首页 > 最新文献

Biological Chemistry最新文献

英文 中文
Platelet-derived growth factor-stimulated pulmonary artery smooth muscle cells regulate pulmonary artery endothelial cell dysfunction through extracellular vesicle miR-409-5p. 血小板衍生生长因子刺激的肺动脉平滑肌细胞通过细胞外小泡miR-409-5p调节肺动脉内皮细胞功能障碍。
IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-31 Print Date: 2024-03-25 DOI: 10.1515/hsz-2023-0222
Jeongyeon Heo, Hara Kang

Platelet-derived growth factor (PDGF)-induced changes in vascular smooth muscle cells (VSMCs) stimulate vascular remodeling, resulting in vascular diseases such as pulmonary arterial hypertension. VSMCs communicate with endothelial cells through extracellular vesicles (EVs) carrying cargos, including microRNAs. To understand the molecular mechanisms through which PDGF-stimulated pulmonary artery smooth muscle cells (PASMCs) interact with pulmonary artery endothelial cells (PAECs) under pathological conditions, we investigated the crosstalk between PASMCs and PAECs via extracellular vesicle miR-409-5p under PDGF stimulation. miR-409-5p expression was upregulated in PASMCs upon PDGF signaling, and it was released into EVs. The elevated expression of miR-409-5p was transported to PAECs and led to their impaired function, including reduced NO release, which consequentially resulted in enhanced PASMC proliferation. We propose that the positive regulatory loop of PASMC-extracellular vesicle miR-409-5p-PAEC is a potential mechanism underlying the proliferation of PASMCs under PDGF stimulation. Therefore, miR-409-5p may be a novel therapeutic target for the treatment of vascular diseases, including pulmonary arterial hypertension.

血小板衍生生长因子(PDGF)诱导的血管平滑肌细胞(VSMCs)变化刺激血管重塑,导致肺动脉高压等血管疾病。VSMCs通过携带货物(包括微小RNA)的细胞外小泡(EV)与内皮细胞通信。为了了解病理条件下PDGF刺激的肺动脉平滑肌细胞(PASMC)与肺动脉内皮细胞(PAEC)相互作用的分子机制,我们研究了PDGF刺激下PASMC和PAEC之间通过细胞外小泡miR-409-5p的串扰。miR-409-5p在PASMC中的表达在PDGF信号传导后上调,并释放到EV中。miR-409-5p的表达升高被转运到PAEC,并导致其功能受损,包括NO释放减少,从而导致PASMC增殖增强。我们认为PASMC细胞外小泡miR-409-5p-PAEC的正调控环是PDGF刺激下PASMC增殖的潜在机制。因此,miR-409-5p可能是治疗血管疾病的新靶点,包括肺动脉高压。
{"title":"Platelet-derived growth factor-stimulated pulmonary artery smooth muscle cells regulate pulmonary artery endothelial cell dysfunction through extracellular vesicle miR-409-5p.","authors":"Jeongyeon Heo, Hara Kang","doi":"10.1515/hsz-2023-0222","DOIUrl":"10.1515/hsz-2023-0222","url":null,"abstract":"<p><p>Platelet-derived growth factor (PDGF)-induced changes in vascular smooth muscle cells (VSMCs) stimulate vascular remodeling, resulting in vascular diseases such as pulmonary arterial hypertension. VSMCs communicate with endothelial cells through extracellular vesicles (EVs) carrying cargos, including microRNAs. To understand the molecular mechanisms through which PDGF-stimulated pulmonary artery smooth muscle cells (PASMCs) interact with pulmonary artery endothelial cells (PAECs) under pathological conditions, we investigated the crosstalk between PASMCs and PAECs via extracellular vesicle miR-409-5p under PDGF stimulation. miR-409-5p expression was upregulated in PASMCs upon PDGF signaling, and it was released into EVs. The elevated expression of miR-409-5p was transported to PAECs and led to their impaired function, including reduced NO release, which consequentially resulted in enhanced PASMC proliferation. We propose that the positive regulatory loop of PASMC-extracellular vesicle miR-409-5p-PAEC is a potential mechanism underlying the proliferation of PASMCs under PDGF stimulation. Therefore, miR-409-5p may be a novel therapeutic target for the treatment of vascular diseases, including pulmonary arterial hypertension.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"203-215"},"PeriodicalIF":2.9,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cathepsin L-mediated EGFR cleavage affects intracellular signalling pathways in cancer. 组织蛋白酶L介导的EGFR切割影响癌症细胞内信号通路。
IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-30 Print Date: 2024-04-25 DOI: 10.1515/hsz-2023-0213
Marija Grozdanić, Barbara Sobotič, Monika Biasizzo, Tilen Sever, Robert Vidmar, Matej Vizovišek, Boris Turk, Marko Fonović

Proteolytic activity in the tumour microenvironment is an important factor in cancer development since it can also affect intracellular signalling pathways via positive feedback loops that result in either increased tumour growth or resistance to anticancer mechanisms. In this study, we demonstrated extracellular cathepsin L-mediated cleavage of epidermal growth factor receptor (EGFR) and identified the cleavage site in the extracellular domain after R224. To further evaluate the relevance of this cleavage, we cloned and expressed a truncated version of EGFR, starting at G225, in HeLa cells. We confirmed the constitutive activation of the truncated protein in the absence of ligand binding and determined possible changes in intracellular signalling. Furthermore, we determined the effect of truncated EGFR protein expression on HeLa cell viability and response to the EGFR inhibitors, tyrosine kinase inhibitor (TKI) erlotinib and monoclonal antibody (mAb) cetuximab. Our data reveal the nuclear localization and phosphorylation of EGFR and signal trancducer and activator of transcription 3 (STAT3) in cells that express the truncated EGFR protein and suggest that these phenomena cause resistance to EGFR inhibitors.

肿瘤微环境中的蛋白质分解活性是癌症发展的重要因素,因为它还可以通过正反馈回路影响细胞内信号通路,从而导致肿瘤生长增加或对抗癌机制的抵抗。在本研究中,我们证明了细胞外组织蛋白酶L介导的表皮生长因子受体(EGFR)的切割,并确定了R224后细胞外结构域的切割位点。为了进一步评估这种切割的相关性,我们从G225开始在HeLa细胞中克隆并表达了EGFR的截短版本。我们证实了在没有配体结合的情况下截短蛋白的组成型激活,并确定了细胞内信号传导的可能变化。此外,我们确定了截短的EGFR蛋白表达对HeLa细胞活力和对EGFR抑制剂、酪氨酸激酶抑制剂(TKI)埃洛替尼和单克隆抗体(mAb)西妥昔单抗的反应的影响。我们的数据揭示了在表达截短的EGFR蛋白的细胞中EGFR和信号转导子和转录激活子3(STAT3)的核定位和磷酸化,并表明这些现象导致对EGFR抑制剂的耐药性。
{"title":"Cathepsin L-mediated EGFR cleavage affects intracellular signalling pathways in cancer.","authors":"Marija Grozdanić, Barbara Sobotič, Monika Biasizzo, Tilen Sever, Robert Vidmar, Matej Vizovišek, Boris Turk, Marko Fonović","doi":"10.1515/hsz-2023-0213","DOIUrl":"10.1515/hsz-2023-0213","url":null,"abstract":"<p><p>Proteolytic activity in the tumour microenvironment is an important factor in cancer development since it can also affect intracellular signalling pathways via positive feedback loops that result in either increased tumour growth or resistance to anticancer mechanisms. In this study, we demonstrated extracellular cathepsin L-mediated cleavage of epidermal growth factor receptor (EGFR) and identified the cleavage site in the extracellular domain after R224. To further evaluate the relevance of this cleavage, we cloned and expressed a truncated version of EGFR, starting at G225, in HeLa cells. We confirmed the constitutive activation of the truncated protein in the absence of ligand binding and determined possible changes in intracellular signalling. Furthermore, we determined the effect of truncated EGFR protein expression on HeLa cell viability and response to the EGFR inhibitors, tyrosine kinase inhibitor (TKI) erlotinib and monoclonal antibody (mAb) cetuximab. Our data reveal the nuclear localization and phosphorylation of EGFR and signal trancducer and activator of transcription 3 (STAT3) in cells that express the truncated EGFR protein and suggest that these phenomena cause resistance to EGFR inhibitors.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"283-296"},"PeriodicalIF":2.9,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61560302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Features of yeast RNA polymerase I with special consideration of the lobe binding subunits. 酵母核糖核酸聚合酶I的特征,特别考虑了叶结合亚基。
IF 3.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-13 Print Date: 2023-10-26 DOI: 10.1515/hsz-2023-0184
Katrin Schwank, Catharina Schmid, Tobias Fremter, Christoph Engel, Philipp Milkereit, Joachim Griesenbeck, Herbert Tschochner

Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.

核糖体RNA(rRNA)是核糖体的结构成分,是最丰富的细胞RNA部分。在酿酒酵母中,它们占了60多个 % 生长细胞中RNA含量的百分比。大部分rRNA是由RNA聚合酶I(Pol I)合成的。这种酶专门转录rRNA基因,该基因在染色体XII上串联重复约150个拷贝。大量转录的rRNA基因、转录机制的有效募集以及基因上延伸的Pol I分子的密集包装确保了产生足够的rRNA。Pol I和相关因子的特定特征赋予启动子选择性以及延伸和终止能力。关于Pol I的功能和调控以及Pol I引发复合物的组装研究现状,已有许多优秀的综述。在本报告中,我们重点关注Pol I特异性叶结合亚基,它支持高效、无错误和正确终止的rRNA合成。
{"title":"Features of yeast RNA polymerase I with special consideration of the lobe binding subunits.","authors":"Katrin Schwank, Catharina Schmid, Tobias Fremter, Christoph Engel, Philipp Milkereit, Joachim Griesenbeck, Herbert Tschochner","doi":"10.1515/hsz-2023-0184","DOIUrl":"10.1515/hsz-2023-0184","url":null,"abstract":"<p><p>Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast <i>Saccharomyces cerevisiae</i>, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"979-1002"},"PeriodicalIF":3.7,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41189965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards correlative archaeology of the human mind. 走向人类心灵的相关考古学。
IF 3.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-12 Print Date: 2024-01-29 DOI: 10.1515/hsz-2023-0199
Lukasz Piszczek, Joanna Kaczanowska, Wulf Haubensak

Retracing human cognitive origins started out at the systems level with the top-down interpretation of archaeological records spanning from man-made artifacts to endocasts of ancient skulls. With emerging evolutionary genetics and organoid technologies, it is now possible to deconstruct evolutionary processes on a molecular/cellular level from the bottom-up by functionally testing archaic alleles in experimental models. The current challenge is to complement these approaches with novel strategies that allow a holistic reconstruction of evolutionary patterns across human cognitive domains. We argue that computational neuroarcheology can provide such a critical mesoscale framework at the brain network-level, linking molecular/cellular (bottom-up) to systems (top-down) level data for the correlative archeology of the human mind.

追溯人类的认知起源始于系统层面,自上而下地解释了从人造文物到古代头骨内部铸件的考古记录。随着进化遗传学和类器官技术的兴起,现在可以通过在实验模型中对古老的等位基因进行功能测试,从自下而上的角度解构分子/细胞水平上的进化过程。目前的挑战是用新的策略来补充这些方法,从而全面重建人类认知领域的进化模式。我们认为,计算神经考古学可以在大脑网络层面提供这样一个关键的中尺度框架,将分子/细胞(自下而上)和系统(自上而下)层面的数据联系起来,用于人类大脑的相关考古学。
{"title":"Towards correlative archaeology of the human mind.","authors":"Lukasz Piszczek, Joanna Kaczanowska, Wulf Haubensak","doi":"10.1515/hsz-2023-0199","DOIUrl":"10.1515/hsz-2023-0199","url":null,"abstract":"<p><p>Retracing human cognitive origins started out at the systems level with the top-down interpretation of archaeological records spanning from man-made artifacts to endocasts of ancient skulls. With emerging evolutionary genetics and organoid technologies, it is now possible to deconstruct evolutionary processes on a molecular/cellular level from the bottom-up by functionally testing archaic alleles in experimental models. The current challenge is to complement these approaches with novel strategies that allow a holistic reconstruction of evolutionary patterns across human cognitive domains. We argue that computational neuroarcheology can provide such a critical mesoscale framework at the brain network-level, linking molecular/cellular (bottom-up) to systems (top-down) level data for the correlative archeology of the human mind.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"5-12"},"PeriodicalIF":3.7,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41189966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The good or the bad: an overview of autoantibodies in traumatic spinal cord injury. 好的或坏的:创伤脊髓损伤中自身抗体的概述。
IF 3.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-03 Print Date: 2024-01-29 DOI: 10.1515/hsz-2023-0252
Annika Guntermann, Katrin Marcus, Caroline May

Infections remain the most common cause of death after traumatic spinal cord injury, likely due to a developing immune deficiency syndrome. This, together with a somewhat contradictory development of autoimmunity in many patients, are two major components of the maladaptive systemic immune response. Although the local non-resolving inflammation in the lesioned spinal cord may lead to an antibody formation against autoantigens of the injured spinal cord tissue, there are also natural (pre-existing) autoantibodies independent of the injury. The way in which these autoantibodies with different origins affect the neuronal and functional outcome of spinal cord-injured patients is still controversial.

感染仍然是创伤性脊髓损伤后最常见的死亡原因,可能是由于免疫缺陷综合征的发展。这与许多患者自身免疫的发展有些矛盾,是适应不良的系统免疫反应的两个主要组成部分。尽管损伤脊髓中的局部非溶解性炎症可能导致针对损伤脊髓组织自身抗原的抗体形成,但也存在独立于损伤的天然(预先存在的)自身抗体。这些来源不同的自身抗体如何影响脊髓损伤患者的神经元和功能结果仍然存在争议。
{"title":"The good or the bad: an overview of autoantibodies in traumatic spinal cord injury.","authors":"Annika Guntermann, Katrin Marcus, Caroline May","doi":"10.1515/hsz-2023-0252","DOIUrl":"10.1515/hsz-2023-0252","url":null,"abstract":"<p><p>Infections remain the most common cause of death after traumatic spinal cord injury, likely due to a developing immune deficiency syndrome. This, together with a somewhat contradictory development of autoimmunity in many patients, are two major components of the maladaptive systemic immune response. Although the local non-resolving inflammation in the lesioned spinal cord may lead to an antibody formation against autoantigens of the injured spinal cord tissue, there are also natural (pre-existing) autoantibodies independent of the injury. The way in which these autoantibodies with different origins affect the neuronal and functional outcome of spinal cord-injured patients is still controversial.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"79-89"},"PeriodicalIF":3.7,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41112882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-01 DOI: 10.1515/hsz-2023-frontmatter11-12
{"title":"Frontmatter","authors":"","doi":"10.1515/hsz-2023-frontmatter11-12","DOIUrl":"https://doi.org/10.1515/hsz-2023-frontmatter11-12","url":null,"abstract":"","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136204137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RBPome identification in egg-cell like callus of Arabidopsis. 拟南芥卵细胞样愈伤组织中RBPome的鉴定。
IF 3.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-29 Print Date: 2023-10-26 DOI: 10.1515/hsz-2023-0195
Liping Liu, Jakob Trendel, Guojing Jiang, Yanhui Liu, Astrid Bruckmann, Bernhard Küster, Stefanie Sprunck, Thomas Dresselhaus, Andrea Bleckmann

RNA binding proteins (RBPs) have multiple and essential roles in transcriptional and posttranscriptional regulation of gene expression in all living organisms. Their biochemical identification in the proteome of a given cell or tissue requires significant protein amounts, which limits studies in rare and highly specialized cells. As a consequence, we know almost nothing about the role(s) of RBPs in reproductive processes such as egg cell development, fertilization and early embryogenesis in flowering plants. To systematically identify the RBPome of egg cells in the model plant Arabidopsis, we performed RNA interactome capture (RIC) experiments using the egg cell-like RKD2-callus and were able to identify 728 proteins associated with poly(A+)-RNA. Transcripts for 97 % of identified proteins could be verified in the egg cell transcriptome. 46 % of identified proteins can be associated with the RNA life cycle. Proteins involved in mRNA binding, RNA processing and metabolism are highly enriched. Compared with the few available RBPome datasets of vegetative plant tissues, we identified 475 egg cell-enriched RBPs, which will now serve as a resource to study RBP function(s) during egg cell development, fertilization and early embryogenesis. First candidates were already identified showing an egg cell-specific expression pattern in ovules.

RNA结合蛋白(RBPs)在所有生物体中对基因表达的转录和转录后调控中具有多种重要作用。它们在特定细胞或组织的蛋白质组中的生物化学鉴定需要大量的蛋白质,这限制了对罕见和高度特化细胞的研究。因此,我们对RBPs在开花植物的卵细胞发育、受精和早期胚胎发生等生殖过程中的作用几乎一无所知。为了系统地鉴定模式植物拟南芥中卵细胞的RBPome,我们使用卵细胞样RKD2愈伤组织进行了RNA相互作用组捕获(RIC)实验,并能够鉴定728种与poly(A+)-RNA相关的蛋白质。97年成绩单 % 可以在卵细胞转录组中验证已鉴定的蛋白质。46 % 已鉴定蛋白质的数量可以与RNA的生命周期相关联。参与mRNA结合、RNA加工和代谢的蛋白质高度富集。与少数可用的营养植物组织RBPome数据集相比,我们鉴定了475个富含卵细胞的RBP,这些RBP现在将作为研究卵细胞发育、受精和早期胚胎发生过程中RBP功能的资源。第一个候选者已经被鉴定出在胚珠中表现出卵细胞特异性表达模式。
{"title":"RBPome identification in egg-cell like callus of <i>Arabidopsis</i>.","authors":"Liping Liu, Jakob Trendel, Guojing Jiang, Yanhui Liu, Astrid Bruckmann, Bernhard Küster, Stefanie Sprunck, Thomas Dresselhaus, Andrea Bleckmann","doi":"10.1515/hsz-2023-0195","DOIUrl":"10.1515/hsz-2023-0195","url":null,"abstract":"<p><p>RNA binding proteins (RBPs) have multiple and essential roles in transcriptional and posttranscriptional regulation of gene expression in all living organisms. Their biochemical identification in the proteome of a given cell or tissue requires significant protein amounts, which limits studies in rare and highly specialized cells. As a consequence, we know almost nothing about the role(s) of RBPs in reproductive processes such as egg cell development, fertilization and early embryogenesis in flowering plants. To systematically identify the RBPome of egg cells in the model plant Arabidopsis, we performed RNA interactome capture (RIC) experiments using the egg cell-like RKD2-callus and were able to identify 728 proteins associated with poly(A<sup>+</sup>)-RNA. Transcripts for 97 % of identified proteins could be verified in the egg cell transcriptome. 46 % of identified proteins can be associated with the RNA life cycle. Proteins involved in mRNA binding, RNA processing and metabolism are highly enriched. Compared with the few available RBPome datasets of vegetative plant tissues, we identified 475 egg cell-enriched RBPs, which will now serve as a resource to study RBP function(s) during egg cell development, fertilization and early embryogenesis. First candidates were already identified showing an egg cell-specific expression pattern in ovules.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"1137-1149"},"PeriodicalIF":3.7,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41103365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HMGB1-RAGE axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte autophagy and apoptosis in diabetic mice. HMGB1-RAGE轴通过调节糖尿病小鼠的心肌细胞自噬和凋亡,促进心肌缺血/再灌注损伤。
IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-28 Print Date: 2024-03-25 DOI: 10.1515/hsz-2023-0134
De-Wei He, De-Zhao Liu, Xiao-Zhi Luo, Chuan-Bin Chen, Chuang-Hong Lu, Na Na, Feng Huang

Patients with acute myocardial infarction complicated with diabetes are more likely to develop myocardial ischemia/reperfusion (I/R) injury (MI/RI) during reperfusion therapy. Both HMGB1 and RAGE play important roles in MI/RI. However, the specific mechanisms of HMGB1 associated with RAGE are not fully clarified in diabetic MI/RI. This study aimed to investigate whether the HMGB1-RAGE axis induces diabetic MI/RI via regulating autophagy and apoptosis. A db/db mouse model of MI/RI was established, where anti-HMGB1 antibody and RAGE inhibitor (FPS-ZM1) were respectively injected after 10 min of reperfusion. The results showed that treatment with anti-HMGB1 significantly reduced the infarct size, serum LDH, and CK-MB level. Similar situations also occurred in mice administrated with FPS-ZM1, though the HMGB1 level was unchanged. Then, we found that treatment with anti-HMGB1 or FPS-ZM1 performed the same effects in suppressing the autophagy and apoptosis, as reflected by the results of lower LAMP2 and LC3B levels, increased Bcl-2 level, reduced BAX and caspase-3 levels. Moreover, the Pink1/Parkin levels were also inhibited at the same time. Collectively, this study indicates that the HMGB1-RAGE axis aggravated diabetic MI/RI via apoptosis and Pink1/Parkin mediated autophagy pathways, and inhibition of HMGB1 or RAGE contributes to alleviating those adverse situations.

急性心肌梗死合并糖尿病的患者在再灌注治疗期间更有可能发生心肌缺血/再灌注(I/R)损伤(MI/RI)。HMGB1和RAGE在MI/RI中均起重要作用。然而,HMGB1与RAGE相关的具体机制在糖尿病MI/RI中尚未完全阐明。本研究旨在探讨HMGB1-RAGE轴是否通过调节自噬和细胞凋亡诱导糖尿病MI/RI。建立了MI/RI的db/db小鼠模型,10天后分别注射抗HMGB1抗体和RAGE抑制剂(FPS-ZM1) 再灌注分钟。结果显示,抗HMGB1治疗可显著降低梗死面积、血清LDH和CK-MB水平。在给予FPS-ZM1的小鼠中也发生了类似的情况,尽管HMGB1水平没有变化。然后,我们发现用抗HMGB1或FPS-ZM1处理在抑制自噬和细胞凋亡方面表现出相同的效果,如降低LAMP2和LC3B水平、增加Bcl-2水平、降低BAX和胱天蛋白酶-3水平的结果所反映的。此外,Pink1/Parkin水平也同时受到抑制。总之,本研究表明,HMGB1-RAGE轴通过细胞凋亡和Pink1/Parkin介导的自噬途径加重了糖尿病MI/RI,抑制HMGB1或RAGE有助于缓解这些不良情况。
{"title":"HMGB1-RAGE axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte autophagy and apoptosis in diabetic mice.","authors":"De-Wei He, De-Zhao Liu, Xiao-Zhi Luo, Chuan-Bin Chen, Chuang-Hong Lu, Na Na, Feng Huang","doi":"10.1515/hsz-2023-0134","DOIUrl":"10.1515/hsz-2023-0134","url":null,"abstract":"<p><p>Patients with acute myocardial infarction complicated with diabetes are more likely to develop myocardial ischemia/reperfusion (I/R) injury (MI/RI) during reperfusion therapy. Both HMGB1 and RAGE play important roles in MI/RI. However, the specific mechanisms of HMGB1 associated with RAGE are not fully clarified in diabetic MI/RI. This study aimed to investigate whether the HMGB1-RAGE axis induces diabetic MI/RI via regulating autophagy and apoptosis. A db/db mouse model of MI/RI was established, where anti-HMGB1 antibody and RAGE inhibitor (FPS-ZM1) were respectively injected after 10 min of reperfusion. The results showed that treatment with anti-HMGB1 significantly reduced the infarct size, serum LDH, and CK-MB level. Similar situations also occurred in mice administrated with FPS-ZM1, though the HMGB1 level was unchanged. Then, we found that treatment with anti-HMGB1 or FPS-ZM1 performed the same effects in suppressing the autophagy and apoptosis, as reflected by the results of lower LAMP2 and LC3B levels, increased Bcl-2 level, reduced BAX and caspase-3 levels. Moreover, the Pink1/Parkin levels were also inhibited at the same time. Collectively, this study indicates that the HMGB1-RAGE axis aggravated diabetic MI/RI via apoptosis and Pink1/Parkin mediated autophagy pathways, and inhibition of HMGB1 or RAGE contributes to alleviating those adverse situations.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"167-176"},"PeriodicalIF":2.9,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41109563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highlight: how to synthesize, assemble and regulate ribonucleoprotein-complexes. 推荐理由:如何合成、组装和调节核糖核蛋白复合物。
IF 3.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-27 Print Date: 2023-10-26 DOI: 10.1515/hsz-2023-0301
Herbert Tschochner
{"title":"Highlight: how to synthesize, assemble and regulate ribonucleoprotein-complexes.","authors":"Herbert Tschochner","doi":"10.1515/hsz-2023-0301","DOIUrl":"10.1515/hsz-2023-0301","url":null,"abstract":"","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"977"},"PeriodicalIF":3.7,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41106954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-transcriptional gene silencing in a dynamic RNP world. 动态RNP世界中的转录后基因沉默。
IF 3.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-25 Print Date: 2023-10-26 DOI: 10.1515/hsz-2023-0203
Simone Larivera, Julia Neumeier, Gunter Meister

MicroRNA (miRNA)-guided gene silencing is a key regulatory process in various organisms and linked to many human diseases. MiRNAs are processed from precursor molecules and associate with Argonaute proteins to repress the expression of complementary target mRNAs. Excellent work by numerous labs has contributed to a detailed understanding of the mechanisms of miRNA function. However, miRNA effects have mostly been analyzed and viewed as isolated events and their natural environment as part of complex RNA-protein particles (RNPs) is often neglected. RNA binding proteins (RBPs) regulate key enzymes of the miRNA processing machinery and furthermore RBPs or readers of RNA modifications may modulate miRNA activity on mRNAs. Such proteins may function similarly to miRNAs and add their own contributions to the overall expression level of a particular gene. Therefore, post-transcriptional gene regulation might be more the sum of individual regulatory events and should be viewed as part of a dynamic and complex RNP world.

微小RNA(miRNA)引导的基因沉默是各种生物体中的一个关键调控过程,与许多人类疾病有关。miRNA由前体分子加工而成,并与Argonaute蛋白结合以抑制互补靶mRNA的表达。许多实验室的出色工作有助于详细了解miRNA的功能机制。然而,miRNA效应大多被分析和视为孤立事件,其作为复杂RNA蛋白颗粒(RNPs)一部分的自然环境往往被忽视。RNA结合蛋白(RBPs)调节miRNA加工机制的关键酶,此外RBPs或RNA修饰的读取器可以调节miRNA在mRNA上的活性。这种蛋白质的功能可能与miRNA类似,并为特定基因的整体表达水平增加其自身的贡献。因此,转录后基因调控可能更多地是单个调控事件的总和,应该被视为动态和复杂的RNP世界的一部分。
{"title":"Post-transcriptional gene silencing in a dynamic RNP world.","authors":"Simone Larivera, Julia Neumeier, Gunter Meister","doi":"10.1515/hsz-2023-0203","DOIUrl":"10.1515/hsz-2023-0203","url":null,"abstract":"<p><p>MicroRNA (miRNA)-guided gene silencing is a key regulatory process in various organisms and linked to many human diseases. MiRNAs are processed from precursor molecules and associate with Argonaute proteins to repress the expression of complementary target mRNAs. Excellent work by numerous labs has contributed to a detailed understanding of the mechanisms of miRNA function. However, miRNA effects have mostly been analyzed and viewed as isolated events and their natural environment as part of complex RNA-protein particles (RNPs) is often neglected. RNA binding proteins (RBPs) regulate key enzymes of the miRNA processing machinery and furthermore RBPs or readers of RNA modifications may modulate miRNA activity on mRNAs. Such proteins may function similarly to miRNAs and add their own contributions to the overall expression level of a particular gene. Therefore, post-transcriptional gene regulation might be more the sum of individual regulatory events and should be viewed as part of a dynamic and complex RNP world.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"1051-1067"},"PeriodicalIF":3.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41096105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biological Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1