patrick C Hackler, Sarah Reuss, Raymond L Konger, Jeffrey B Travers, Ravi P Sahu
Pro-oxidative stressors including cigarette smoke (CS) generate novel lipids with platelet-activated factor-receptor (PAF-R) agonistic activity mediate systemic immunosuppression, one of the most recognized events in promoting carcinogenesis. Our previous studies have established that these oxidized-PAF-R-agonists augment murine B16F10 melanoma tumor growth in a PAF-R-dependent manner because of its effects on host immunity. As CS generates PAF-R agonists, the current studies sought to determine the impact of PAF-R agonists on lung cancer growth and metastasis. Using the murine Lewis Lung Carcinoma (LLC1) model, we demonstrate that treatment of C57BL/6 mice with a PAF-R agonist augments tumor growth and lung metastasis in a PAF-R-dependent manner as these findings were not seen in PAF-R-deficient mice. Importantly, this effect was because of host rather than tumor cells PAF-R dependent as LLC1 cells do not express functional PAF-R. These findings indicate that experimental lung cancer progression can be modulated by the PAF system.
{"title":"Systemic Platelet-activating Factor Receptor Activation Augments Experimental Lung Tumor Growth and Metastasis.","authors":"Patrick C Hackler, Sarah Reuss, Raymond L Konger, Jeffrey B Travers, Ravi P Sahu","doi":"10.4137/CGM.S14501","DOIUrl":"https://doi.org/10.4137/CGM.S14501","url":null,"abstract":"<p><p>Pro-oxidative stressors including cigarette smoke (CS) generate novel lipids with platelet-activated factor-receptor (PAF-R) agonistic activity mediate systemic immunosuppression, one of the most recognized events in promoting carcinogenesis. Our previous studies have established that these oxidized-PAF-R-agonists augment murine B16F10 melanoma tumor growth in a PAF-R-dependent manner because of its effects on host immunity. As CS generates PAF-R agonists, the current studies sought to determine the impact of PAF-R agonists on lung cancer growth and metastasis. Using the murine Lewis Lung Carcinoma (LLC1) model, we demonstrate that treatment of C57BL/6 mice with a PAF-R agonist augments tumor growth and lung metastasis in a PAF-R-dependent manner as these findings were not seen in PAF-R-deficient mice. Importantly, this effect was because of host rather than tumor cells PAF-R dependent as LLC1 cells do not express functional PAF-R. These findings indicate that experimental lung cancer progression can be modulated by the PAF system. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"7 ","pages":"27-32"},"PeriodicalIF":0.0,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CGM.S14501","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32488179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-06-10eCollection Date: 2014-01-01DOI: 10.4137/CGM.S11288
Kristin R Landis-Piwowar, Neena R Iyer
The aim of cancer chemoprevention is disruption or delay of the molecular pathways that lead to carcinogenesis. Chemopreventive blocking and/or suppressing agents disrupt the molecular mechanisms that drive carcinogenesis such as DNA damage by reactive oxygen species, increased signal transduction to NF-κB, epigenomic deregulation, and the epithelial mesenchymal transition that leads to metastatic progression. Numerous dietary phytochemicals have been observed to inhibit the initiation phase of carcinogenesis, and therefore are useful in primary chemoprevention. Moreover, phytochemicals are capable of interfering with the molecular mechanisms of metastasis. Likewise, numerous synthetic compounds are relevant and clinically viable as chemopreventive agents during the fundamental stages of carcinogenesis. While molecularly targeted anti-cancer therapies are in constant stages of development, superior patient outcomes are observed if carcinogenic processes are prevented altogether. This article reviews the role of chemopreventive compounds in inhibition of cancer initiation and their ability to reduce cancer progression.
{"title":"Cancer chemoprevention: current state of the art.","authors":"Kristin R Landis-Piwowar, Neena R Iyer","doi":"10.4137/CGM.S11288","DOIUrl":"https://doi.org/10.4137/CGM.S11288","url":null,"abstract":"<p><p>The aim of cancer chemoprevention is disruption or delay of the molecular pathways that lead to carcinogenesis. Chemopreventive blocking and/or suppressing agents disrupt the molecular mechanisms that drive carcinogenesis such as DNA damage by reactive oxygen species, increased signal transduction to NF-κB, epigenomic deregulation, and the epithelial mesenchymal transition that leads to metastatic progression. Numerous dietary phytochemicals have been observed to inhibit the initiation phase of carcinogenesis, and therefore are useful in primary chemoprevention. Moreover, phytochemicals are capable of interfering with the molecular mechanisms of metastasis. Likewise, numerous synthetic compounds are relevant and clinically viable as chemopreventive agents during the fundamental stages of carcinogenesis. While molecularly targeted anti-cancer therapies are in constant stages of development, superior patient outcomes are observed if carcinogenic processes are prevented altogether. This article reviews the role of chemopreventive compounds in inhibition of cancer initiation and their ability to reduce cancer progression. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"7 ","pages":"19-25"},"PeriodicalIF":0.0,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CGM.S11288","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32474345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-06-02eCollection Date: 2014-01-01DOI: 10.4137/CGM.S11285
Hadi A Goubran, Rami R Kotb, Julie Stakiw, Mohamed E Emara, Thierry Burnouf
The presence of abnormal cells with malignant potential or neoplastic characteristics is a relatively common phenomenon. The interaction of these abnormal cells with their microenvironment is essential for tumor development, protection from the body's immune or defence mechanisms, later progression and the development of life-threatening or metastatic disease. The tumor microenvironment is a collective term that includes the tumor's surrounding and supportive stroma, the different effectors of the immune system, blood platelets, hormones and other humoral factors. A better understanding of the interplay between the tumor cells and its microenvironment can provide efficient tools for cancer management, as well as better prevention, screening and risk assessment protocols.
{"title":"Regulation of tumor growth and metastasis: the role of tumor microenvironment.","authors":"Hadi A Goubran, Rami R Kotb, Julie Stakiw, Mohamed E Emara, Thierry Burnouf","doi":"10.4137/CGM.S11285","DOIUrl":"10.4137/CGM.S11285","url":null,"abstract":"<p><p>The presence of abnormal cells with malignant potential or neoplastic characteristics is a relatively common phenomenon. The interaction of these abnormal cells with their microenvironment is essential for tumor development, protection from the body's immune or defence mechanisms, later progression and the development of life-threatening or metastatic disease. The tumor microenvironment is a collective term that includes the tumor's surrounding and supportive stroma, the different effectors of the immune system, blood platelets, hormones and other humoral factors. A better understanding of the interplay between the tumor cells and its microenvironment can provide efficient tools for cancer management, as well as better prevention, screening and risk assessment protocols. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"7 ","pages":"9-18"},"PeriodicalIF":0.0,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32419793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, we have reviewed current literature regarding the regulation of hepatocellular carcinoma (HCC) by the interaction of malignant hepatocytes and their tissue environment through cytokine signaling, here represented by transforming growth factor-beta (TGF-β) signaling. We have discussed responses of TGF-β signaling in transition of hepatic stellate cells to myofibroblasts (MFBs), recruitment of tumor-associated macrophages (TAMs), and enrichment of tumor-associated endothelial cells (TECs). The malignant hepatocytes also secrete various factors such as platelet-derived growth factors (PDGFs), vascular endothelial growth factor (VEGF), and TGF-β. TGF-β, a super-family of cytokines, creates tumor microenvironment by interacting through other growth factors (epidermal growth factor receptor (EGFR), PDGF, fibroblast growth factor (FGF), hepatocyte growth factor (HGF), VEGF), cytokines and chemokines, and extracellular matrix (ECM) remodeling. Hence, the HCC tumor microenvironment may now be recognized as an important participant of tumor progression to act as potential target to systemic therapies compared to targeted therapies.
{"title":"TGF-β Mediated Crosstalk Between Malignant Hepatocyte and Tumor Microenvironment in Hepatocellular Carcinoma.","authors":"Devendra Kumar Gupta, Neetu Singh, Dinesh Kumar Sahu","doi":"10.4137/CGM.S14205","DOIUrl":"https://doi.org/10.4137/CGM.S14205","url":null,"abstract":"<p><p>In this article, we have reviewed current literature regarding the regulation of hepatocellular carcinoma (HCC) by the interaction of malignant hepatocytes and their tissue environment through cytokine signaling, here represented by transforming growth factor-beta (TGF-β) signaling. We have discussed responses of TGF-β signaling in transition of hepatic stellate cells to myofibroblasts (MFBs), recruitment of tumor-associated macrophages (TAMs), and enrichment of tumor-associated endothelial cells (TECs). The malignant hepatocytes also secrete various factors such as platelet-derived growth factors (PDGFs), vascular endothelial growth factor (VEGF), and TGF-β. TGF-β, a super-family of cytokines, creates tumor microenvironment by interacting through other growth factors (epidermal growth factor receptor (EGFR), PDGF, fibroblast growth factor (FGF), hepatocyte growth factor (HGF), VEGF), cytokines and chemokines, and extracellular matrix (ECM) remodeling. Hence, the HCC tumor microenvironment may now be recognized as an important participant of tumor progression to act as potential target to systemic therapies compared to targeted therapies. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"7 ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2014-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CGM.S14205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32269610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-11-27eCollection Date: 2013-01-01DOI: 10.4137/CGM.S12769
Sathana Dushyanthen, Davina A F Cossigny, Gerald M Y Quan
Prostate cancer (PC) is one of the most common cancers arising in men and has a high propensity for bone metastasis, particularly to the spine. At this stage, it often causes severe morbidity due to pathological fracture and/or metastatic epidural spinal cord compression which, if untreated, inevitably leads to intractable pain, neurological deficit, and paralysis. Unfortunately, the underlying molecular mechanisms driving growth of secondary PC in the bony vertebral column remain largely unknown. Further investigation is warranted in order to identify therapeutic targets in the future. This review summarizes the current understanding of PC bone metastasis in the spine, highlighting interactions between key tumor and bone-derived factors which influence tumor progression, especially the functional roles of osteoblasts and osteoclasts in the bone microenvironment through their interactions with metastatic PC cells and the critical pathway RANK/RANKL/OPG in bone destruction.
{"title":"The osteoblastic and osteoclastic interactions in spinal metastases secondary to prostate cancer.","authors":"Sathana Dushyanthen, Davina A F Cossigny, Gerald M Y Quan","doi":"10.4137/CGM.S12769","DOIUrl":"https://doi.org/10.4137/CGM.S12769","url":null,"abstract":"<p><p>Prostate cancer (PC) is one of the most common cancers arising in men and has a high propensity for bone metastasis, particularly to the spine. At this stage, it often causes severe morbidity due to pathological fracture and/or metastatic epidural spinal cord compression which, if untreated, inevitably leads to intractable pain, neurological deficit, and paralysis. Unfortunately, the underlying molecular mechanisms driving growth of secondary PC in the bony vertebral column remain largely unknown. Further investigation is warranted in order to identify therapeutic targets in the future. This review summarizes the current understanding of PC bone metastasis in the spine, highlighting interactions between key tumor and bone-derived factors which influence tumor progression, especially the functional roles of osteoblasts and osteoclasts in the bone microenvironment through their interactions with metastatic PC cells and the critical pathway RANK/RANKL/OPG in bone destruction. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"6 ","pages":"61-80"},"PeriodicalIF":0.0,"publicationDate":"2013-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CGM.S12769","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32204975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-08-20eCollection Date: 2013-01-01DOI: 10.4137/CGM.S11134
Liang Schweizer, Litao Zhang
The link between signaling pathways and diseases suggests the importance of pathway analysis for drug discovery. This includes target identification and validation, compound mode of action and drug candidate optimization. Here, we propose to apply cell signaling pathway panel approaches for oncology drug discovery. The strategies and guiding principles of the pathway panel approach are discussed. 2 pathway analysis examples with related processes and technology platforms are illustrated to identify cancer drugs that target cancer growth and metastasis. Finally, we highlight potential challenges and opportunities presented by the pathway panel approach.
{"title":"Enhancing Cancer Drug Discovery through Novel Cell Signaling Pathway Panel Strategy.","authors":"Liang Schweizer, Litao Zhang","doi":"10.4137/CGM.S11134","DOIUrl":"https://doi.org/10.4137/CGM.S11134","url":null,"abstract":"<p><p>The link between signaling pathways and diseases suggests the importance of pathway analysis for drug discovery. This includes target identification and validation, compound mode of action and drug candidate optimization. Here, we propose to apply cell signaling pathway panel approaches for oncology drug discovery. The strategies and guiding principles of the pathway panel approach are discussed. 2 pathway analysis examples with related processes and technology platforms are illustrated to identify cancer drugs that target cancer growth and metastasis. Finally, we highlight potential challenges and opportunities presented by the pathway panel approach. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"6 ","pages":"53-9"},"PeriodicalIF":0.0,"publicationDate":"2013-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CGM.S11134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32205050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-08-08eCollection Date: 2013-01-01DOI: 10.4137/CGM.S11113
Stefanie Kewitz, Ines Volkmer, Martin S Staege
Curcumin, a phytochemical isolated from curcuma plants which are used as coloring ingredient for the preparation of curry powder, has several activities which suggest that it might be an interesting drug for the treatment or prevention of cancer. Curcumin targets different pathways which are involved in the malignant phenotype of tumor cells, including the nuclear factor kappa B (NFKB) pathway. This pathway is deregulated in multiple tumor entities, including Hodgkin's lymphoma (HL). Indeed, curcumin can inhibit growth of HL cell lines and increases the sensitivity of these cells for cisplatin. In this review we summarize curcumin activities with special focus on possible activities against HL cells.
姜黄素是从姜黄植物中分离出来的一种植物化学物质,它被用作咖喱粉的着色成分,它的一些活性表明它可能是一种治疗或预防癌症的有趣药物。姜黄素作用于参与肿瘤细胞恶性表型的不同通路,包括核因子κ B (NFKB)通路。该通路在多种肿瘤实体中不受调控,包括霍奇金淋巴瘤(HL)。事实上,姜黄素可以抑制HL细胞系的生长,并增加这些细胞对顺铂的敏感性。本文就姜黄素的活性进行综述,重点介绍姜黄素对HL细胞的可能活性。
{"title":"Curcuma Contra Cancer? Curcumin and Hodgkin's Lymphoma.","authors":"Stefanie Kewitz, Ines Volkmer, Martin S Staege","doi":"10.4137/CGM.S11113","DOIUrl":"https://doi.org/10.4137/CGM.S11113","url":null,"abstract":"<p><p>Curcumin, a phytochemical isolated from curcuma plants which are used as coloring ingredient for the preparation of curry powder, has several activities which suggest that it might be an interesting drug for the treatment or prevention of cancer. Curcumin targets different pathways which are involved in the malignant phenotype of tumor cells, including the nuclear factor kappa B (NFKB) pathway. This pathway is deregulated in multiple tumor entities, including Hodgkin's lymphoma (HL). Indeed, curcumin can inhibit growth of HL cell lines and increases the sensitivity of these cells for cisplatin. In this review we summarize curcumin activities with special focus on possible activities against HL cells. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"6 ","pages":"35-52"},"PeriodicalIF":0.0,"publicationDate":"2013-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CGM.S11113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32205051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-08-01eCollection Date: 2013-01-01DOI: 10.4137/CGM.S11284
Catherine Hibberd, Davina A F Cossigny, Gerald M Y Quan
The bony skeleton is one of the most common sites of metastatic spread of cancer and is a significant source of morbidity in cancer patients, causing pain and pathologic fracture, impaired ambulatory ability, and poorer quality of life. Animal cancer models of skeletal metastases are essential for better understanding of the molecular pathways behind metastatic spread and local growth and invasion of bone, to enable analysis of host-tumor cell interactions, identify barriers to the metastatic process, and to provide platforms to develop and test novel therapies prior to clinical application in human patients. Thus, the ideal model should be clinically relevant, reproducible and representative of the human condition. This review summarizes the current in vivo animal models used in the study of cancer metastases of the skeleton.
{"title":"Animal cancer models of skeletal metastasis.","authors":"Catherine Hibberd, Davina A F Cossigny, Gerald M Y Quan","doi":"10.4137/CGM.S11284","DOIUrl":"https://doi.org/10.4137/CGM.S11284","url":null,"abstract":"<p><p>The bony skeleton is one of the most common sites of metastatic spread of cancer and is a significant source of morbidity in cancer patients, causing pain and pathologic fracture, impaired ambulatory ability, and poorer quality of life. Animal cancer models of skeletal metastases are essential for better understanding of the molecular pathways behind metastatic spread and local growth and invasion of bone, to enable analysis of host-tumor cell interactions, identify barriers to the metastatic process, and to provide platforms to develop and test novel therapies prior to clinical application in human patients. Thus, the ideal model should be clinically relevant, reproducible and representative of the human condition. This review summarizes the current in vivo animal models used in the study of cancer metastases of the skeleton. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"6 ","pages":"23-34"},"PeriodicalIF":0.0,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CGM.S11284","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32205049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}