首页 > 最新文献

Metallomics最新文献

英文 中文
Global deletome profile of Saccharomyces cerevisiae exposed to lithium 暴露于锂的酿酒酵母的全球脱粒体概况
IF 3.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-23 DOI: 10.1093/mtomcs/mfad073
Nicolas Fierling, Patrick Billard, Pascale Bauda, Damien Blaudez
The increasing use of lithium (Li) in new technologies raises the question of its impact on living microorganisms. In the present study, we aimed to identify putative Li targets and resistance mechanisms in the yeast model Saccharomyces cerevisiae using a deletomic approach based on the screening of a collection of 4,733 knockout mutants under Li exposure. This screening highlighted 60 mutants resistant to Li and 124 mutants sensitive to Li. Through functional enrichment analyses, transport systems and catabolite repression were identified as playing a central role in cell resistance to toxic concentrations of Li. In contrast, the AKT/protein kinase B family, signal transduction or cell communication were identified as potential toxic targets of Li. The majority of the mutants with a Li-sensitive phenotype were also sensitive to other alkali and alkaline-earth metals, whereas the Li-resistance phenotype was mostly resistant to Na but poorly resistant to other metals. A comparison with the results of deletomics studies carried out in the presence of other metals highlighted Li-specific phenotypes. Three genes (NAM7, NMD2, UPF3) of the nonsense-mediated decay pathway were specifically involved in resistance to Li. In contrast, mutants with the NCA2, SPT20, GCN5, YOR376W, YPK3, and DCW1 genes deleted were specifically sensitive to Li. These genes encode various functions from putative mannosidase to constitution of the Spt-Ada-Gcn5 acetyltransferase complex. This work provides a better understanding of potential specific resistance mechanisms and cellular targets of Li in yeast.
锂(Li)在新技术中的使用日益增多,这就提出了锂对生物微生物的影响问题。在本研究中,我们通过对 4733 个锂暴露下的基因敲除突变体进行筛选,采用脱粒组学方法,旨在确定酵母模型酿酒酵母中潜在的锂靶标和抗性机制。这一筛选突出了 60 个对 Li 具有抗性的突变体和 124 个对 Li 敏感的突变体。通过功能富集分析,确定了运输系统和代谢抑制在细胞对有毒浓度的锂的抗性中起核心作用。相反,AKT/蛋白激酶 B 家族、信号转导或细胞通讯被确定为 Li 的潜在毒性靶标。大多数具有锂敏感表型的突变体也对其他碱金属和碱土金属敏感,而锂抗性表型大多对 Na 具有抗性,但对其他金属的抗性较差。与在其他金属存在的情况下进行的缺失组学研究结果进行比较后发现,锂的表型具有特异性。无义介导衰变途径的三个基因(NAM7、NMD2、UPF3)特别参与了对锂的抗性。相反,删除了 NCA2、SPT20、GCN5、YOR376W、YPK3 和 DCW1 基因的突变体对锂特别敏感。这些基因编码从推定甘露糖苷酶到 Spt-Ada-Gcn5 乙酰转移酶复合物组成的各种功能。这项工作让我们更好地了解了酵母对 Li 的潜在特异性抗性机制和细胞靶标。
{"title":"Global deletome profile of Saccharomyces cerevisiae exposed to lithium","authors":"Nicolas Fierling, Patrick Billard, Pascale Bauda, Damien Blaudez","doi":"10.1093/mtomcs/mfad073","DOIUrl":"https://doi.org/10.1093/mtomcs/mfad073","url":null,"abstract":"\u0000 The increasing use of lithium (Li) in new technologies raises the question of its impact on living microorganisms. In the present study, we aimed to identify putative Li targets and resistance mechanisms in the yeast model Saccharomyces cerevisiae using a deletomic approach based on the screening of a collection of 4,733 knockout mutants under Li exposure. This screening highlighted 60 mutants resistant to Li and 124 mutants sensitive to Li. Through functional enrichment analyses, transport systems and catabolite repression were identified as playing a central role in cell resistance to toxic concentrations of Li. In contrast, the AKT/protein kinase B family, signal transduction or cell communication were identified as potential toxic targets of Li. The majority of the mutants with a Li-sensitive phenotype were also sensitive to other alkali and alkaline-earth metals, whereas the Li-resistance phenotype was mostly resistant to Na but poorly resistant to other metals. A comparison with the results of deletomics studies carried out in the presence of other metals highlighted Li-specific phenotypes. Three genes (NAM7, NMD2, UPF3) of the nonsense-mediated decay pathway were specifically involved in resistance to Li. In contrast, mutants with the NCA2, SPT20, GCN5, YOR376W, YPK3, and DCW1 genes deleted were specifically sensitive to Li. These genes encode various functions from putative mannosidase to constitution of the Spt-Ada-Gcn5 acetyltransferase complex. This work provides a better understanding of potential specific resistance mechanisms and cellular targets of Li in yeast.","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"13 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138943761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of genes involved in micronutrients and toxic metals detoxification in Brassica napus by genome-wide cDNA library screening. 利用全基因组cDNA文库筛选甘蓝型油菜微量营养素和有毒金属解毒相关基因。
IF 3.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-09 DOI: 10.1093/mtomcs/mfad068
Jia-Shi Peng, Xue-Jie Zhang, Jia-Ni Xiong, Ying Zhou, Wei-Li Wang, Si-Ying Chen, Da-Wei Zhang, Tian-Yu Gu

Stresses caused by deficiency/excess of mineral nutrients or of pollution of toxic metals have already become a primary factor in limiting crop production worldwide. Genes involved in minerals and toxic metals accumulation/tolerance could be potential candidates for improving crop plants with enhanced nutritional efficiency and environmental adaptability. In this study, we first generated a high-quality yeast expression cDNA library of Brassica napus (Westar), and 46 genes mediating excess micronutrients and toxic metals detoxification were screened using the yeast genetic complementation system, including 11, 5, 6, 14, 6, and 5 genes involved in cadmium (Cd), zinc (Zn), iron (Fe), manganese (Mn), boron (B), and copper (Cu) tolerance, respectively. Characterization of genes mediating excess ions stress resistance in this study is beneficial for us to further understand ions homeostasis in B. napus.

矿物质营养缺乏/过剩或有毒金属污染造成的压力已经成为限制全世界作物生产的主要因素。参与矿物质和有毒金属积累/耐受性的基因可能是提高作物营养效率和环境适应性的潜在候选基因。本研究首先构建了高质量的甘蓝型油菜酵母表达cDNA文库,并利用酵母遗传互补系统筛选了46个介导过量微量元素和有毒金属解毒的基因,其中镉(Cd)、锌(Zn)、铁(Fe)、锰(Mn)、硼(B)、铜(Cu)耐受基因分别为11、5、6、14、6、5个。本研究对介导过量离子胁迫抗性的基因进行鉴定,有助于我们进一步了解甘蓝型油菜的离子稳态。
{"title":"Characterization of genes involved in micronutrients and toxic metals detoxification in Brassica napus by genome-wide cDNA library screening.","authors":"Jia-Shi Peng, Xue-Jie Zhang, Jia-Ni Xiong, Ying Zhou, Wei-Li Wang, Si-Ying Chen, Da-Wei Zhang, Tian-Yu Gu","doi":"10.1093/mtomcs/mfad068","DOIUrl":"10.1093/mtomcs/mfad068","url":null,"abstract":"<p><p>Stresses caused by deficiency/excess of mineral nutrients or of pollution of toxic metals have already become a primary factor in limiting crop production worldwide. Genes involved in minerals and toxic metals accumulation/tolerance could be potential candidates for improving crop plants with enhanced nutritional efficiency and environmental adaptability. In this study, we first generated a high-quality yeast expression cDNA library of Brassica napus (Westar), and 46 genes mediating excess micronutrients and toxic metals detoxification were screened using the yeast genetic complementation system, including 11, 5, 6, 14, 6, and 5 genes involved in cadmium (Cd), zinc (Zn), iron (Fe), manganese (Mn), boron (B), and copper (Cu) tolerance, respectively. Characterization of genes mediating excess ions stress resistance in this study is beneficial for us to further understand ions homeostasis in B. napus.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138289768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: Characterising the spatial and temporal brain metal profile in a mouse model of tauopathy. 表达关注:牛磺酸脑病小鼠模型的空间和时间脑金属分布特征。
IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-09 DOI: 10.1093/mtomcs/mfad071
{"title":"Expression of Concern: Characterising the spatial and temporal brain metal profile in a mouse model of tauopathy.","authors":"","doi":"10.1093/mtomcs/mfad071","DOIUrl":"10.1093/mtomcs/mfad071","url":null,"abstract":"","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"15 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transporter PHO84/NtPT1 is a target of aluminum to affect phosphorus absorption in Saccharomyces cerevisiae and Nicotiana tabacum L. 转运体PHO84/NtPT1是铝影响酿酒酵母和烟草对磷吸收的靶标。
IF 3.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-09 DOI: 10.1093/mtomcs/mfad069
Zhiwei Huang, Shixuan Zhang, Ranran Chen, Qian Zhu, Ping Shi, Yuhu Shen

The molecular mechanism of aluminum toxicity in biological systems is not completely understood. Saccharomyces cerevisiae is one of the most used model organisms in the study of environmental metal toxicity. Using an unbiased metallomic approach in yeast, we found that aluminum treatment caused phosphorus deprivation, and the lack of phosphorus increased as the pH of the environment decreased compared to the control strain. By screening the phosphate signaling and response pathway (PHO pathway) in yeast with the synthetic lethality of a new phosphorus-restricted aluminum-sensitive gene, we observed that pho84Δ mutation conferred severe growth defect to aluminum under low-phosphorus conditions, and the addition of phosphate alleviated this sensitivity. Subsequently, the data showed that PHO84 determined the intracellular aluminum-induced phosphorus deficiency, and the expression of PHO84 was positively correlated with aluminum stress, which was mediated by phosphorus through the coordinated regulation of PHO4/PHO2. Moreover, aluminum reduced phosphorus absorption and inhibited tobacco plant growth in acidic media. In addition, the high-affinity phosphate transporter NtPT1 in tobacco exhibited similar effects to PHO84, and overexpression of NtPT1 conferred aluminum resistance in yeast cells. Taken together, positive feedback regulation of the PHO pathway centered on the high-affinity phosphate transporters is a highly conservative mechanism in response to aluminum toxicity. The results may provide a basis for aluminum-resistant microorganisms or plant engineering and acidic soil treatment.

生物系统中铝毒性的分子机制尚不完全清楚。酿酒酵母是环境金属毒性研究中应用最广泛的模式生物之一。在酵母中使用无偏金属组学方法,我们发现铝处理导致了磷的剥夺,并且与对照菌株相比,随着环境pH的降低,缺磷量增加。通过合成致死性限磷铝敏感基因对酵母的PHO通路进行筛选,我们发现pho84Δ突变在低磷条件下会使铝产生严重的生长缺陷,而添加磷酸盐可以减轻这种敏感性。随后,数据显示PHO84决定了细胞内铝诱导的缺磷,并且PHO84的表达与铝胁迫呈正相关,而铝胁迫是磷通过PHO4/PHO2的协同调控介导的。在酸性培养基中,铝降低了烟草对磷的吸收,抑制了烟草的生长。此外,烟草中的高亲和磷酸盐转运体NtPT1表现出与PHO84相似的作用,并且NtPT1的过表达使酵母细胞对铝具有抗性。综上所述,以高亲和力磷酸盐转运体为中心的PHO通路的正反馈调节是铝毒性反应的高度保守机制。研究结果可为耐铝微生物或植物工程及酸性土壤处理提供依据。
{"title":"The transporter PHO84/NtPT1 is a target of aluminum to affect phosphorus absorption in Saccharomyces cerevisiae and Nicotiana tabacum L.","authors":"Zhiwei Huang, Shixuan Zhang, Ranran Chen, Qian Zhu, Ping Shi, Yuhu Shen","doi":"10.1093/mtomcs/mfad069","DOIUrl":"10.1093/mtomcs/mfad069","url":null,"abstract":"<p><p>The molecular mechanism of aluminum toxicity in biological systems is not completely understood. Saccharomyces cerevisiae is one of the most used model organisms in the study of environmental metal toxicity. Using an unbiased metallomic approach in yeast, we found that aluminum treatment caused phosphorus deprivation, and the lack of phosphorus increased as the pH of the environment decreased compared to the control strain. By screening the phosphate signaling and response pathway (PHO pathway) in yeast with the synthetic lethality of a new phosphorus-restricted aluminum-sensitive gene, we observed that pho84Δ mutation conferred severe growth defect to aluminum under low-phosphorus conditions, and the addition of phosphate alleviated this sensitivity. Subsequently, the data showed that PHO84 determined the intracellular aluminum-induced phosphorus deficiency, and the expression of PHO84 was positively correlated with aluminum stress, which was mediated by phosphorus through the coordinated regulation of PHO4/PHO2. Moreover, aluminum reduced phosphorus absorption and inhibited tobacco plant growth in acidic media. In addition, the high-affinity phosphate transporter NtPT1 in tobacco exhibited similar effects to PHO84, and overexpression of NtPT1 conferred aluminum resistance in yeast cells. Taken together, positive feedback regulation of the PHO pathway centered on the high-affinity phosphate transporters is a highly conservative mechanism in response to aluminum toxicity. The results may provide a basis for aluminum-resistant microorganisms or plant engineering and acidic soil treatment.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138294178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histatin-5 interacts with cellular copper to promote antifungal activity against Candida albicans 组蛋白-5 与细胞铜相互作用,促进对白色念珠菌的抗真菌活性
IF 3.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-07 DOI: 10.1093/mtomcs/mfad070
Joanna X Campbell, Natalie B Schulte, Barry Lai, Hugh H Harris, K. Franz
Histatin-5 (Hist-5) is an antimicrobial peptide found in human saliva that functions to defend the oral cavity from microbial infections, such as those caused by the fungal pathogen Candida albicans (C. albicans). Hist-5 can bind Cu in multiple oxidation states, Cu2+ and Cu+ in vitro, and supplemental Cu2+ has been shown to improve the fungicidal activity of the peptide against C. albicans in culture. However, the exact role of Cu on the antifungal activity of Hist-5 and whether direct peptide–Cu interactions occur intracellularly has yet to be fully determined. Here, we used a combination of fluorescence spectroscopy and confocal microscopy experiments to show reversible Cu-dependent quenching of a fluorescent Hist-5 analogue, Hist-5*, indicating a direct interaction between Hist-5 and intracellular Cu. X-ray fluorescence microscopy images revealed peptide-induced changes to cellular Cu distribution and cell-associated Cu content. These data support a model in which Hist-5 can facilitate the hyperaccumulation of Cu in C. albicans and directly interact with Cu intracellularly to increase the fungicidal activity of Hist-5.
组抑素-5 (Hist-5)是人类唾液中发现的一种抗菌肽,其功能是保护口腔免受微生物感染,例如由真菌病原体白色念珠菌(C. albicans)引起的感染。Hist-5在体外可以结合多种氧化态的Cu、Cu2+和Cu+,并且在培养中添加Cu2+已被证明可以提高该肽对白色念珠菌的杀菌活性。然而,铜对Hist-5抗真菌活性的确切作用以及肽-铜是否在细胞内发生直接相互作用尚未完全确定。在这里,我们使用荧光光谱和共聚焦显微镜实验的组合,以显示可逆的铜依赖猝灭的Hist-5荧光类似物,Hist-5*,表明Hist-5和细胞内Cu之间的直接相互作用。x射线荧光显微镜图像显示肽诱导的细胞Cu分布和细胞相关Cu含量的变化。这些数据支持了一个模型,在该模型中,Hist-5可以促进Cu在白色念珠菌中的超积累,并直接与细胞内的Cu相互作用,以增加Hist-5的杀真菌活性。
{"title":"Histatin-5 interacts with cellular copper to promote antifungal activity against Candida albicans","authors":"Joanna X Campbell, Natalie B Schulte, Barry Lai, Hugh H Harris, K. Franz","doi":"10.1093/mtomcs/mfad070","DOIUrl":"https://doi.org/10.1093/mtomcs/mfad070","url":null,"abstract":"\u0000 Histatin-5 (Hist-5) is an antimicrobial peptide found in human saliva that functions to defend the oral cavity from microbial infections, such as those caused by the fungal pathogen Candida albicans (C. albicans). Hist-5 can bind Cu in multiple oxidation states, Cu2+ and Cu+ in vitro, and supplemental Cu2+ has been shown to improve the fungicidal activity of the peptide against C. albicans in culture. However, the exact role of Cu on the antifungal activity of Hist-5 and whether direct peptide–Cu interactions occur intracellularly has yet to be fully determined. Here, we used a combination of fluorescence spectroscopy and confocal microscopy experiments to show reversible Cu-dependent quenching of a fluorescent Hist-5 analogue, Hist-5*, indicating a direct interaction between Hist-5 and intracellular Cu. X-ray fluorescence microscopy images revealed peptide-induced changes to cellular Cu distribution and cell-associated Cu content. These data support a model in which Hist-5 can facilitate the hyperaccumulation of Cu in C. albicans and directly interact with Cu intracellularly to increase the fungicidal activity of Hist-5.","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"32 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138590209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diet, cellular, and systemic homeostasis control the cycling of potassium stable isotopes in endothermic vertebrates. 饮食、细胞和系统稳态控制吸热脊椎动物中钾稳定同位素的循环。
IF 3.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-11-02 DOI: 10.1093/mtomcs/mfad065
T Tacail, J Lewis, M Clauss, C D Coath, R Evershed, E Albalat, T R Elliott, T Tütken

The naturally occurring stable isotopes of potassium (41K/39K, expressed as δ41K) have the potential to make significant contributions to vertebrate and human biology. The utility of K stable isotopes is, however, conditioned by the understanding of the dietary and biological factors controlling natural variability of δ41K. This paper reports a systematic study of K isotopes in extant terrestrial endothermic vertebrates. δ41K has been measured in 158 samples of tissues, biofluids, and excreta from 40 individuals of four vertebrate species (rat, guinea pig, pig and quail) reared in two controlled feeding experiments. We show that biological processing of K by endothermic vertebrates produces remarkable intra-organism δ41K variations of ca. 1.6‰. Dietary δ41K is the primary control of interindividual variability and δ41K of bodily K is +0.5-0.6‰ higher than diet. Such a trophic isotope effect is expected to propagate throughout trophic chains, opening promising use for reconstructing dietary behaviors in vertebrate ecosystems. In individuals, cellular δ41K is related to the intensity of K cycling and effectors of K homeostasis, including plasma membrane permeability and electrical potential. Renal and intestinal transepithelial transports also control fractionation of K isotopes. Using a box-modeling approach, we establish a first model of K isotope homeostasis. We predict a strong sensitivity of δ41K to variations of intracellular and renal K cycling in normal and pathological contexts. Thus, K isotopes constitute a promising tool for the study of K dyshomeostasis.

钾的天然稳定同位素(41K/39K,表示为δ41K)有可能对脊椎动物和人类生物学做出重大贡献。然而,K稳定同位素的效用取决于对控制δ41K自然变异的饮食和生物因素的理解。本文对现存陆生吸热脊椎动物的K同位素进行了系统的研究。在两个对照喂养实验中,对四种脊椎动物(大鼠、豚鼠、猪和鹌鹑)的40个个体的158个组织、生物流体和排泄物样本中的δ41K进行了测量。我们发现,吸热脊椎动物对K的生物处理产生了约1.6‰的显著体内δ41K变化。日粮δ41K是个体间变异的主要控制因子,体钾δ41K比日粮高+0.5~0.6‰。这种营养同位素效应预计将在整个营养链中传播,为重建脊椎动物生态系统的饮食行为开辟了有前景的用途。在个体中,细胞δ41K与K循环的强度和K稳态的效应物有关,包括质膜通透性和电势。肾脏和肠道跨上皮转运也控制着K同位素的分馏。使用盒子建模方法,我们建立了第一个K同位素稳态模型。我们预测在正常和病理情况下,δ41K对细胞内和肾脏K循环的变化具有很强的敏感性。因此,钾同位素为研究钾稳态失调提供了一个很有前途的工具。
{"title":"Diet, cellular, and systemic homeostasis control the cycling of potassium stable isotopes in endothermic vertebrates.","authors":"T Tacail, J Lewis, M Clauss, C D Coath, R Evershed, E Albalat, T R Elliott, T Tütken","doi":"10.1093/mtomcs/mfad065","DOIUrl":"10.1093/mtomcs/mfad065","url":null,"abstract":"<p><p>The naturally occurring stable isotopes of potassium (41K/39K, expressed as δ41K) have the potential to make significant contributions to vertebrate and human biology. The utility of K stable isotopes is, however, conditioned by the understanding of the dietary and biological factors controlling natural variability of δ41K. This paper reports a systematic study of K isotopes in extant terrestrial endothermic vertebrates. δ41K has been measured in 158 samples of tissues, biofluids, and excreta from 40 individuals of four vertebrate species (rat, guinea pig, pig and quail) reared in two controlled feeding experiments. We show that biological processing of K by endothermic vertebrates produces remarkable intra-organism δ41K variations of ca. 1.6‰. Dietary δ41K is the primary control of interindividual variability and δ41K of bodily K is +0.5-0.6‰ higher than diet. Such a trophic isotope effect is expected to propagate throughout trophic chains, opening promising use for reconstructing dietary behaviors in vertebrate ecosystems. In individuals, cellular δ41K is related to the intensity of K cycling and effectors of K homeostasis, including plasma membrane permeability and electrical potential. Renal and intestinal transepithelial transports also control fractionation of K isotopes. Using a box-modeling approach, we establish a first model of K isotope homeostasis. We predict a strong sensitivity of δ41K to variations of intracellular and renal K cycling in normal and pathological contexts. Thus, K isotopes constitute a promising tool for the study of K dyshomeostasis.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thallium hyperaccumulation status of the violets of the Allchar arsenic-thallium deposit (North Macedonia) confirmed through synchrotron µXRF imaging. 通过同步加速器μXRF成像证实了Allchar砷铊矿床(北马其顿)紫罗兰的铊超富集状态。
IF 3.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-11-02 DOI: 10.1093/mtomcs/mfad063
Ksenija Jakovljević, Tomica Mišljenović, Katerina Bačeva Andonovska, Guillaume Echevarria, Alan J M Baker, Dennis Brueckner, Antony van der Ent

The abandoned Allchar Mine in the Republic of North Macedonia is a globally unique deposit with the highest known grades of thallium (Tl) and arsenic (As) mineralization. We aimed to determine the distribution of As and Tl in whole dehydrated shoots of the three Viola taxa using synchrotron micro-X-ray fluorescence analysis. Additionally, soil and plant organ samples were collected from all three Viola taxa at the Allchar site and analysed using inductively coupled plasma-atomic emission spectrometry. Concentrations of Tl were extremely high in all three Viola taxa (up to 58 900 mg kg-1), but concentrations of As were highly variable with V. tricolor subsp. macedonica and V. allchariensis having low As (up to 20.2 and 26.3 mg kg-1, respectively) and V. arsenica having the highest concentrations (up to 381 mg kg-1). The extremely high Tl in all three species is endogenous and not a result of contamination. Arsenic in V. tricolor subsp. macedonica and V. allcharensis is strongly affected by contamination, but not in V. arsenica where it appears to be endogenous. The pattern of As enrichment in V. arsenica is very unusual and coincides with Ca-oxalate deposits and Br hotspots. The results of this study could form the basis for more detailed investigations under controlled conditions, including plant dosing experiments.

北马其顿共和国废弃的Allchar矿是一个全球独一无二的矿床,具有已知最高品位的铊(Tl)和砷(As)矿化。我们的目的是通过同步加速器μXRF分析来确定As和Tl在三个Viola分类群的整个脱水芽中的分布。此外,从Allchar遗址的所有三个Viola分类群中收集土壤和植物器官样本,并使用ICP-AES进行分析。在所有三个Viola分类群中,Tl的浓度都非常高(高达58900 mg kg-1),但As的浓度在三色紫丁香亚种中变化很大。具有低As(分别高达20.2和26.3 mg kg-1)的狼毒和allchariensis以及具有最高浓度的砷毒(高达381 mg kg-1)。所有三个物种中的极高Tl都是内源性的,而不是污染的结果。五倍子中的砷。狼毒和allcharensis受到污染的强烈影响,但砷毒则没有受到污染的影响,因为砷毒似乎是内源性的。砷化钒中砷的富集模式非常不寻常,与草酸钙矿床和溴热点相吻合。这项研究的结果可以为在受控条件下进行更详细的研究奠定基础,包括植物给药实验。
{"title":"Thallium hyperaccumulation status of the violets of the Allchar arsenic-thallium deposit (North Macedonia) confirmed through synchrotron µXRF imaging.","authors":"Ksenija Jakovljević, Tomica Mišljenović, Katerina Bačeva Andonovska, Guillaume Echevarria, Alan J M Baker, Dennis Brueckner, Antony van der Ent","doi":"10.1093/mtomcs/mfad063","DOIUrl":"10.1093/mtomcs/mfad063","url":null,"abstract":"<p><p>The abandoned Allchar Mine in the Republic of North Macedonia is a globally unique deposit with the highest known grades of thallium (Tl) and arsenic (As) mineralization. We aimed to determine the distribution of As and Tl in whole dehydrated shoots of the three Viola taxa using synchrotron micro-X-ray fluorescence analysis. Additionally, soil and plant organ samples were collected from all three Viola taxa at the Allchar site and analysed using inductively coupled plasma-atomic emission spectrometry. Concentrations of Tl were extremely high in all three Viola taxa (up to 58 900 mg kg-1), but concentrations of As were highly variable with V. tricolor subsp. macedonica and V. allchariensis having low As (up to 20.2 and 26.3 mg kg-1, respectively) and V. arsenica having the highest concentrations (up to 381 mg kg-1). The extremely high Tl in all three species is endogenous and not a result of contamination. Arsenic in V. tricolor subsp. macedonica and V. allcharensis is strongly affected by contamination, but not in V. arsenica where it appears to be endogenous. The pattern of As enrichment in V. arsenica is very unusual and coincides with Ca-oxalate deposits and Br hotspots. The results of this study could form the basis for more detailed investigations under controlled conditions, including plant dosing experiments.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10639103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41230547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper isotope ratios in serum do not track cancerous tumor evolution, but organ failure. 血清中的铜同位素比率不能追踪癌性肿瘤的演变,但可以追踪器官衰竭。
IF 3.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-11-02 DOI: 10.1093/mtomcs/mfad060
Emily Miaou, François L H Tissot

Relative to healthy controls, lighter copper isotopic compositions have been observed in the serum of breast cancer and end-stage liver disease patients, raising the possibility that Cu isotope ratios could be used as a tracer for disease progression. Here, we assess the potential of natural Cu isotopic variations (expressed as δ65Cu) as diagnostic tools for cancer progression and/or liver failure by performing a first-order analysis of Cu isotopic cycling in the human body. Using a box model, we simulate the kinetics of Cu mass transfer throughout significant reservoirs in the body, allowing isotopic fractionation to occur during Cu uptake/release from these reservoirs. With this model, we determine under which conditions the serum δ65Cu values would reflect perturbation related to cancer growth and/or liver failure at a level resolvable with modern mass spectrometry. We find that tumor growth alone is unable to explain the light isotopic signature observed in serum. Instead, we find that metabolic changes to the liver function resulting in a ∼1‰ isotope fractionation during Cu uptake from the blood into the liver can readily explain the long-term serum isotopic shift of ∼0.2‰ observed in cancer patients. A similar fractionation (∼1.3‰) during Cu uptake into the liver also readily explains the -1.2‰ shift observed in the serum of cirrhosis patients with ascites, suggesting a potentially common driver of isotopic fractionation in both cases. Using this model, we then test hypotheses put forward by previous studies and begin to probe the mechanisms behind the measured isotopic compositions.

相对于健康对照,在乳腺癌症和终末期肝病患者的血清中观察到较轻的铜同位素组成,这增加了铜同位素比率可用作疾病进展示踪剂的可能性。在此,我们通过对人体中的Cu同位素循环进行一级分析,评估了天然Cu同位素变化(表示为δ65Cu)作为癌症进展和/或肝衰竭诊断工具的潜力。使用盒子模型,我们模拟了铜在体内重要储层中的传质动力学,使同位素分馏在从这些储层吸收/释放铜的过程中发生。利用该模型,我们确定在何种条件下,血清δ65Cu值将反映与癌症生长和/或肝功能衰竭相关的扰动,其水平可通过现代质谱法解决。我们发现单独的肿瘤生长不能解释在血清中观察到的光同位素特征。相反,我们发现,在从血液摄入铜到肝脏的过程中,肝脏功能的代谢变化导致约1‰的同位素分馏,这很容易解释在癌症患者中观察到的约0.2‰的长期血清同位素变化。在肝脏摄入铜的过程中,类似的分馏(~1.3‰)也很容易解释在肝硬化腹水患者血清中观察到的-1.2‰的变化,这表明在这两种情况下同位素分馏的潜在共同驱动因素。使用这个模型,我们检验了先前研究提出的假设,并开始探索测得的同位素组成背后的机制。
{"title":"Copper isotope ratios in serum do not track cancerous tumor evolution, but organ failure.","authors":"Emily Miaou, François L H Tissot","doi":"10.1093/mtomcs/mfad060","DOIUrl":"10.1093/mtomcs/mfad060","url":null,"abstract":"<p><p>Relative to healthy controls, lighter copper isotopic compositions have been observed in the serum of breast cancer and end-stage liver disease patients, raising the possibility that Cu isotope ratios could be used as a tracer for disease progression. Here, we assess the potential of natural Cu isotopic variations (expressed as δ65Cu) as diagnostic tools for cancer progression and/or liver failure by performing a first-order analysis of Cu isotopic cycling in the human body. Using a box model, we simulate the kinetics of Cu mass transfer throughout significant reservoirs in the body, allowing isotopic fractionation to occur during Cu uptake/release from these reservoirs. With this model, we determine under which conditions the serum δ65Cu values would reflect perturbation related to cancer growth and/or liver failure at a level resolvable with modern mass spectrometry. We find that tumor growth alone is unable to explain the light isotopic signature observed in serum. Instead, we find that metabolic changes to the liver function resulting in a ∼1‰ isotope fractionation during Cu uptake from the blood into the liver can readily explain the long-term serum isotopic shift of ∼0.2‰ observed in cancer patients. A similar fractionation (∼1.3‰) during Cu uptake into the liver also readily explains the -1.2‰ shift observed in the serum of cirrhosis patients with ascites, suggesting a potentially common driver of isotopic fractionation in both cases. Using this model, we then test hypotheses put forward by previous studies and begin to probe the mechanisms behind the measured isotopic compositions.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41098193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selenomethionine supplementation and expression of selenosugars, selenocysteine, and other selenometabolites in rat liver. 硒代蛋氨酸的补充和硒糖、硒代半胱氨酸和其他硒代代谢产物在大鼠肝脏中的表达。
IF 3.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-11-02 DOI: 10.1093/mtomcs/mfad067
Katarzyna Bierla, Joanna Szpunar, Ryszard Lobinski, Roger A Sunde

Selenomethionine (SeMet) as a methionine analog can be incorporated into protein. In turkeys, we recently found that selenium (Se) as selenite is not metabolized to SeMet but rather to selenosugars (seleno-N-acetyl galactosamine) bound to protein as well as to selenocysteine (Sec) in selenoproteins. To characterize the metabolism of SeMet, we fed rats graded levels of SeMet from 0 to 5 µg Se/g in a Se-deficient diet for 4 wk, and investigated the fate and accumulation of liver Se using high pressure liquid chromatography (HPLC) coupled with Se-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (Orbitrap MS/MS) detection. Up to 0.24 µg Se/g (Se requirement for maximal glutathione peroxidase activity), Sec accounted for ∼40% of total liver Se whereas SeMet only accounted for 3-11%. Analysis of water-soluble extracts found negligible low molecular weight (LMW) Se species in rats fed 0 and 0.08 µg Se/g, including no SeMet. At 0.24 µg Se/g and above, SeMet accounted for only 10% of LMW Se species, whereas methyl- and glutathionyl-selenosugars accounted for 70% of LMW Se species. Above the Se requirement, SeMet was ∼30% of the proteinaceous amino acids, whereas Sec levels fell to 5% in rats fed 5 µg Se/g as SeMet. Last, considerably less inorganic Se was bound to liver protein with high SeMet as compared to selenite in a parallel study. SeMet is efficiently metabolized and mixes with the common Se metabolite pool, where Se is preferentially incorporated into Sec and Sec-selenoproteins until selenoproteins plateau; with high SeMet intake, Se is increasingly accumulated as LMW selenosugars and as selenosugar-decorated proteins.

硒蛋氨酸(SeMet)作为一种蛋氨酸类似物可以被掺入蛋白质中。在火鸡中,我们最近发现,硒(Se)作为亚硒酸盐不会代谢为SeMet,而是代谢为与蛋白质结合的硒糖(硒-N-乙酰基半乳糖胺)以及硒蛋白中的硒半胱氨酸(Sec)。为了表征SeMet的代谢,我们在缺硒饮食中给大鼠喂食0至5μg Se/g的SeMet分级水平,持续4周,并使用HPLC结合Se特异性(ICP-MS)和分子特异性(Orbitrap MS/MS)检测来研究肝脏Se的去向和积累。高达0.24μg Se/g(最大谷胱甘肽过氧化物酶活性所需的Se),Sec占肝脏总Se的约40%,而SeMet仅占3-11%。对水溶性提取物的分析发现,在喂食0和0.08μg Se/g的大鼠中,低分子量(LMW)Se物种可以忽略不计,包括不喂食SeMet。在0.24μg Se/g及以上时,SeMet仅占LMW Se物种的10%,而甲基和戊二亚硫基硒化糖占LMW硒物种的70%。在Se需求量以上,SeMet占蛋白质氨基酸的约30%,而在喂食5μg Se/g SeMet的大鼠中,Sec水平降至5%。最后,在一项平行研究中,与亚硒酸盐相比,具有高SeMet的无机硒与肝脏蛋白结合的量要少得多。SeMet被有效代谢并与常见的Se代谢产物库混合,其中Se优先结合到Sec和Sec硒蛋白中,直到硒蛋白稳定;随着SeMet摄入量的增加,Se以LMW硒糖胶和硒糖胶修饰蛋白的形式积累增加。
{"title":"Selenomethionine supplementation and expression of selenosugars, selenocysteine, and other selenometabolites in rat liver.","authors":"Katarzyna Bierla, Joanna Szpunar, Ryszard Lobinski, Roger A Sunde","doi":"10.1093/mtomcs/mfad067","DOIUrl":"10.1093/mtomcs/mfad067","url":null,"abstract":"<p><p>Selenomethionine (SeMet) as a methionine analog can be incorporated into protein. In turkeys, we recently found that selenium (Se) as selenite is not metabolized to SeMet but rather to selenosugars (seleno-N-acetyl galactosamine) bound to protein as well as to selenocysteine (Sec) in selenoproteins. To characterize the metabolism of SeMet, we fed rats graded levels of SeMet from 0 to 5 µg Se/g in a Se-deficient diet for 4 wk, and investigated the fate and accumulation of liver Se using high pressure liquid chromatography (HPLC) coupled with Se-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (Orbitrap MS/MS) detection. Up to 0.24 µg Se/g (Se requirement for maximal glutathione peroxidase activity), Sec accounted for ∼40% of total liver Se whereas SeMet only accounted for 3-11%. Analysis of water-soluble extracts found negligible low molecular weight (LMW) Se species in rats fed 0 and 0.08 µg Se/g, including no SeMet. At 0.24 µg Se/g and above, SeMet accounted for only 10% of LMW Se species, whereas methyl- and glutathionyl-selenosugars accounted for 70% of LMW Se species. Above the Se requirement, SeMet was ∼30% of the proteinaceous amino acids, whereas Sec levels fell to 5% in rats fed 5 µg Se/g as SeMet. Last, considerably less inorganic Se was bound to liver protein with high SeMet as compared to selenite in a parallel study. SeMet is efficiently metabolized and mixes with the common Se metabolite pool, where Se is preferentially incorporated into Sec and Sec-selenoproteins until selenoproteins plateau; with high SeMet intake, Se is increasingly accumulated as LMW selenosugars and as selenosugar-decorated proteins.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66783242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of graded levels of selenium supplementation as selenite on expression of selenosugars, selenocysteine, and other selenometabolites in rat liver. 以亚硒酸盐形式分级补充硒对大鼠肝脏中硒糖、硒代半胱氨酸和其他硒代谢产物表达的影响。
IF 3.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-11-02 DOI: 10.1093/mtomcs/mfad066
Katarzyna Bierla, Joanna Szpunar, Ryszard Lobinski, Roger A Sunde

Using high pressure liquid chromatography (HPLC) coupled with selenium-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (Orbitrap MS/MS) detection, we previously found that far more selenium (Se) is present as selenosugar (seleno-N-acetyl galactosamine) in Se-adequate turkey liver than is present as selenocysteine (Sec) in true selenoproteins, and that selenosugars account for half of the Se in high-Se turkey liver. To expand these observations to mammals, we studied Se metabolism in rats fed graded levels of selenite from 0 to 5 μg Se/g for 4 wk. In Se-adequate (0.24 μg Se/g) rats, 43% of liver Se was present as Sec, 32% was present as selenosugars, and 22% as inorganic Se bound to protein. In liver of rats fed 5 μg Se/g as selenite, the quantity of Sec remained at the Se-adequate plateau (11% of total Se), 22% was present as low molecular weight (LMW) selenosugars with substantial additional selenosugars linked to protein, but 64% was present as inorganic Se bound to protein. No selenomethionine was found at any level of selenite supplementation. Below the Se requirement, Se is preferentially incorporated into Sec-selenoproteins. Above the dietary Se requirement, selenosugars become by far the major LMW water soluble Se species in liver, and levels of selenosugar-decorated proteins are far higher than Sec-selenoproteins, making these selenosugar-decorated proteins the major Se-containing protein species in liver with high Se supplementation. This accumulation of selenosugars linked to cysteines on proteins or the build-up of inorganic Se bound to protein may underlie Se toxicity at the molecular level.

使用高效液相色谱法结合硒特异性(ICP-MS)和分子特异性(Orbitrap MS/MS)检测,我们之前发现,在硒充足的火鸡肝中,硒(Se)以硒糖(硒-N-乙酰基氨基半乳糖)的形式存在,远远多于在真正的硒蛋白中以硒半胱氨酸(Sec)的形式出现,并且硒糖占高硒火鸡肝中硒的一半。为了将这些观察结果扩展到哺乳动物,我们研究了喂食0至5μg Se/g分级亚硒酸盐4周的大鼠的硒代谢。在Se充足(0.24μg Se/g)的大鼠中,43%的肝脏Se以Sec形式存在,32%以硒糖胶形式存在,22%以与蛋白质结合的无机Se形式存在。在以亚硒酸盐形式喂食5μg Se/g的大鼠肝脏中,Sec的量保持在Se充足的平台(占总Se的11%),22%以低分子量(LMW)硒糖胶的形式存在,大量额外的硒糖胶与蛋白质连接,但64%以与蛋白质结合的无机Se的形式存在。在任何水平的亚硒酸盐补充中均未发现硒代蛋氨酸。在Se需求以下,Se优先结合到Sec硒蛋白中。在超过日粮硒需求的情况下,硒糖胶成为肝脏中主要的LMW水溶性硒物种,硒糖脂修饰蛋白的水平远高于Sec硒蛋白,使这些硒糖脂装饰蛋白成为肝脏中高硒补充的主要含硒蛋白物种。这种与蛋白质上的半胱氨酸连接的硒糖胶的积累或与蛋白质结合的无机硒的积累可能是硒在分子水平上毒性的基础。
{"title":"Effect of graded levels of selenium supplementation as selenite on expression of selenosugars, selenocysteine, and other selenometabolites in rat liver.","authors":"Katarzyna Bierla, Joanna Szpunar, Ryszard Lobinski, Roger A Sunde","doi":"10.1093/mtomcs/mfad066","DOIUrl":"10.1093/mtomcs/mfad066","url":null,"abstract":"<p><p>Using high pressure liquid chromatography (HPLC) coupled with selenium-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (Orbitrap MS/MS) detection, we previously found that far more selenium (Se) is present as selenosugar (seleno-N-acetyl galactosamine) in Se-adequate turkey liver than is present as selenocysteine (Sec) in true selenoproteins, and that selenosugars account for half of the Se in high-Se turkey liver. To expand these observations to mammals, we studied Se metabolism in rats fed graded levels of selenite from 0 to 5 μg Se/g for 4 wk. In Se-adequate (0.24 μg Se/g) rats, 43% of liver Se was present as Sec, 32% was present as selenosugars, and 22% as inorganic Se bound to protein. In liver of rats fed 5 μg Se/g as selenite, the quantity of Sec remained at the Se-adequate plateau (11% of total Se), 22% was present as low molecular weight (LMW) selenosugars with substantial additional selenosugars linked to protein, but 64% was present as inorganic Se bound to protein. No selenomethionine was found at any level of selenite supplementation. Below the Se requirement, Se is preferentially incorporated into Sec-selenoproteins. Above the dietary Se requirement, selenosugars become by far the major LMW water soluble Se species in liver, and levels of selenosugar-decorated proteins are far higher than Sec-selenoproteins, making these selenosugar-decorated proteins the major Se-containing protein species in liver with high Se supplementation. This accumulation of selenosugars linked to cysteines on proteins or the build-up of inorganic Se bound to protein may underlie Se toxicity at the molecular level.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66783241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Metallomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1